Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/580
Título : Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds
Autor : Diéguez Santana, Karel
Casañola Martin, Gerardo M
Torres Gutiérrez, Roldán
Rasulev, Bakhtiyor
R Green, James
González-Díaz, Humbert
Palabras clave : ChEMBL; antibacterial compounds
Complex networks
Information fusion
Machine learning
Multidrug-resistant
Perturbation theory.
Fecha de publicación : 2022
Citación : Diéguez-Santana, K., Casañola-Martin, G. M., Torres, R., Rasulev, B., Green, J. R., & González-Díaz, H. (2022). Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds. Molecular pharmaceutics, 19(7), 2151–2163. doi.org/10.1021/acs.molpharmaceut.2c00029
Citación : PRODUCCIÓN CIENTÍFICA-ARTÍCULO CIENTÍFICO;A-IKIAM-000392
Resumen : Antibacterial drugs (AD) change the metabolic status of bacteria, contributing to bacterial death. However, antibiotic resistance and the emergence of multidrug-resistant bacteria increase interest in understanding metabolic network (MN) mutations and the interaction of AD vs MN. In this study, we employed the IFPTML = Information Fusion (IF) + Perturbation Theory (PT) + Machine Learning (ML) algorithm on a huge dataset from the ChEMBL database, which contains >155,000 AD assays vs >40 MNs of multiple bacteria species. We built a linear discriminant analysis (LDA) and 17 ML models centered on the linear index and based on atoms to predict antibacterial compounds. The IFPTML-LDA model presented the following results for the training subset: specificity (Sp) = 76% out of 70,000 cases, sensitivity (Sn) = 70%, and Accuracy (Acc) = 73%. The same model also presented the following results for the validation subsets: Sp = 76%, Sn = 70%, and Acc = 73.1%. Among the IFPTML nonlinear models, the k nearest neighbors (KNN) showed the best results with Sn = 99.2%, Sp = 95.5%, Acc = 97.4%, and Area Under Receiver Operating Characteristic (AUROC) = 0.998 in training sets. In the validation series, the Random Forest had the best results: Sn = 93.96% and Sp = 87.02% (AUROC = 0.945). The IFPTML linear and nonlinear models regarding the ADs vs MNs have good statistical parameters, and they could contribute toward finding new metabolic mutations in antibiotic resistance and reducing time/costs in antibacterial drug research.
URI : http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/580
ISSN : https://doi.org/10.1021/acs.molpharmaceut.2c00029
Aparece en las colecciones: ARTÍCULOS CIENTÍFICOS

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
A-IKIAM-000392.pdfMachine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds184,68 kBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.