Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/492
Título : Traditional and Computational Screening of Non-Toxic Peptides and Approaches to Improving Selectivity
Autor : Robles Loaiza, Alberto A.
Pinos Tamayo, Edgar Alejandro
Mendes, Bruno
Ortega Pila, Josselyn A.
Proaño Bolaños, Carolina
Plisson, Fabien
Teixeira, Cátia
Gomes, Paula
de Almeida, José R.
Palabras clave : In silico
Machine learning
Peptides
Hemolysis
Toxicity
Fecha de publicación : 2022
Citación : Robles-loaiza, A. A., Pinos-tamayo, E. A., Mendes, B., Ortega-pila, J. A., Proaño-bolaños, C., Plisson, F., Teixeira, C., Gomes, P., & Almeida, J. R. (2022). Traditional and Computational Screening of Non-Toxic Peptides and Approaches to Improving Selectivity.
Citación : PRODUCCIÓN CIENTÍFICA- ARTÍCULOS CIENTÍFICOS;A-IKIAM-000370
Resumen : Peptides have positively impacted the pharmaceutical industry as drugs, biomarkers, or diagnostic tools of high therapeutic value. However, only a handful have progressed to the market. Toxicity is one of the main obstacles to translating peptides into clinics. Hemolysis or hemotoxicity, the principal source of toxicity, is a natural or disease-induced event leading to the death of vital red blood cells. Initial screenings for toxicity have been widely evaluated using erythrocytes as the gold standard. More recently, many online databases filled with peptide sequences and their biological meta-data have paved the way toward hemolysis prediction using user-friendly, fast-access machine learning-driven programs. This review details the growing contributions of in silico approaches developed in the last decade for the large-scale prediction of erythrocyte lysis induced by peptides. After an overview of the pharmaceutical landscape of peptide therapeutics, we highlighted the relevance of early hemolysis studies in drug development. We emphasized the computational models and algorithms used to this end in light of historical and recent findings in this promising field. We benchmarked seven predictors using peptides from different data sets, having 7–35 amino acids in length. According to our predictions, the models have scored an accuracy over 50.42% and a minimal Matthew’s correlation coefficient over 0.11. The maximum values for these statistical parameters achieved 100.0% and 1.00, respectively. Finally, strategies for optimizing peptide selectivity were described, as well as prospects for future investigations. The development of in silico predictive approaches to peptide toxicity has just started, but their important contributions clearly demonstrate their potential for peptide science and computer-aided drug design. Methodology refinement and increasing use will motivate the timely and accurate in silico identification of selective, non-toxic peptide therapeutics.
URI : http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/492
Aparece en las colecciones: ARTÍCULOS CIENTÍFICOS

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
A-IKIAM-000370.pdfTraditional and Computational Screening of Non-Toxic Peptides and Approaches to Improving Selectivity1,51 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.