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Abstract: Peptides have positively impacted the pharmaceutical industry as drugs, biomarkers, or
diagnostic tools of high therapeutic value. However, only a handful have progressed to the market.
Toxicity is one of the main obstacles to translating peptides into clinics. Hemolysis or hemotoxicity,
the principal source of toxicity, is a natural or disease-induced event leading to the death of vital red
blood cells. Initial screenings for toxicity have been widely evaluated using erythrocytes as the gold
standard. More recently, many online databases filled with peptide sequences and their biological
meta-data have paved the way toward hemolysis prediction using user-friendly, fast-access machine
learning-driven programs. This review details the growing contributions of in silico approaches
developed in the last decade for the large-scale prediction of erythrocyte lysis induced by peptides.
After an overview of the pharmaceutical landscape of peptide therapeutics, we highlighted the
relevance of early hemolysis studies in drug development. We emphasized the computational models
and algorithms used to this end in light of historical and recent findings in this promising field. We
benchmarked seven predictors using peptides from different data sets, having 7–35 amino acids in
length. According to our predictions, the models have scored an accuracy over 50.42% and a minimal
Matthew’s correlation coefficient over 0.11. The maximum values for these statistical parameters
achieved 100.0% and 1.00, respectively. Finally, strategies for optimizing peptide selectivity were
described, as well as prospects for future investigations. The development of in silico predictive
approaches to peptide toxicity has just started, but their important contributions clearly demonstrate
their potential for peptide science and computer-aided drug design. Methodology refinement and
increasing use will motivate the timely and accurate in silico identification of selective, non-toxic
peptide therapeutics.

Keywords: in silico; machine learning; peptides; hemolysis; toxicity

1. Peptide Drugs Market and Discovery: A Bird’s Eye View

Peptides are gaining traction on the new drug development agenda, and their number
in the clinics grows annually [1]. The hypoglycemic hormone insulin stands out as a pio-
neering peptide in the medical industry that opened space for the search and applications
of these small molecules in the pharmaceutical, diagnostic, cosmeceutical, clinical, and
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biomedical scope [2]. Since then, in this centenary journey, more than 80 Food and Drug
Administration (FDA)-approved peptides constitute an essential portfolio of life-saving
molecules. Approximately 19% of these peptide drugs were approved from 2015 to 2019,
showing a remarkable advance and success in the last decade [3]. On the other hand,
this number increases five-fold when adding peptide-based drugs under clinical trials [4].
About 400 oligopeptides are currently under evaluation offering promising prospects for
the era of peptides as clinically viable drugs. An optimistic economic projection also accom-
panies this considerable growth; as such, the global peptide therapeutics market should
expand over the forecast horizon, achieving a compound annual growth rate of 9.4% by
2025 [5]. Currently, this market is a multibillion-dollar industry, valued at US$26.98 billion
and projected to double by 2027 [6]. In this context, peptides become a bet with a highly
profitable vision. Thus, the market recognizes therapeutic peptides with a renewed and
more substantial interest [7].

The chemical nature and properties of peptides, such as versatility, biochemical di-
versity, and multifunctionality, have guided and motivated the process of identifying
new candidates for effective treatments with clinical benefits [8,9]. They offer a potential
breakthrough in many diagnostic tools, drug delivery systems, and therapies, including
cancer, bacterial infections, parasitic diseases, and others [10,11]. Their small size and
structural simplicity do not coincide with their high number of applications and particular
characteristics that respond to global needs and the challenging, costly, and complex drug
development [12,13]. Bioactive peptides can easily be synthesized and engineered to obtain
more druggable versions [14,15]. Their metabolic degradation is predictable and generates
non-accumulative compounds for the body. These residual compounds are often associated
with less toxicity than many small molecules. However, peptides have limited success
in oral administration [16]. Multiple strategies have circumvented this hurdle by using
absorption enhancers, enzyme inhibitors, modification by conjugation to polymers or other
moieties, encapsulation by liposomes, multiple emulsions, and nanoparticles. These ap-
proaches are based on biocompatible systems that enable adequate transport and escalate
the routes of administration [17].

Drug development involves a series of steps with complex and important barriers that
guarantee the approval of only effective and non-toxic pharmaceuticals [18]. Candidate
molecules face a series of challenges, and selectivity is one of the main pillars for their
progression into the clinics. Despite the many candidates constantly discovered, only
a tiny fraction is converted into affordable, scalable, and effective therapies [19]. Drug
toxicity remains a latent issue [20], and peptides are no exception to this rule [21]. Although
databases reveal more than 10,000 unique bioactive peptide sequences [22,23], less than
1% of this group became FDA-approved drugs. Several bioactive peptides have shown
toxicity, especially their disruptive action on red blood cells (RBCs) [24]. Therefore, tox-
icity to healthy eukaryotic cells remains a major bottleneck in the approval rate of new
pharmaceutical peptides [25].

Toxic peptides are categorized into three main groups: cytotoxic (general), hemolytic
(toxic to RBCs), and immunotoxic (modulate the immune response in an undesirable
manner) peptides [26]. Toxicity evaluation is naturally of extreme relevance in drug devel-
opment and approval [27], and different wet-laboratory approaches have been used to this
end. Historically, in vitro assays have been pivotal to analyzing the toxic activity in pep-
tides research. Hemolysis assay, lactate dehydrogenase (LDH) release assay, colorimetric
3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, and ATP-based
assay are the experimental protocols most frequently used to measure toxicity [28,29]. In
general terms, these methods are based on intracellular biomarkers such as LDH and
hemoglobin released when there is cell damage or cell viability, determined by enzymatic
activity or quantification of the energy currency, ATP. Figure 1 highlights these in vitro
assays that provide insights into the selectivity and safety of peptides.
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Figure 1. Main approaches employed to evaluate the toxicity of peptides. Traditional screening of 
non-toxic peptides is performed using different in vitro techniques, including MTT, LDH, 
erythrocyte lysis, and ATP-based assays. These methods are based on the measurement of 
intracellular markers released during cell death or lysis, such as hemoglobin (red blood assay), 
enzymes (LDH assay), or on the analysis of cell viability determined by enzymatic activity, 
measured, for example, by the MTT assay or by the amount of cell energy (ATP-based assay). 
Recently, computational models were reported to assist in peptide toxicity prediction. 

Computational tools have revolutionized at a tremendous speed the chemical, 
biological and pharmaceutical fields, including peptide science [30,31]. In the last decade, 
the development of such predictive tools has permitted the discovery of novel toxic and 
non-toxic peptides as well as the design of analogs with reduced toxicity [32]. Recent 
machine learning (ML)-driven methods [33–39] predicting the peptide hemolytic action 
are described in this review. Such methods are considered cost-effective and time-saving 
strategies to support the development of peptide-based drugs. Current predictors are 
limited and possibly biased by the number of peptide sequences, their diversity, and the 
associated biological data [40]. The in silico predictive technologies of the cytotoxic action 
of peptides are still in their infancy but have offered ample opportunities that reduce the 
number of expensive failures. This work first discusses the primary cell model used to 
study the toxicity of peptide candidates and how new data-driven computational 
methods have been crucial to understanding structure-activity relationships (SAR) and 
contributing to the selection of possible safe peptide templates for synthesis and 
evaluation. 

Many bibliographic studies have covered the therapeutic effects of peptides in the 
most diverse areas [41–44], including the discussion of market trends, current challenges, 
and prospects [1,5,45]. On the other hand, several reviews have recently highlighted the 
development of in silico methods to support the discovery of antimicrobial peptides [46–
48]. However, to our knowledge, the computational advances in the field of peptide 
toxicity, although extremely important, have not been thoroughly addressed yet. 
Therefore, here, we focused on the in silico frameworks that speed the discovery and 
design of non-toxic peptides. We started by documenting the applicability of the standard 
hemolysis assay in initial hit screening. We then described reported predictive models for 
hemolytic activity. This review integrates the recent computational advances that support 
the identification, design, and synthesis of non-toxic peptides with greater probabilities 
of clinical translation. Lastly, we discussed possible directions and perspectives on how 
computational advances should shape the future of peptide-based drugs and the 

Figure 1. Main approaches employed to evaluate the toxicity of peptides. Traditional screening of
non-toxic peptides is performed using different in vitro techniques, including MTT, LDH, erythrocyte
lysis, and ATP-based assays. These methods are based on the measurement of intracellular markers
released during cell death or lysis, such as hemoglobin (red blood assay), enzymes (LDH assay),
or on the analysis of cell viability determined by enzymatic activity, measured, for example, by the
MTT assay or by the amount of cell energy (ATP-based assay). Recently, computational models were
reported to assist in peptide toxicity prediction.

