Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/580
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorDiéguez Santana, Karel-
dc.contributor.authorCasañola Martin, Gerardo M-
dc.contributor.authorTorres Gutiérrez, Roldán-
dc.contributor.authorRasulev, Bakhtiyor-
dc.contributor.authorR Green, James-
dc.contributor.authorGonzález-Díaz, Humbert-
dc.date.accessioned2022-07-14T15:23:32Z-
dc.date.available2022-07-14T15:23:32Z-
dc.date.issued2022-
dc.identifier.citationDiéguez-Santana, K., Casañola-Martin, G. M., Torres, R., Rasulev, B., Green, J. R., & González-Díaz, H. (2022). Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds. Molecular pharmaceutics, 19(7), 2151–2163. doi.org/10.1021/acs.molpharmaceut.2c00029es
dc.identifier.issnhttps://doi.org/10.1021/acs.molpharmaceut.2c00029-
dc.identifier.urihttp://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/580-
dc.description.abstractAntibacterial drugs (AD) change the metabolic status of bacteria, contributing to bacterial death. However, antibiotic resistance and the emergence of multidrug-resistant bacteria increase interest in understanding metabolic network (MN) mutations and the interaction of AD vs MN. In this study, we employed the IFPTML = Information Fusion (IF) + Perturbation Theory (PT) + Machine Learning (ML) algorithm on a huge dataset from the ChEMBL database, which contains >155,000 AD assays vs >40 MNs of multiple bacteria species. We built a linear discriminant analysis (LDA) and 17 ML models centered on the linear index and based on atoms to predict antibacterial compounds. The IFPTML-LDA model presented the following results for the training subset: specificity (Sp) = 76% out of 70,000 cases, sensitivity (Sn) = 70%, and Accuracy (Acc) = 73%. The same model also presented the following results for the validation subsets: Sp = 76%, Sn = 70%, and Acc = 73.1%. Among the IFPTML nonlinear models, the k nearest neighbors (KNN) showed the best results with Sn = 99.2%, Sp = 95.5%, Acc = 97.4%, and Area Under Receiver Operating Characteristic (AUROC) = 0.998 in training sets. In the validation series, the Random Forest had the best results: Sn = 93.96% and Sp = 87.02% (AUROC = 0.945). The IFPTML linear and nonlinear models regarding the ADs vs MNs have good statistical parameters, and they could contribute toward finding new metabolic mutations in antibiotic resistance and reducing time/costs in antibacterial drug research.es
dc.language.isoenes
dc.relation.ispartofseriesPRODUCCIÓN CIENTÍFICA-ARTÍCULO CIENTÍFICO;A-IKIAM-000392-
dc.subjectChEMBL; antibacterial compoundses
dc.subjectComplex networkses
dc.subjectInformation fusiones
dc.subjectMachine learninges
dc.subjectMultidrug-resistantes
dc.subjectPerturbation theory.es
dc.titleMachine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compoundses
dc.typeArticlees
Aparece en las colecciones: ARTÍCULOS CIENTÍFICOS

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
A-IKIAM-000392.pdfMachine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds184,68 kBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.