Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/479
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorEspitia Sarmiento, Edgar F-
dc.contributor.authorChancay, Juseth E.-
dc.date.accessioned2022-02-10T22:27:41Z-
dc.date.available2022-02-10T22:27:41Z-
dc.date.issued2021-
dc.identifier.citationChancay, Juseth E., and Edgar F. Espitia-Sarmiento. 2021. "Improving Hourly Precipitation Estimates for Flash Flood Modeling in Data-Scarce Andean-Amazon Basins: An Integrative Framework Based on Machine Learning and Multiple Remotely Sensed Data" Remote Sensing 13, no. 21: 4446. https://doi.org/10.3390/rs13214446es
dc.identifier.issnhttps://doi.org/10.3390/rs13214446-
dc.identifier.urihttp://repositorio.ikiam.edu.ec:8443/jspui/handle/RD_IKIAM/479-
dc.description.abstractAccurate estimation of spatiotemporal precipitation dynamics is crucial for flash flood forecasting; however, it is still a challenge in Andean-Amazon sub-basins due to the lack of suitable rain gauge networks. This study proposes a framework to improve hourly precipitation estimates by integrating multiple satellite-based precipitation and soil-moisture products using random forest modeling and bias correction techniques. The proposed framework is also used to force the GR4H model in three Andean-Amazon sub-basins that suffer frequent flash flood events: upper Napo River Basin (NRB), Jatunyacu River Basin (JRB), and Tena River Basin (TRB). Overall, precipitation estimates derived from the framework (BC-RFP) showed a high ability to reproduce the intensity, distribution, and occurrence of hourly events. In fact, the BC-RFP model improved the detection ability between 43% and 88%, reducing the estimation error between 72% and 93%, compared to the original satellite-based precipitation products (i.e., IMERG-E/L, GSMAP, and PERSIANN). Likewise, simulations of flash flood events by coupling the GR4H model with BC-RFP presented satisfactory performances (KGE* between 0.56 and 0.94). The BC-RFP model not only contributes to the implementation of future flood forecast systems but also provides relevant insights to several water-related research fields and hence to integrated water resources management of the Andean-Amazon region.es
dc.language.isoenes
dc.publisherScopuses
dc.relation.ispartofseriesPRODUCCIÓN CIENTÍFICA - ARTÍCULO CIENTÍFICO;A-IKIAM-000330-
dc.subjectIMERGes
dc.subjectPERSIANNes
dc.subjectGSMAPes
dc.subjectSMAPes
dc.subjectGR4H modeles
dc.subjectComplex topography areases
dc.subjectUpper Napo River Basines
dc.titleImproving Hourly Precipitation Estimates for Flash Flood Modeling in Data-Scarce Andean-Amazon Basins: An Integrative Framework Based on Machine Learning and Multiple Remotely Sensed Dataes
dc.typeArticlees
Aparece en las colecciones: ARTÍCULOS CIENTÍFICOS

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
A-IKIAM-000330.pdfImproving Hourly Precipitation Estimates for Flash Flood Modeling in Data-Scarce Andean-Amazon Basins: An Integrative Framework Based on Machine Learning and Multiple Remotely Sensed Data5,1 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.