Computational tools have revolutionized at a tremendous speed the chemical, bio-
logical and pharmaceutical fields, including peptide science [30,31]. In the last decade,
the development of such predictive tools has permitted the discovery of novel toxic and
non-toxic peptides as well as the design of analogs with reduced toxicity [32]. Recent
machine learning (ML)-driven methods [33–39] predicting the peptide hemolytic action
are described in this review. Such methods are considered cost-effective and time-saving
strategies to support the development of peptide-based drugs. Current predictors are
limited and possibly biased by the number of peptide sequences, their diversity, and the
associated biological data [40]. The in silico predictive technologies of the cytotoxic action
of peptides are still in their infancy but have offered ample opportunities that reduce the
number of expensive failures. This work first discusses the primary cell model used to
study the toxicity of peptide candidates and how new data-driven computational methods
have been crucial to understanding structure-activity relationships (SAR) and contributing
to the selection of possible safe peptide templates for synthesis and evaluation.

Many bibliographic studies have covered the therapeutic effects of peptides in the
most diverse areas [41–44], including the discussion of market trends, current challenges,
and prospects [1,5,45]. On the other hand, several reviews have recently highlighted the
development of in silico methods to support the discovery of antimicrobial peptides [46–48].
However, to our knowledge, the computational advances in the field of peptide toxicity,
although extremely important, have not been thoroughly addressed yet. Therefore, here,
we focused on the in silico frameworks that speed the discovery and design of non-toxic
peptides. We started by documenting the applicability of the standard hemolysis assay in
initial hit screening. We then described reported predictive models for hemolytic activity.
This review integrates the recent computational advances that support the identification,
design, and synthesis of non-toxic peptides with greater probabilities of clinical translation.
Lastly, we discussed possible directions and perspectives on how computational advances
should shape the future of peptide-based drugs and the multidisciplinary drug develop-
ment process. The most frequent approaches to increasing the selectivity and safety of
therapeutic peptides are also reviewed.
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2. Red Blood Cells as a Standard Model for Toxicity Assessment of Peptides

For a new peptide to be considered a promising therapeutic candidate, it must have
minimal cytotoxic effects on healthy host cells [49]. The value of in vitro studies for toxicity
prediction is very high since it allows obtaining baseline information on the harmful effects,
allowing better administration and directing of resources to other study stages [50,51]. In
other words, the in vitro toxicity assessment of a natural [52] or a synthetic compound [53]
is the first step to be carried out in order to consider new pharmaceutical formulations at
the in vivo scale and toward clinical trials [54].

As previously mentioned, there are several methodologies for determining the in vitro
toxicity of a compound. Although the activities or characteristics obtained vary between
methods, they basically are indicators of membrane rupture and cell death [45,55–57].
Temporal analysis, data interpretation, and sensitivity are other important parameters
that vary between techniques, including bioactive peptides studies [55]. Given this hetero-
geneity, there is no universal answer as to which is the most effective methodology. Some
parameters are more advantageous than others, and their use will depend on different
conditions (resources, time, and reproducibility). The aforementioned in vitro assays also
have shortcomings that must be addressed before selecting the most suitable one(s) ac-
cording to the initial objectives. Generally, the optimal technique presents high sensitivity,
simple reproducibility, rapid results generation, and is cost-effective [58]. For this reason,
hemolysis assay has been the reference protocol for the early toxicity screening phase [59].

Erythrocytes are the most abundant and crucial cells in the circulatory system, given
their vital oxygen-carrying function. They are very particular cells, as they lack a nucleus
and organelles with a membrane inside [60]. One can put into question the validity
of their use as a standard and valuable in vitro model for cytotoxicity assessment [61],
which is justified by their abundance in organisms, easy cultivation, and availability in
significant amounts [54]. The isolation and cultivation of other cell types often present
higher complexity, i.e., rat intestinal epithelial cells and human umbilical vein endothelial
cells [62] or the use of mice-derived macrophages [9]. In addition, one can take advantage
of the lack of internal membrane structures in red blood cells (RBCs), which can facilitate
the standardization and interpretation of results. In fact, despite normal nucleated cells not
being comparable to the structural simplicity of RBCs, these can experience morphological
and quantitative alterations that reflect significant damage and can act as a predictive
marker for the toxic impact of test compounds [59,63,64]. These features make the RBCs a
cheap, fast, and effective template for evaluating toxicity.

Hemolysis is a natural or disease-induced event potentially caused by novel small
molecule drug candidates or cationic peptides [65–67]. Briefly, hemolytic assays determine
the disruption and destruction of RBCs and have been promoted not only due to their
simplicity but also because of the structural and biochemical composition similarities
between RBC membranes and those of other human cells [68]. In percentage terms, the
erythrocyte membrane is made up mostly of proteins (39.5%), followed by lipids (35.1%),
water (19.5%), and carbohydrates (5.8%) [59]. The interplay between their components,
lipid composition, and high oxygen tension makes RBC membranes ideal models for
studying disturbances caused by oxidative stress and induced by an external molecule [63].

Human-derived RBCs are the first line of use; however, some studies have used ery-
throcytes from other animals, such as cows [55], sheep [69], rats [70], pigs [71], dogs [29],
and rabbits [72]. Dennison and Phoenix [73] have demonstrated that the hemolysis pro-
duced by the Modelin-5-CONH2 peptide (300 µM) was 12% for sheep RBCs and 2% for
those from humans and pigs. This observation has been attributed to the differences in the
contents of phosphatidylcholine and sphingomyelin in the erythrocytes membranes. In
general lines, sheep RBCs have a lower percentage of phosphatidylcholine and a higher
percentage of sphingomyelin than human and porcine RBCs, demonstrating that those
components can be key mediators for the hemolytic action of the peptide. In agreement
with this investigation, Greco et al. [29] measured the activity of 24 synthetic peptides
on RBCs of dogs, humans, rats, and cows. They noted heterogeneous reactions among
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these species’ cells, being those from dogs the most susceptible. In addition to interspecies
variations in erythrocyte membrane components and their organization, there are also
dissimilarities in the abundance of ion channels and aquaporins, resulting in differences in
tolerance to sudden changes in permeability and osmotic balance [74,75].

The general hemolytic assay procedure is based on the exposure of the erythrocytes to
a specific agent (in this case, peptides) at a selected range of concentrations for the subse-
quent spectrophotometric quantitation of released hemoglobin at a given wavelength [76].
Usually, measurements are performed at 405 [29], 414 [28], 450 [77], 540 [54], and 576
nm [73], among other wavelengths, taking advantage that the levels of hemoglobin are
directly proportional to the number of RBCs that have been lysed. The absorption values ob-
tained for the negative (0% hemolysis) and positive (100% hemolysis) controls are taken as a
reference to calculate the percentages of hemolysis, which are analyzed and compared using
standard statistical tests, e.g., one-way ANOVA and Tukey’s test [9], t-test [78], Boltzmann
sigmoidal equation [79], Mann–Whitney U-test [80], and others. Generally, the percentage
of hemolysis at a given concentration is obtained by the following equation [28,77]:

% Hemolysis =
(Abs sample − Abs negative control)
(Abs positive control − Abs sample)

× 100 (1)

where Abs represents absorbance. In some studies, there are minimal variations to this
formula [29,53,81,82].

Triton X-100 and melittin are the most recognized positive controls [28,53,83]. Melittin
is a cationic 26-mer membrane-binding polypeptide very abundant in Apis mellifera venom
proteome. This amphipathic molecule with a basic C-terminal region induces a high lytic
activity on a large number of cell types and at very low concentrations [84]. However,
its chemical synthesis and purification may represent an extra cost or time if the labora-
tory does not have the required equipment. Triton X-100 is often used as an alternative
positive control for hemolysis. This nonionic membrane-damaging detergent is cheap,
commercially available in high purity, and does not interfere with the spectrophotometric
measurements [28].

