Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/580
Título : | Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds |
Autor : | Diéguez Santana, Karel Casañola Martin, Gerardo M Torres Gutiérrez, Roldán Rasulev, Bakhtiyor R Green, James González-Díaz, Humbert |
Palabras clave : | ChEMBL; antibacterial compounds Complex networks Information fusion Machine learning Multidrug-resistant Perturbation theory. |
Fecha de publicación : | 2022 |
Citación : | Diéguez-Santana, K., Casañola-Martin, G. M., Torres, R., Rasulev, B., Green, J. R., & González-Díaz, H. (2022). Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds. Molecular pharmaceutics, 19(7), 2151–2163. doi.org/10.1021/acs.molpharmaceut.2c00029 |
Citación : | PRODUCCIÓN CIENTÍFICA-ARTÍCULO CIENTÍFICO;A-IKIAM-000392 |
Resumen : | Antibacterial drugs (AD) change the metabolic status of bacteria, contributing to bacterial death. However, antibiotic resistance and the emergence of multidrug-resistant bacteria increase interest in understanding metabolic network (MN) mutations and the interaction of AD vs MN. In this study, we employed the IFPTML = Information Fusion (IF) + Perturbation Theory (PT) + Machine Learning (ML) algorithm on a huge dataset from the ChEMBL database, which contains >155,000 AD assays vs >40 MNs of multiple bacteria species. We built a linear discriminant analysis (LDA) and 17 ML models centered on the linear index and based on atoms to predict antibacterial compounds. The IFPTML-LDA model presented the following results for the training subset: specificity (Sp) = 76% out of 70,000 cases, sensitivity (Sn) = 70%, and Accuracy (Acc) = 73%. The same model also presented the following results for the validation subsets: Sp = 76%, Sn = 70%, and Acc = 73.1%. Among the IFPTML nonlinear models, the k nearest neighbors (KNN) showed the best results with Sn = 99.2%, Sp = 95.5%, Acc = 97.4%, and Area Under Receiver Operating Characteristic (AUROC) = 0.998 in training sets. In the validation series, the Random Forest had the best results: Sn = 93.96% and Sp = 87.02% (AUROC = 0.945). The IFPTML linear and nonlinear models regarding the ADs vs MNs have good statistical parameters, and they could contribute toward finding new metabolic mutations in antibiotic resistance and reducing time/costs in antibacterial drug research. |
URI : | http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/580 |
ISSN : | https://doi.org/10.1021/acs.molpharmaceut.2c00029 |
Aparece en las colecciones: | ARTÍCULOS CIENTÍFICOS |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
A-IKIAM-000392.pdf | Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds | 184,68 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.