Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/479
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Espitia Sarmiento, Edgar F | - |
dc.contributor.author | Chancay, Juseth E. | - |
dc.date.accessioned | 2022-02-10T22:27:41Z | - |
dc.date.available | 2022-02-10T22:27:41Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Chancay, Juseth E., and Edgar F. Espitia-Sarmiento. 2021. "Improving Hourly Precipitation Estimates for Flash Flood Modeling in Data-Scarce Andean-Amazon Basins: An Integrative Framework Based on Machine Learning and Multiple Remotely Sensed Data" Remote Sensing 13, no. 21: 4446. https://doi.org/10.3390/rs13214446 | es |
dc.identifier.issn | https://doi.org/10.3390/rs13214446 | - |
dc.identifier.uri | http://repositorio.ikiam.edu.ec:8443/jspui/handle/RD_IKIAM/479 | - |
dc.description.abstract | Accurate estimation of spatiotemporal precipitation dynamics is crucial for flash flood forecasting; however, it is still a challenge in Andean-Amazon sub-basins due to the lack of suitable rain gauge networks. This study proposes a framework to improve hourly precipitation estimates by integrating multiple satellite-based precipitation and soil-moisture products using random forest modeling and bias correction techniques. The proposed framework is also used to force the GR4H model in three Andean-Amazon sub-basins that suffer frequent flash flood events: upper Napo River Basin (NRB), Jatunyacu River Basin (JRB), and Tena River Basin (TRB). Overall, precipitation estimates derived from the framework (BC-RFP) showed a high ability to reproduce the intensity, distribution, and occurrence of hourly events. In fact, the BC-RFP model improved the detection ability between 43% and 88%, reducing the estimation error between 72% and 93%, compared to the original satellite-based precipitation products (i.e., IMERG-E/L, GSMAP, and PERSIANN). Likewise, simulations of flash flood events by coupling the GR4H model with BC-RFP presented satisfactory performances (KGE* between 0.56 and 0.94). The BC-RFP model not only contributes to the implementation of future flood forecast systems but also provides relevant insights to several water-related research fields and hence to integrated water resources management of the Andean-Amazon region. | es |
dc.language.iso | en | es |
dc.publisher | Scopus | es |
dc.relation.ispartofseries | PRODUCCIÓN CIENTÍFICA - ARTÍCULO CIENTÍFICO;A-IKIAM-000330 | - |
dc.subject | IMERG | es |
dc.subject | PERSIANN | es |
dc.subject | GSMAP | es |
dc.subject | SMAP | es |
dc.subject | GR4H model | es |
dc.subject | Complex topography areas | es |
dc.subject | Upper Napo River Basin | es |
dc.title | Improving Hourly Precipitation Estimates for Flash Flood Modeling in Data-Scarce Andean-Amazon Basins: An Integrative Framework Based on Machine Learning and Multiple Remotely Sensed Data | es |
dc.type | Article | es |
Aparece en las colecciones: | ARTÍCULOS CIENTÍFICOS |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
A-IKIAM-000330.pdf | Improving Hourly Precipitation Estimates for Flash Flood Modeling in Data-Scarce Andean-Amazon Basins: An Integrative Framework Based on Machine Learning and Multiple Remotely Sensed Data | 5,1 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.