The parameter to express the toxicity toward erythrocytes is known as the concentra-
tion causing 50% of hemolysis, or HC50 [85]. This point of reference has been assessed in
many studies on peptides, with low values pinpointing greater hemolytic activity, whereas
high ones indicate lower toxic activity of the peptides. HC50 values are highly variable,
with some extremely toxic peptides showing very low values in the nM or low µM range,
e.g., 1.7 µM for Melittin [86], 2.9 µM for MG-H1 [87], or 600 nM for PGLa [77]; other
peptides show no hemolytic action at high concentrations (≥100 mM), e.g., Dermaseptin
S1 (>100 µM) [88], Ranatuerin-1 (140 µM), MP (100 µM) [89], Modelin-5 (300 µM) [73],
Ranatuerin-2ARa (100 µM), Esculentin-1ARa (120 µM) and Palustrin-3AR (200 µM) [90,91],
Ascaphin-8 (115 µM) and [K19] ascaphin-8 (>800 µM) [92]. Figure 2 illustrates the general
hemolysis assay protocol as a practical means of screening peptide toxicity.

Some studies take the selectivity index (SI) as the most suitable indicator for drug safety,
as it broadens the vision by giving a two-dimensional aspect that integrates therapeutic
and toxic components. The SI is the ratio between the concentration that is toxic to 50% of
the reference host healthy cells in a cytotoxicity assay (HC50 in the case of hemolysis assays)
and the concentration that causes the desired therapeutic action on the target cells (e.g.,
concentration causing growth inhibition on 50% of pathogen cells, or IC50). Hence, the SI
reflects the therapeutic window between toxicity and biological effect [93]. High values
drive the next steps in evaluating the test drug, e.g., bioactive peptides. Some examples of
antimicrobial peptides with high SI are presented in Table 1.
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Figure 2. Use of erythrocytes in the investigation of selective and potentially translational therapeutic
peptides. The hemolysis assay is a standard technique widely used in toxicity screening of drug
candidates, especially peptides. The abundance and easy obtainment of RBCs, together with the
simplicity of the experiment, contribute to its prioritization in toxicity studies. The RBCs lysis
protocol involves a colorimetric assay, which determines the amount of hemoglobin released after
peptide-induced cell damage. Serial dilutions of the peptides are first prepared in parallel with the
RBCs suspension, which is obtained by centrifugation and dilution. Then, the peptides, positive,
negative, and, eventually, other controls are incubated with the RBCs solution to deliver the raw data
that is next analyzed and translated into an HC50.

Table 1. Hemolytic activity and selectivity indices for reference antimicrobial peptides. A promising
peptide drug candidate must combine low or no toxicity and high biological activity. Examples
include highly active peptides evaluated against Staphylococcus aureus and Escherichia coli.

Peptide Microorganism HC50 (µM) SI Ref *

[K19] ascaphin-8 E. coli >800 >160 [92]

[I2, K19] ascaphin-8 S. aureus >800 >170 [92]

I16-A piscidin-1 S. aureus ATCC 25923 500 >200 [94]

[K2, K16] XT-7 S. aureus >800 >267 [92]

DiPGLa-H S. aureus ATCC 29213 270 360 [95]

Adepantin-2 E. coli 400 400 [96]

Kiadin-1 E. coli ATCC 25922 340 450 [95]

[I2, K19] ascaphin-8 E. coli >800 >480 [92]

Hymenochirin-10B E. coli >512 >512 [97]

Dadapin-1 S. aureus ATCC 29213 670 670 [98]

Flexampin E. coli >200 670 [99]

Papiliocin E. coli 200 800 [100]
* Ref: Reference.

A significant rule or consensus has not been established yet in the structural deter-
minants underlying peptides’ hemolytic activity [28]. This understanding is complex,
requiring multidisciplinary efforts. The clues collected to date point to a preponderant
role of peptide charge, amphipathicity, and hydrophobicity [91,101], contributing to the
stabilization of an amphipathic secondary structure [102]. Of the 20 natural amino acids,
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tryptophan has been touted as a critical residue since its presence in a given peptide
mediates molecular interactions with cholesterol present in mammalian membranes and,
consequently, their disturbance or even disruption [103–105]. On the other hand, positively
charged amino acid residues such as arginine and lysine have also been shown to influence
RBCs membrane damage. Dathe et al. [106] evaluated the activity of analogs of magainin-II
with variable charge, demonstrating that the increase in this parameter (+5) enhances the
antimicrobial activity. However, this must be carefully analyzed when generating peptide
analogs so that modifications to greater interaction with pathogenic targets do not increase
lytic effects on host cells.

The basis of the hemolytic assay allows the evaluation of several peptide concentra-
tions simultaneously, reducing time and costs, as well as enabling easy reproducibility
and a significant reduction in the use of in vivo models in concordance with bioethical
concerns in animal experimentation [58]. Notably, the human RBCs are a valuable and
efficient cellular model to obtain a rapid in vitro approximation of the toxic damages of a
peptide in the body, as well as to uncover patterns and (cellular/molecular) mechanisms
that can directly influence peptide action [107,108]. An example of this is the study carried
out by Ahmad et al. [109], in which the antibacterial and hemolytic activity of a peptide
derived from the “leucine zipper” structural motif coined LZP and six analogs were ana-
lyzed. The native LZP peptide induced the highest percentage of hemolysis in the 0–30 µM
range. The analogs, which possessed replacements of leucine by alanine residues at specific
positions, had significantly reduced hemolytic activity; namely, the LZP (L8A/L11A), LZP
(L4A/L8A), and LZP (L4A/L11A) analogs induced a percentage of hemolysis close to 0% in
the same concentration range. Antibacterial activity of the native peptide and all its analogs
did not change significantly, remaining in the 5.6–7.8 µM range against different bacteria.

3. Computational Tools and Databases for Hemolytic Activity Prediction

The expanding amount of available information on different peptide structures and
their effects has made it possible to develop in silico prediction models on the hemolytic
activity of a peptide, highlighting the most influential amino acids. For instance, Lang-
ham et al. [110] investigated the quantitative structure-activity relationships (QSAR) un-
derlying the selectivity of five protegrin-like AMPs based on their main physicochemical
properties. In brief, the authors demonstrated a strong correlation between the length,
mean number of acceptors, and energy term of the β-hairpin peptides and their toxici-
ties. Experimental analysis of toxicity revealed that the model accurately identified the
most and least toxic peptide. The advent of these modern computational techniques is
adding a further dimension and alternative to toxicity testing panels. These emerging
tools effectively analyze multidimensional data, may recognize patterns, and formulate
reasonable conjectures [111], generating a new paradigm for the early stages of peptide
drug development.

Two seminal approaches preceded the current computational tools for unraveling the
hemolytic activity of peptides. The first one occurred in 2009 when Naamati et al. developed
the first classification model to find out whether or not animal proteins could be toxic [112].
The second milestone occurred in 2013 when Gupta et al. created ToxinPred as the first web
server to estimate the toxicity of peptides [40]. Thereafter, the focus and development of tox-
icity prediction models were directed at the peptide hemolytic capacity. In 2016, Chaudhary
et al. developed the first hemolytic peptide classifier called HemoPI (https://webs.iiitd.
edu.in/raghava/hemopi/ (accessed on 25 January 2022)) [26]. The following year, Win et al.
developed HemoPred (http://codes.bio/hemopred/ (accessed on 25 January 2022)) [33].
However, the rise of machine learning-guided prediction of peptide toxicity to RBCs oc-
curred only in 2020, when three novel methods became available on the web for such
purpose: HemoPImod (https://webs.iiitd.edu.in/raghava/hemopimod/ (accessed on 25
January 2022)) [34], HLPpred-Fuse (http://thegleelab.org/HLPpred-Fuse/ (accessed on 25
January 2022)) [35], and HAPPENN (https://research.timmons.eu/happenn (accessed on
25 January 2022)) [36]. In addition to these, also in 2020, Plisson and co-workers developed

