Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/580
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Diéguez Santana, Karel | - |
dc.contributor.author | Casañola Martin, Gerardo M | - |
dc.contributor.author | Torres Gutiérrez, Roldán | - |
dc.contributor.author | Rasulev, Bakhtiyor | - |
dc.contributor.author | R Green, James | - |
dc.contributor.author | González-Díaz, Humbert | - |
dc.date.accessioned | 2022-07-14T15:23:32Z | - |
dc.date.available | 2022-07-14T15:23:32Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Diéguez-Santana, K., Casañola-Martin, G. M., Torres, R., Rasulev, B., Green, J. R., & González-Díaz, H. (2022). Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds. Molecular pharmaceutics, 19(7), 2151–2163. doi.org/10.1021/acs.molpharmaceut.2c00029 | es |
dc.identifier.issn | https://doi.org/10.1021/acs.molpharmaceut.2c00029 | - |
dc.identifier.uri | http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/580 | - |
dc.description.abstract | Antibacterial drugs (AD) change the metabolic status of bacteria, contributing to bacterial death. However, antibiotic resistance and the emergence of multidrug-resistant bacteria increase interest in understanding metabolic network (MN) mutations and the interaction of AD vs MN. In this study, we employed the IFPTML = Information Fusion (IF) + Perturbation Theory (PT) + Machine Learning (ML) algorithm on a huge dataset from the ChEMBL database, which contains >155,000 AD assays vs >40 MNs of multiple bacteria species. We built a linear discriminant analysis (LDA) and 17 ML models centered on the linear index and based on atoms to predict antibacterial compounds. The IFPTML-LDA model presented the following results for the training subset: specificity (Sp) = 76% out of 70,000 cases, sensitivity (Sn) = 70%, and Accuracy (Acc) = 73%. The same model also presented the following results for the validation subsets: Sp = 76%, Sn = 70%, and Acc = 73.1%. Among the IFPTML nonlinear models, the k nearest neighbors (KNN) showed the best results with Sn = 99.2%, Sp = 95.5%, Acc = 97.4%, and Area Under Receiver Operating Characteristic (AUROC) = 0.998 in training sets. In the validation series, the Random Forest had the best results: Sn = 93.96% and Sp = 87.02% (AUROC = 0.945). The IFPTML linear and nonlinear models regarding the ADs vs MNs have good statistical parameters, and they could contribute toward finding new metabolic mutations in antibiotic resistance and reducing time/costs in antibacterial drug research. | es |
dc.language.iso | en | es |
dc.relation.ispartofseries | PRODUCCIÓN CIENTÍFICA-ARTÍCULO CIENTÍFICO;A-IKIAM-000392 | - |
dc.subject | ChEMBL; antibacterial compounds | es |
dc.subject | Complex networks | es |
dc.subject | Information fusion | es |
dc.subject | Machine learning | es |
dc.subject | Multidrug-resistant | es |
dc.subject | Perturbation theory. | es |
dc.title | Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds | es |
dc.type | Article | es |
Aparece en las colecciones: | ARTÍCULOS CIENTÍFICOS |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
A-IKIAM-000392.pdf | Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds | 184,68 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.