https://webs.iiitd.edu.in/raghava/hemopi/
https://webs.iiitd.edu.in/raghava/hemopi/
http://codes.bio/hemopred/
https://webs.iiitd.edu.in/raghava/hemopimod/
http://thegleelab.org/HLPpred-Fuse/
https://research.timmons.eu/happenn
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an open-access program in Python and compared different machine learning algorithms
in which three models stood out as the optimal prediction of hemolytic activity [37]. The
novelty of this study lies in establishing the applicability domain of hemolytic models using
multivariate outlier detectors. In 2021, Capecchi et al. created another in silico model to
elucidate the lytic capacity of peptides on blood cells [38], Yaseen et al. developed the most
recent hemolysis model, which considers N/C-terminal modifications and L or D amino
acids in a primary sequence [113]. In the same year, a web server was established based
on a new peptide toxicity predictor named ATSE. Figure 3 summarizes this chronology,
comprising 10 different algorithms to predict peptides’ hemolytic activity.
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Figure 3. Historical overview of the development of freely available tools and models for prediction
of peptide toxicity. Big biomedical peptide data have been explored to design new predictive
methods that facilitate adequate access to the full potential of peptides. Despite the many years
of peptide science, our literature review demonstrates that these in silico approaches are relatively
new. From the pioneering and innovative ClanTox [112] and ToxinPred [40] launched in 2009 and
2013, respectively, ten high-throughput computer toxicity prediction tools were developed that
mainly predict peptides’ hemolytic effects. Most of them have been released in the last 5 years.
Capecchi et al. [38] and HemoNet [113] are the latest hemolytic classifiers. Some predictors such as
HAPPENN [36] and HemoPI [26] have more than one version. HemoPI has 5 SVM methods, while
HAPPENN is composed of 3 methods. However, due to the difference in performance reported by
the authors, for this chronology, we considered only the best-in-class performance methods. The three
Plisson models [37] were considered due to high similarity in performance metrics. Peptide toxicity
predictors are highlighted in blue, and the classifiers for predicting peptides’ hemolytic activity are
colored in red.

The emergence of peptide toxicity predictive programs is probably due to: (i) the ease
of access to high-performance computers to process biological information; (ii) a better
scope and understanding of peptide structural and functional characteristics; and (iii) an
increase in the elaboration of databases of both AMPs and hemolytic peptides.

Concerning the second point (ii), it is notorious how the number of parameters used
in predictive algorithms has increased dramatically from 2013 to 2020. For example, Tox-
inPred only uses the composition of amino acids, dipeptides, and structural motifs as
predictors [40], while HAPPENN makes further use of several physicochemical descriptors
to classify peptides [36]. The descriptors that some of the most current prediction pro-
grams take into account for prediction of peptides’ hemolytic effects are: length, molecular
weight, charge, charge density, isoelectric point, instability index, aromaticity index [114],
aliphatic index [115], Boman index [116], hydrophobicity [117–119], the Amino Acid Se-
lectivity Index Scale (AASI) for helical AMPs [120], the Acidic, Basic, Hydrophobic, Polar,
Aromatic, Kink-inducer (ABHPRK) features scale [121], side chain bulkiness [122], amino
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acid charges, the COUGAR selection of peptide’s descriptors in the ModlAMP’s Python
package (https://modlamp.org/, accessed on 25 January 2022) [121], the energy of in-
sertion of amino acid side chains into lipid bilayers (Ez) [123], side chain flexibility [124],
polarity [125], the Isotropic Surface Area and Electronic Charge Index (ISAECI) of amino
acid side chains [126], α-helix propensity [127], the MSS topological shape and size pa-
rameter for amino acid side chains [128], the MSW amino acid scale based on a principal
component analysis (PCA) of the molecular surface-based Weighted Holistic Invariant
Molecular (WHIM) descriptor [129], the pharmacophoric feature scale, pepArc, based on
hydrophobicity, polarity, charge, and presence of proline residues [121], the PPCALI scale
that is derived from PCA of over 140 amino acid property scales [130], refractivity [131], t
scale [132], transmembrane propensity [133], and the z3 (electronic properties) [134] and z5
(electronegativity, heat of formation, electrophilicity and hardness) [135] Z-scales for amino
acids in peptide sequences. The packages that have been used in Python to establish these
physicochemical descriptors are modlAMP [121], ChemoPy [136], and RDKit [137].

As for the last point (iii), over 10 databases (DBs) of AMPs have been made publicly
available on the web. These DBs are compiled in Table 2, along with four examples of DBs
of hemolytic/toxic peptides (HLPs) that have been developed to set forth toxicity data.
The first of these four DBs (https://webs.iiitd.edu.in/raghava/toxinpred/dataset.php
(accessed on 25 January 2022)) was created during the development of the ToxinPred
server and focuses on describing toxicity in general [40]. It was developed using toxic
proteins/peptides obtained from different databases. The second DB, Hemolytik (http:
//crdd.osdd.net/raghava/hemolytik/ (accessed on 25 January 2022)), focuses on pep-
tides’ hemolytic activity [138]. The HemoPiMOD DB also details hemolytic activity
(https://webs.iiitd.edu.in/raghava/hemopimod/download.php (accessed on 25 January
2022)) but focuses on modified peptides instead [34]. The DBAASP-Hemo DB is a subset of
peptides from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP;
https://dbaasp.org/ (accessed on 25 January 2022)) whose hemolytic activity is also dis-
played [38]. It should be noted that five (HemoPI, HemoPred, HLP-pred-Fuse, HAPPENN,
and Plisson models) out of the eight algorithms thus far developed to predict peptides
hemolytic action took data from the Hemolytik DB and were subjected to the criteria set by
Chaudhary et al. [26].

Table 2. Databases on antimicrobial peptides (AMPs) and hemolytic peptides (HLPs). Databases (DBs)
are crucial starting points for identifying patterns and developing predictive methods. This table
details the main DBs that bring together a large amount of information relevant to the strengthening
and development of peptide science, especially computational peptidology. Specifically, in hemolysis
prediction tools, peptide DBs detailing hemolytic activity are indispensable for the development
of classification models. For their part, DBs on AMPs are equally useful to guide the next steps of
evaluation of the potential of peptides. DBs were accessed on 3 March 2022 to confirm the number
of peptides.

Antimicrobial Peptides Databases

Name Year #Peptides Description Reference

DBAASP 2021 18719 Manually curated DB on peptides’ SAR [139]

LAMP2 2020 23253 Links AMPs from 16 different DBs [22]

DRAMP 2.0 2019 22259
Covering sequence, structure, activity, and

physicochemical features, as well patents, clinical
and other reference information on AMPs

[140]

InverPep 2017 774 AMPs from invertebrates [141]

APD3 2016 3324 Natural peptides with knownsequences and
activities [142]

https://modlamp.org/
https://webs.iiitd.edu.in/raghava/toxinpred/dataset.php
http://crdd.osdd.net/raghava/hemolytik/
http://crdd.osdd.net/raghava/hemolytik/
https://webs.iiitd.edu.in/raghava/hemopimod/download.php
https://dbaasp.org/
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Table 2. Cont.

Antimicrobial Peptides Databases

Name Year #Peptides Description Reference

CAMPR3 2016 8164
Covering sequences, structures, and

family-specific signatures of AMPs, including
their biological sources and target organisms

[143]

BaAMPs 2015 221 AMPs with specific anti-biofilm activity [144]

ParaPep 2014 519 Focused on anti-parasitic peptides [145]

AVPdb 2014 2683 Focused on antiviral peptides [146]

YADAMP 2013 2525 Focused on antibacterial peptides [147]

MilkAMP 2013 371 Focused on AMPs from milk [148]

DADP 2012 1923 Focused on AMPs from the Anura family [149]

BACTIBASE 2010 230 Focused on bacteriocins [150]

PhytAMP 2009 271 Focused on AMPs from plants [151]

Hemolytic/Toxic Peptides Databases

ToxinPred 2013 1805 Focused on small toxins [40]

Hemolytik 2014 2000

Covering complete information on the origin,
hemolytic activity, reported function, structural

properties (chirality, linear versus cyclic
backbone, etc.), and existing modifications, if any

[138]

HemoPiMOD 2020 1176 Focused on chemically modified HLPs [34]

DBAASP-Hemo * 2021 2262

A filtered sub-DB of DBAASP that collects
peptides’ activity specifically against P. aeruginosa,
A. baumannii, and S. aureus and RBCs. In total, it

contains 1319 HLP and 943 non-HLP

[38]

* Data set generated by Capecchi et al. [38] and identified here as DBAASP-Hemo.

4. Scheme and Scope of Hemolytic Classifiers

To generate an in silico model to unravel the hemolytic activity of peptides, researchers
generally focus on the following stages: (1) pre-processing of the data sets chosen for the
classification models; (2) sampling and preparation of training and test data sets; (3)
development, selection, and validation of predictive models; (4.) application of predictive
models. Although generalist, these stages are shared by most modern computational tools
with some modifications.

In the first stage, the developers select the peptide sequences from online DBs that
they are going to use to build their supervised models. To date, the eight aforementioned
models have been using one of the following peptide libraries; Hemolytik [26,33,35,37,113],
HemoPiMOD [34] or DBAASP-Hemo [36,38,113]. Each sequence is then labeled with
the property or activity of interest (e.g., hemolytic or non-hemolytic). For example, a
binary classifier has two classes where a value of 1 indicates hemolytic peptides, whereas
a value of 0 stands for their non-hemolytic counterparts or vice-versa. Of note, most
hemolytic predictors were developed using (binary) classification algorithms and not
regressions due to the discrepancy in biological data (e.g., HC50) from the many research
laboratories. In general, QSAR models such as these hemolytic predictors are based on
the hypothesis that there is a mathematical relationship between the biological activity or
property (e.g., hemolytic activity) and the diversity of bioactive peptide sequences. The
developers will then identify and measure a series of features/variables that approximate
the differences, such as various local or global physicochemical descriptors, amino acid
compositions (i.e., single residues, k-mers, etc.), atomic composition, or other structural
motifs [26,33–38,113]. These features or variables can be easily accessed once the peptide
sequences are encoded using different programs in Python [34–38,113], Motif—EmeRging
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and with Classes—Identification (MERCI) [26] and indirectly with Simplified Molecular-
input Line-entry System (SMILES) and RDKit or modlamp packages [34]. The last step
in data pre-processing requires removing duplicated information or missing values and
data normalization. For example, in HAPPENN, data reduction was employed when the
sequence similarity was higher than 90%, according to the CD-hit software [36]. In the
development of the Plisson models, the databases associated with HemoPI-1, HemoPI-2,
and HemoPI-3 were cleaned of missing data, duplicates, and later normalized [37]. Finally,
many classification models must take into consideration balancing the distribution of their
classes, using sampling methods to avoid possible sampling bias. The Capecchi model
used 2907 inactive peptide sequences to balance the classes, where 1453 were designed
based on the same data subset length distribution, and 1454 were randomly generated
sequences [38].

During the second stage; data preparation, the developers divide the labeled peptide
data set into two subsets; the main model/training set (75–90% of the whole data set) used
for model building and one smaller data set (25–10%) used as external validation [152].
To minimize the risks of overfitting, the model set is often subjected to cross-validation.
For instance, in ten-fold cross-validation, sequences are randomly divided into 10 subsets
(folds): 9 sets train the models, and the remaining set is the internal testing set.

For the third stage, building models, researchers explored several classification algo-
rithms that best fit the features (e.g., physicochemical descriptors) with the classes (e.g., 1:
hemolytic or 0: non-hemolytic peptide). The hemolytic models have actually used the follow-
ing (binary) classification algorithms; support vector machine (SVM) [26,33,35–38,40,113],
Naïve Bayes (NB) [38], K-nearest neighbor (KNN) [26], multilayer perceptron (MLP) [26],
logistic regression (logit) [26,37], J48 [26,33], random forests (RF) [26,33,35–38,40,113], sim-
ulated (SNN) and recurrent (RNN) neural networks (NN) [36,38,113], k-nearest neighbor
(k-NN) [34,35,37], extremely randomized trees (ERT) [34], ridge regression (RR) [34], gra-
dient boosting (GBoost) [35,37], adaptive boosting (AdaBoost) [35,37], linear (LDA) and
quadratic (QDA) discriminant analysis [37], classification and regression trees (CART) [37],
and extreme gradient boosting (XGBoost) [37,113]. Each classification model is evaluated
using a series of performance metrics. Among the most used metrics are: accuracy, preci-
sion, recovery, Cohen’s Kappa coefficient, Matthew’s correlation coefficient (MCC), and the
area under the receiver operating characteristic curve (AUC-ROC). The models with the
best performance metrics between the model and validation sets will be selected. Even-
tually, the models will be optimized by tuning their respective hyperparameters. Table 3
details the best peptide predictive models for hemolytic activity using accuracy and MCC
as points of comparison. A high-quality data set is a central element of extreme importance
for establishing reliable hemolytic peptide prediction models. In this context, some details
of data sets used to develop and evaluate the methods for predicting toxicity peptide are
also shown in Table 3.

In the last stage, the best models are applied against an unlabeled external library of
natural peptides or randomly generated sequences (testing set) to predict their hemolytic
activity. Usually, peptides are divided into classes (0: non-hemolytic and 1: hemolytic
peptide). Additionally, a class probability p is assigned, which reflects the chance to belong
to a given class (probabilistic prediction values can range from 0.00 to 1.00). These scores
are converted into binary classification values employing a threshold, such as 0.5. Thus,
for example, the three models developed by Plisson (GBoost, LDA, and XGBoost) were
later applied to the APD3 database. The predictive results showed that ≈70% of the 3081
natural peptides evaluated are able to induce hemolysis [37]. On the other hand, Capecchi
et al. used their adjusted generative models to sample 50,000 amino acid sequences. Non-
hemolytic peptides with antibacterial activity were filtered. In summary, 3046 peptides were
considered as antimicrobial agents against Gram-negative bacteria, while 2717 sequences
were predicted to be active against Gram-positive [38].
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Table 3. Accuracy, Matthew’s correlation coefficient, summary of data set, and evaluation strategies of the models used by each of the ten programs used to predict
the hemolytic activity of peptides. Accuracy and MCC are only reference values and are not comparable between different models unless they have used the same
database. HemoPiMod is the only hemolytic action prediction server that takes into account chemical modifications of peptides. HemoNet is the only server that
focuses on C/N terminal and L or D amino acid modifications to perform classification. All other tools predict hemolytic activity from natural sequences without
any modification.

Tool Model Data Set * Training-Testing Validation Acc MCC Web Server ** Ref

HemoPImod RF 583/583 80%–20% 5-fold 78.33 0.56
√

[34]

HAPPENN NN 1543/2195 75%–8.3% 10-fold and external test 85.70 0.71
√

[36]

Plisson et al. model 1 GBoost
552/552 80%–20% Stratified 10-fold and

external test

96.50 0.93
NA [37]Plisson et al. model 2 LDA 95.10 0.90

Plisson et al. model 3 XGBoost 95.70 0.91

ToxinPred *** SVM Main: 1805/3593
Alternative: 1805/12541 Independent test 5-fold and 10-fold 94.50 0.88

√
[40]

HemoPred RF

HemoPI-1:
552/552

HemoPI-2:
552/462

HemoPI-3:
885/738

HemoPI-1: 80–20%
HemoPI-2:
80.2–19.8%

HemoPI-3: 80–20%

5-fold and external test 95.90 0.92
√

[33]

HemoPI-1 SVM hybrid 552/552 80–20% 5-fold 95.30 0.91
√

[26]

HLPpred-Fuse ERT

First layer:
Training: 433/423

First independent: 666/1999
Second layer:

Training: 671(high)/423(low)
Second independent:
168(high)/147(low)

First layer:
24.3–75.7%

Second layer:
77.6–22.4%

10-fold, independent test and
case study 98.40 0.97

√
[35]

HemoNet SNN 2056/2881 20–80%
5-fold, external data set,

non-redundant
cross-validation

Nd 0.55 NA [113]

Capecchi et al. RNN 1319/943 75–25% Test set 76.00 0.52 NA [38]

ATSE *** NN 1932/1932 85–15% 10-fold 95.20 0.90
√

[39]

* Data set: ratio of toxic/non-toxic or hemolytic/non-hemolytic peptides. ** Web server (accessed on 25 January, 2022): HemoPImod: https://webs.iiitd.edu.in/raghava/hemopimod/
index.html, accessed on 25 January 2022; HAPPENN: https://research.timmons.eu/happenn, accessed on 25 January 2022; ToxinPred: https://webs.iiitd.edu.in/raghava/toxinpred/
index.html, accessed on 25 January 2022; HemoPred: http://codes.bio/hemopred/, accessed on 25 January 2022; HemoPI-1: https://webs.iiitd.edu.in/raghava/hemopi/batch.php,
accessed on 25 January 2022; HLPpred-Fuse: http://thegleelab.org/HLPpred-Fuse/index.html, accessed on 25 January 2022; ATSE: http://server.malab.cn/ATSE, accessed on 25
January 2022; *** Model that predicts the peptide toxicity.

√
: Available. NA: Non-available. Nd: Non-determined.

https://webs.iiitd.edu.in/raghava/hemopimod/index.html
https://webs.iiitd.edu.in/raghava/hemopimod/index.html
https://research.timmons.eu/happenn
https://webs.iiitd.edu.in/raghava/toxinpred/index.html
https://webs.iiitd.edu.in/raghava/toxinpred/index.html
http://codes.bio/hemopred/
https://webs.iiitd.edu.in/raghava/hemopi/batch.php
http://thegleelab.org/HLPpred-Fuse/index.html
http://server.malab.cn/ATSE
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A total of 8 of the 10 machine learning models can predict hemolysis for natural
peptide sequences. HemoPiMod classifies the hemolytic activity of chemically modified
peptide sequences [34], and HemoNet predicts the hemolytic action by peptides that include
modifications in the C/N termini or L and D amino acids [113]. Classification models have
a minimum accuracy of 76% and a minimum MCC of 0.52. The highest values of Acc and
MCC achieved 98.4% and 0.97, respectively. These results emphasize a high predictive
power useful in the drug discovery process. Relevantly, despite addressing general toxicity,
i.e., not explicitly targeted at RBCs, ToxinPred and ATSE were included in Table 3 due to
their historical value to other models for peptide hemolytic activity [39,40].

All these predictive models are easily accessible and user-friendly, even for non-
experts in artificial intelligence with the development of web servers (API). The user does
not need to have programming skills to run several peptide sequences simultaneously.
Their responses to a query FASTA could be obtained within seconds. Some of these servers
only allow one query (one peptide sequence) at a time. The more recent predictors such
as HemoPred [33], HLPpred-Fuse [35], and the programs created by Plisson et al. [37],
Yaseen et al. [113], and Capecchi et al. [38] perform the predictions against sizable libraries.
The latter examples require Python skills to predict multiple sequences.

In principle, most developers of these computational strategies only validated their
generative models through in silico approaches using statistical parameters calculated
based on reliable data sets that include experimental data from hemolytic and non-hemolytic
peptides previously characterized. The investigation performed by Capecchi and collab-
orators is an exception [38], which also contains experimental verification. In this study,
a combination of supervised and unsupervised learning aided the selection of a library
of peptide sequences of maximum of 15 residues for chemical synthesis. The evaluation
of the hemolytic and antimicrobial effects of such short peptides reaffirmed the potential
of virtual strategies to guide the discovery of non-toxic antibiotic candidates. In line with
experimental validation, researchers have incorporated modern in silico strategies into
their workflow [38]. Next, we review some examples.

Mnif and collaborators evaluated through in silico and in vitro approaches the hemolytic
properties of a 19-mer cell-penetrating peptide with antibacterial activity against Staphylococ-
cus epidermidis. The hemolysis analysis confirmed the non-toxicity suggested by HemoPred
online software [153]. Similarly, the hemolytic results of cecropins are in close agreement
with previous conclusions from this web server [154]. In silico screening of the properties
of peptides from the genome of Lactobacillus casei HZ1, including bioinformatics analysis by
HemoPI, allowed the identification of a highly active AMP against S. aureus [155] and an
anticancer sequence [156], both with low hemolytic effects. Hemolytic Peptide Identifica-
tion Server has also been used to design non-toxic agents for use in aquaculture. RY12WY,
a high thermostable peptide, was synthesized, and its hemolytic potency was evaluated. Its
low hemolytic tendency is consistent with virtual analysis [157]. Despite most successful
cases, some incorrect predictions have been reported. HemoPred classified Enterocins K1
and EJ97 as hemolytic and non-hemolytic, respectively. However, through a traditional
evaluation of hemolytic nature, Reinseth and colleagues demonstrated that both Entero-
coccus spp. bacteriocins are non-hemolytic peptides [158]. Insignificant erythrocyte lysis
was observed up to a concentration of 1 mg/mL. Taken together, these findings underline
the usefulness of computational technologies in peptide drug discovery. New peptide
sequences, experimental validations, and updated databases should improve the reliability
of the results.

5. Case Study

The high performance of hemolytic activity methods enables accurate screening of
non-toxic peptides. The use, evaluation, and refinement of models are key to new advances
in computational peptidology. In this direction, to further explore the model performances,
we predicted the hemolytic activity of peptides using seven of the computational methods
presented in Table 3. Seven data sets based on HemoPI-1 (main/validation), HemoPI-
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2 (main/validation), HemoPI-3 (main/validation) and HAPPENN were employed to
benchmark the main models. These data sets were chosen to represent the diversity
and criteria used to generate the virtual screening tools. The first data set consists of
peptides with hemolytic action or lack thereof. The second is formed by high hemolytic and
non-hemolytic peptide sequences. Similarly, HemoPI-3 discriminates highly and poorly
hemolytic peptides. The last data set, HAPPENN, is composed of both hemolytic and
non-hemolytic peptides, including sequences with N-terminal acetylation and C-terminal
amidation. HAPPENN is recognized as a high-quality and well-established data set [113].

Our initial assessment represents a closer look into state-of-the-art prediction accuracy
for the hemolytic nature classification task. However, future analyses are required to eluci-
date possible biases, as well as the standardization of the classification of non-hemolytic
and hemolytic peptides used for the construction of data sets. Some of them include
peptides with low hemolytic as non-hemolytic activity. In two-layer prediction frameworks
such as HLPpred-Fuse, these peptides are classified as low-intensity hemolytic [35]. The
concentration limits between non-hemolytic and low hemolytic activity differ significantly
in some studies [36]. In our analysis, non-hemolytic and poor hemolytic peptides were
considered as negative examples. Motivated by these considerations, HLPpred-Fuse was
challenged considering the second-layer prediction (low/high) results, except for analysis
of HemoPI-1 data sets. In this case, the first-layer prediction results were used.

Only peptides consisting of 7–35 residues in length and made of natural amino acids
were selected for our bioinformatics screening. In brief, this approach produced seven
data sets: HemoPI-1 7–35main, HemoPI-1 7–35val, HemoPI-2 7–35main, HemoPI-2 7–35val,
HemoPI-3 7–35main, HemoPI-3 7–35val, and HAPPENN 7–35, which are composed by
846, 207, 765, 190, 1175, 294, and 1547 sequences, respectively. Details of the composition
(positive and negative) of each data set are summarized in Supplementary Table S1. All
data is freely available on GitHub at https://github.com/albert-robles1101/hemolytic-
prediction-of--peptides,accessed on 25 January 2022. The screening was repeated five times,
and the classification was assigned according to most predictions. (0: non-hemolytic and 1:
hemolytic). Divergent analyzes were observed in HemoPred for some peptide sequences.
Four widely used metrics, including Acc, sensitivity (SN), specificity (SP), and MCC, were
adopted to evaluate the performance of selected models. These statistical parameters were
calculated as follows:

Acc =
TP + TN

TP + TN + FP + FN
× 100 (2)

Sn =
TP

TP + FN
× 100 (3)

Sp =
TN

TN + FP
× 100 (4)

MCC =
TP × TN− FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
× 100 (5)

where TP, TN, FP, and FN stand for the number of true positives, true negatives, false
positives, and false negatives, respectively.

Table 4 summarizes the prediction results of all seven high-throughput computational
methods on the test data sets. In general, the models were able to distinguish hemolytic
and non-hemolytic sequences. In some cases, best-in-class performance was achieved. Each
program showed an Acc higher than 90% for at least one of the data sets. Most Acc and
MCC values are in the ranges previously determined by the developers (Acc: 76.0%–98.4%
and MCC 0.55–0.97). Some models, such as HemoPI-1 and Plisson models, showed low
Acc and MCC values when challenged by HemoPI-2 (main/val) HemoPI-3 (main/val),
and HAPPENN data sets. Our findings are in agreement with previous analysis reporting
the better discriminative power on the hemolytic effect of peptides of HAPPENN [36]
and HLPpred-Fuse [35] models than the HemoPi-1 server [26], particularly when they

https://github.com/albert-robles1101/hemolytic-prediction-of--peptides
https://github.com/albert-robles1101/hemolytic-prediction-of--peptides
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were applied to estimate the activity of peptide sequences derived from HemoPI-2 and
HemoPI-3 data sets.

Since the models were not trained under the same conditions and data sets, a direct
comparison is not completely adequate. This is a simple case study for an initial assessment
to encourage the application of high-throughput screening of peptide libraries. The perfor-
mance metrics determined for some predictors can be overestimated due to the similarity of
some benchmark data sets and the peptide sequence data previously used in optimizing the
hyperparameters of these computational methods. Because of that, future studies should
consider different and large data sets. Additionally, for a fair comparison, the specifications
of each model and their training data must be thoroughly explored and merged. However,
collectively, our large-scale analysis confirms the applicability and robustness of virtual
tools and their contributions to a sustainable and cost-effective design and discovery of
non-toxic peptides.

Table 4. Test results for state-of-the-art predictors based on seven data sets. HemoPI-1 7–35main,
HemoPI-1 7–35val, HemoPI-2 7–35main, HemoPI-2 7–35val, HemoPI-3 7–35main, HemoPI-3 7–35val,
and HAPPENN 7–35 data sets were employed to challenge the main predictors.

Method Data Set Acc Sn Sp MCC

HAPPENN

HemoPI-1 7–35main 82.03 69.10 95.02 0.66

HemoPI-1 7–35val 80.68 65.38 96.12 0.65

HemoPI-2 7–35main 75.69 69.10 83.87 0.53

HemoPI-2 7–35val 77.89 65.38 93.02 0.60

HemoPI-3 7–35main 85.79 79.47 93.42 0.73

HemoPI-3 7–35val 85.71 81.88 90.30 0.72

HAPPENN 7–35 96.51 96.19 96.70 0.93

Plisson et al.
(2020), model 1

HemoPI-1 7–35main 95.74 94.10 97.39 0.92

HemoPI-1 7–35val 95.65 91.35 100.0 0.92

HemoPI-2 7–35main 64.05 94.10 26.69 0.29

HemoPI-2 7–35val 61.58 91.35 25.58 0.23

HemoPI-3 7–35main 58.64 87.25 24.06 0.15

HemoPI-3 7–35val 62.24 91.87 26.87 0.25

HAPPENN 7–35 57.85 90.99 38.14 0.32

Plisson et al.
(2020), model 2

HemoPI-1 7–35main 100.0 100.0 100.0 1.00

HemoPI-1 7–35val 95.65 95.19 96.12 0.91

HemoPI-2 7–35main 62.75 100.0 16.42 0.31

HemoPI-2 7–35val 56.84 95.19 10.46 0.11

HemoPI-3 7–35main 59.32 95.18 15.98 0.19

HemoPI-3 7–35val 59.86 96.25 16.42 0.21

HAPPENN 7–35 50.42 93.93 24.54 0.23

Plisson et al.
(2020), model 3

HemoPI-1 7–35main 99.88 99.76 100.0 0.99

HemoPI-1 7–35val 96.62 94.23 99.03 0.93

HemoPI-2 7–35main 64.31 99.76 20.23 0.34

HemoPI-2 7–35val 57.89 94.23 13.95 0.14

HemoPI-3 7–35main 59.91 93.00 19.92 0.19

HemoPI-3 7–35val 59.86 95.00 17.91 0.21

HAPPENN 7–35 51.91 91.85 28.14 0.24
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Table 4. Cont.

Method Data Set Acc Sn Sp MCC

HemoPred

HemoPI-1 7–35main 80.14 86.79 73.46 0.61

HemoPI-1 7–35val 78.26 84.62 71.84 0.57

HemoPI-2 7–35main 85.23 86.08 84.16 0.70

HemoPI-2 7–35val 86.84 84.62 89.53 0.74

HemoPI-3 7–35main 97.53 97.98 96.99 0.95

HemoPI-3 7–35val 96.94 97.50 96.27 0.94

HAPPENN 7–35 80.48 94.11 72.37 0.64

HemoPI-1

HemoPI-1 7–35main 97.75 98.11 97.39 0.96

HemoPI-1 7–35val 97.58 98.08 97.09 0.95

HemoPI-2 7–35main 61.96 98.11 17.01 0.27

HemoPI-2 7–35val 58.42 98.08 10.47 0.18

HemoPI-3 7–35main 59.15 95.18 15.60 0.18

HemoPI-3 7–35val 60.20 96.25 17.16 0.22

HAPPENN 7–35 50.42 94.28 24.33 0.24

HLPpred-Fuse

HemoPI-1 7–35main 99.88 99.76 100.0 0.99

HemoPI-1 7–35val 98.55 97.12 100.0 0.97

HemoPI-2 7–35main 83.14 83.02 83.28 0.66

HemoPI-2 7–35val 82.11 76.92 88.37 0.65

HemoPI-3 7–35main 96.85 95.02 99.06 0.94

HemoPI-3 7–35val 80.61 82.50 78.36 0.61

HAPPENN 7–35 75.89 80.24 73.30 0.52

6. Current Strategies to Improve the Selectivity Index of Therapeutic Peptides

Tuning selectivity is a daunting task on the path toward developing peptide-based
drugs. Determining peptide selectivity is a mandatory requirement during preclinical
research [159,160]. As discussed above, selectivity, quantified by the SI, results from a fine-
tuned fit between toxicity and biological effect. This delicate balance remains a challenge
explored in many SAR studies [161,162]. For this reason, we discuss and illustrate the
leading design and synthesis strategies used to reduce toxicity and increase the potency of
peptides. Figure 4 shows approaches that have been useful in this regard.

6.1. Optimization and Complementation of the Physicochemical Properties

Physicochemical properties such as positive net charge and amphipathicity significantly
influence the bioactivity of most AMPs (mainly reported as α-helical structures) [163,164]. The
net positive charge is related to the initial electrostatic interaction with anionic phospho-
lipids and lipopolysaccharides that make up the membranes of certain pathogens [165]. On
the other hand, mammalian cells such as RBCs have zwitterionic phospholipids in the outer
leaflet of their membranes, which are not as much affected by the positive charge as they
can be by the hydrophobic properties of the peptide [159]. Highly hemolytic peptides inter-
act with phosphatidylcholine, an abundant component of zwitterionic membranes [166].
In contrast, the cholesterol in mammalian membranes inhibits peptide binding [167].
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Figure 4. Peptide selectivity optimization strategies. Selectivity is a favorable characteristic of
considerable significance for the success rate of drug candidates. However, selectivity optimization is
a complex task that must balance the properties that govern toxic and therapeutic effects. Different
design and synthesis strategies have contributed to this objective. In the design step, the evaluation
of physicochemical properties and SAR relationships integrated with computational techniques play
a decisive role in peptide selection. In the same context, cyclization, use of D amino acids, and
peptidomimetics have been key for the development of stable and selective peptides.

The chemical (solid-phase) peptide synthesis presents versatility and accessibility to
generate several analogs of the same parental molecule, which is very useful for deter-
mining the residues and regions responsible for the biological activity of interest. Some
examples of increased selectivity, and therefore, a decreased hemolytic activity due to
modifications in the physicochemical properties of analogous peptides, have been observed
for peptides such as: peptides derived from leucine zipper [109], magainins [106], hybrids
of the melittin [168], PMAP-36-derived peptides [169] and clavaspirin [170].

Not all the structural parameters of a peptide are independent, so it is challenging
to determine what characteristics can significantly influence selectivity [159]. In many
studies, reducing the peptide hydrophobicity might lead to an unintended decrease in
antimicrobial activity [171]. In another case, the substitution of a single hydrophobic residue
for a positively charged residue has reduced hemolytic activity without compromising
antimicrobial activity [172].

There is also evidence that the interchange of amino acids with similar chemical
properties can affect peptide activity. Four phenylalanine residues of the cathelicidin-BF15-
a1 peptide were replaced by tryptophan residues, which resulted in increased activity
against E. coli (MIC reduction from 9.6 to 2.1 µM) and Bacillus subtilis (MIC reduction
from 38.7 to 4.3 µM). The low hemolytic activity was not affected by this modification
(HC50 > 320 µg/mL in both cases) [173]. In order to maintain the native primary structure
properties, one can choose to carry out end modifications such as C-amidation or N-
acetylation, which could increase the activity of the molecule and its stability within an
organism [25]. Conjugations with nanoparticles are another interesting strategy that has
diminished toxicity and increased biological activity [174].

6.2. Cyclization

Cyclization has been an adequate tool in peptide science, mainly to increase peptide
stability and constrain a three-dimensional structure to enhance its desired biological
effect [159,175]. For instance, the cyclization has prevented the hydrophobic region of a
cyclized melittin analog from being altered, retaining antimicrobial capacity while reducing
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hemolytic activity [176]. However, such a process is sequence dependent, and a case-by-
case analysis is required. For example, the cyclization of a magainin analog significantly
reduced both its antimicrobial and hemolytic activities [176]. In contrast, the cyclization of
the RRWWRF peptide increased both its hemolytic and antimicrobial activities [106].

6.3. Incorporation of D Amino Acids

Peptide selectivity can also be improved by gaining proteolytic resistance. The peptide
lifetime in the body is extended, reaching the same therapeutic effects at lower peptide doses
and reducing toxic effects [159]. The incorporation of amino acids in the D configuration
confers resistance to the action of proteolytic enzymes, which cannot exert their actions
due to steric hindrances [177,178]. This has allowed the evaluation of some peptides
on an in vivo scale, obtaining highly relevant results [179,180]. Examples of this type
of modification with favorable results in selectivity include melittin and other peptides
composed mainly of leucine and lysine [181,182]. Additionally, incorporation of D amino
acids in the sequence of an AMP may further alter its amphipathic structure in such a
way that peptide hydrophobic interactions with the zwitterionic host cell membranes, and
consequently hemolysis, can be substantially reduced [183].

6.4. Use of Peptoids

Another way to disturb the amphipathic α-helices in certain AMPs is the use of
peptoids, i.e., peptide analogs comprising N-substituted glycines, i.e., amino acid residues
where side chains are linked to the nitrogen rather than to the α-carbon; consequently,
amide groups in peptoids are unable to act as hydrogen bond donors [166]. An example
of this approach concerns the Leu/Lys-rich KLW peptide, in which introduction of N-
substituted glycines at positions 9 and 13 decreased the hemolytic activity (0% hemolysis
up to a 100 µM peptide concentration) while enhancing the antimicrobial action from
minimal inhibitory concentrations (MIC) of 4 to 8 µM (native sequence) to 1 to 4 µM
(peptoid analog) against several bacteria [184]. The same strategy was applied to other
peptides such as melittin [185] or cathelicidins [186] to obtain better selectivity.

6.5. Bioinformatics Tools

Although chemical synthesis is essential to the development of new peptide candi-
dates, each synthetic process implies a considerable investment in the human workforce,
techniques, and resources [187,188]. The use of alternative approaches, including machine
learning tools, has risen in recent years [189]. Such tools greatly reduce costs, as their out-
puts direct laboratory resources and efforts in a most cost-effective manner, through estima-
tions, predictions, and comparisons of relevant properties based on available information
and adequate prediction models [72]. Many computational tools that are complementary to
toxicity predictors promise to accelerate the development of bioactive peptides, as follows.

The investigation carried out by Kamech et al. [92] is one emblematic example of the
relevance of bioinformatics toward the development of peptide therapeutics. These authors
have developed software named Mutator, which creates specific sequence substitutions
that enhance the selectivity and effectiveness of peptides. This resource generated analogs
of the native peptides XT-7 and ascaphin-8, which were later synthesized and evaluated
in vitro. According to Mutator, the suggested substitutions should raise the SI from <37 to
>80. Experimentally, SI > 130 were found for S. aureus and E. coli. Moreover, the mutant
peptide derived from XT-7 displayed an SI that was increased from 5 to >270 on Pseudomonas
aeruginosa. Mutator has produced data on 26 peptides with potent antimicrobial activity and
SI values > 20. Note that the training data were predominantly linear α-helical amphipathic
peptide sequences that adopt an α-helical amphipathic structure; hence, the Mutator has so
far shown its limitations to molecules with these structural characteristics.

Machine learning (ML) is another important and very useful tool for the generation of
novel peptide sequences [190]. For example, Capecchi et al. [38], developed a generative
model using RNN and the DBAASP database that revealed 28 new peptides of 15 residues
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in length at best that differed in point mutations with the data from the training set. Of
the 28 sequences, 8 peptides were recognized as non-hemolytic and likely to be active
against different bacteria strains. Another example of a tool based on ML and focused on
predicting AMP sequences is AMAP [191]. This tool has the ability to use a multilevel
classification that allows predicting 14 different types of biological activities for a given
peptide. The value generated is correlated to the possible antibacterial effectiveness. AMAP
was evaluated with the proof-of-concept peptide P276, which has a powerful antimicrobial
activity. The tool cataloged it precisely as a promising AMP candidate (AMAP score = 1.70),
another similar server (MLAMP) classified it as a non-antimicrobial peptide.

The selectivity of specific peptides toward their target cells can be assured by a few
predictive models, as outlined by Li et al. [192]. These authors aimed at identifying the
characteristics and factors having a broad influence on peptide selectivity by means of an
RF algorithm that correlates the properties of the peptide sequences with their biological
activity. The models generated yielded high precision predictions, and their interpretation
indicated that selectivity is mediated by a strong relationship between properties related to
solubility and charge.

Antimicrobial activity is not the only biological function affected by typical AMPs
since their structural and functional diversity enables them to act on other lipid membranes,
such as those of cancer cells. In this context, Gabernet et al. [193] developed an ML model
that discriminated peptides with or without anticancer activity. The predictive model
was experimentally validated through the synthesis and biological evaluation of 12 model
peptides, revealing 83% of successful predictions. A design algorithm, known as simulated
molecular evolution, was also used that increased the selectivity of the peptides by 5 times
with respect to human endothelial cells and by 10 times with respect to RBCs, illustrating
the benefits of using ML-guided design and optimization for peptide-based drugs.

7. Future Perspectives and Concluding Remarks

Accurate computational predictions are extremely attractive in the early stages of drug
discovery and are revolutionizing the development of peptide-based therapeutics. Bioin-
formatics tools constitute a safe gateway that gives valuable hints on which therapeutic
peptides are worthy of being progressed while preventing the advancement of likely toxic
molecules. Toxicity remains a major hurdle toward the clinical translation of peptides, and
standard approaches to avoid it are time and resources consuming, often running in the
opposite direction of the 3Rs guidelines for animal experimentation. In silico tools have
provoked a boom in the ability to predict peptides as hemolytic or non-hemolytic due to
the accessibility and abundance of DBs, enabling the understanding and systematization of
structural determinants and key properties underlying peptides’ hemolytic effects. These
DBs are essential for the construction of models capable of classifying a vast number of
peptide sequences and guiding de novo peptide design. Currently, 12 tools are freely
available, 10 of which specifically address peptides’ hemolytic action. Based on the metrics
evaluated, our findings support that these virtual tools are of great use for the scientific
community. The relatively high reliability and resolving power open new avenues for the
design and development of prospective clinical peptide drugs with minimal cost, time,
and resources. The experimental validation of these predictions is necessary and should
contribute to the refinement of the models. A comparison of the predictive results obtained
using the current methods to evaluate mega data of peptide databases is a promising source
of valuable clues for the improvement and accuracy of high-quality computational tech-
nologies. Future studies should assess the sampling bias within available models, which
may be influenced by structures, sequence diversity, and amino acid composition. The
transition to quantitative analysis, such as the development of regression models to predict
HC50 values, is also of great relevance and usefulness for in silico peptide design. Finally,
innovative programs must consider predicting the balance between toxicity and therapeutic
effect, i.e., selectivity. Thus, the future design of peptide pharmaceuticals should be greatly
favored by the interplay between computational, in vitro, and in vivo approaches.
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