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Abstract: Accurate estimation of spatiotemporal precipitation dynamics is crucial for flash flood
forecasting; however, it is still a challenge in Andean-Amazon sub-basins due to the lack of suitable
rain gauge networks. This study proposes a framework to improve hourly precipitation estimates by
integrating multiple satellite-based precipitation and soil-moisture products using random forest
modeling and bias correction techniques. The proposed framework is also used to force the GR4H
model in three Andean-Amazon sub-basins that suffer frequent flash flood events: upper Napo River
Basin (NRB), Jatunyacu River Basin (JRB), and Tena River Basin (TRB). Overall, precipitation estimates
derived from the framework (BC-RFP) showed a high ability to reproduce the intensity, distribution,
and occurrence of hourly events. In fact, the BC-RFP model improved the detection ability between
43% and 88%, reducing the estimation error between 72% and 93%, compared to the original satellite-
based precipitation products (i.e., IMERG-E/L, GSMAP, and PERSIANN). Likewise, simulations of
flash flood events by coupling the GR4H model with BC-RFP presented satisfactory performances
(KGE* between 0.56 and 0.94). The BC-RFP model not only contributes to the implementation of
future flood forecast systems but also provides relevant insights to several water-related research
fields and hence to integrated water resources management of the Andean-Amazon region.

Keywords: IMERG; PERSIANN; GSMAP; SMAP; GR4H model; complex topography areas; upper
Napo River Basin

1. Introduction

Accurate estimation of spatiotemporal precipitation dynamics is crucial for several
hydrological purposes, especially for operational flash flood forecasting [1,2]. Conventional
approaches to estimate the precipitation patterns require rain gauge information. However,
the spatial distribution of rain gauges strongly influences the uncertainty of precipitation
estimates [3,4]. This implies important limitations over areas with complex topography, as
in the case of the Andean-Amazon sub-basins, where implementing a suitable rain gauge
density is often difficult and cost-prohibitive. In recent years, satellite-based precipita-
tion products (hereafter SPPs) have been constituted as an alternative to overcome this
limitation [5,6]. Nevertheless, SPPs present multiple sources of random and systematic
errors associated with retrieval algorithms, sampling time steps, detection ability, among
others [7,8].

In this regard, several studies have proposed different methods to improve the accu-
racy of SPPs and use them for forcing precipitation in hydrological models [9–12]. Most
of these studies have focused on bias correction by statistical techniques and regression-
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based downscaling using land surface characteristics [13–20]. However, these correction
methods still present several issues at high spatial (i.e., <10 km) and temporal (i.e., hourly)
resolutions [21]. Thus, their applicability for hydrological modeling in fast-response basins
is limited [22,23]. To address these issues, recent investigations have proposed various
correction methods based on machine learning. For instance, Le et al. [24] developed a
framework to correct daily and sub-daily SPPs by convolutional neural networks, obtaining
higher performances than classical correction methods. Likewise, Chivers et al. [25] and
Wolfensberger et al. [26] suggested a combination of random forest modeling with classical
bias correction methods to improve hourly precipitation estimates derived from SPPs. How-
ever, the latter method focuses on the individual correction of SPPs without considering
the valuable information that could be better captured by other precipitation products.

In contrast, Baez et al. [27] and Kolluru et al. [28] proposed merging multiples SPPs
with rain gauge data and geographical features by random forest modeling. This method
extracts the most relevant information from each SPP and combines it to maximize the
accuracy of precipitation estimates. Results obtained with this method showed significant
increases in performances of precipitation estimates (greater than 60%) compared to using
isolated SPPs [27,28]. Further studies have indicated the combination of SPPs with satellite-
based soil-moisture products (hereafter SMPs) also provides relevant insights to improve
the accuracy of precipitation estimates [29–32]. In fact, soil-moisture information have
proven to be an excellent indicator of the precipitation occurrence, especially at high
temporal scales [33].

Although the integration of multiple SPPs and SMPs by machine learning provides an un-
precedented opportunity to better estimate the precipitation dynamics in data-scarce regions,
its applicability has not been evaluated in the Andean-Amazon basins. A representative
Andean-Amazon basin is the upper part of the Napo River Basin, as it presents a complex
topography and fast hydrological responses. Given its characteristics, the upper Napo
River Basin is prone to recurrent flash floods [34,35]. In spite of this, no operational hydro-
logical modeling and hence flood forecasting systems have been implemented in the region
due to the scarce rain gauge data and hence suitable spatiotemporal precipitation estimates.

To address this problem, this study aims to propose an integrative framework for
improving the estimation of spatiotemporal precipitation dynamics (i.e., intensity, distribu-
tion, and occurrence) at an hourly scale in the upper Napo River Basin. The framework
combines multiple SPPs and SMPs with ground observed data and geographical features
using random forest modeling and bias correction methods. The potential use of the
framework as forcing precipitation inputs for hydrological modeling was illustrated in
three gauged sub-basins within the upper Napo River Basin that suffer continuous flood
risk. This study might not only contribute to the development of flood forecasting systems,
but also to several water-related research fields and hence to integrated water resources
management in the Andean-Amazon region.

2. Study Area

The Napo River is an important tributary of the Amazon Basin (Figure 1a) providing
a mean annual discharge of about 6300 m3/s. It covers a drainage area of 100,500 km2,
distributing among Ecuador (59.6%), Peru (40.0%), and Colombia (0.4%) (Figure 1b) [36].
This study focuses on the upper part of the Ecuadorian Napo River Basin (hereafter NRB),
located between the Eastern Andes and the Amazonia foothills. The NRB covers 6095 km2

above the H1156 hydrological station and presents steep slopes that descend from 5900 to
370 m.a.s.l. over only 100 km (Figure 1c) [37]. Due to this complex topography, the
NRB presents a strong climate gradient. Along this climate gradient, several ecosystems
can be found, from the higher to lower elevations: (i) paramo, (ii) mountain forest, and
(iii) piedmont rainforest (Figure 1d).
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Figure 1. Study area. (a) Location of the Napo River Basin within the Amazon River Basin. (b) Location of the study area
within the NRB. (c) Topography, drainage network, and gauge stations of the three Andean-Amazon sub-basins analyzed in
this study: the upper Napo River Basin (NRB), Tena River Basin (TRB), and Jatunyacu River Basin (JRB). (d) Ecosystems of
the NRB related to climate gradient and specific precipitation regime.

The paramo is located in the western highlands of the NRB (above 3200 m.a.s.l.).
It presents mean temperatures that range from 4 to 8 ◦C. The precipitation is influenced by
moisture originated from both the Pacific and Atlantic oceans with annual accumulation
that varies from 500 to 2000 mm [38,39]. In the paramo, the precipitation occurs mainly as
drizzle (~0.1 mm/h) [40], however, rainfall events with high-relative intensities (60 mm/h)
have been reported [38]. The mountain forest, instead, is a transitional region between the
paramo and piedmont rainforest. Here, mean annual temperature varies from 12 to 20 ◦C
and the annual precipitation ranges from 2000 to 4000 mm. In general, the precipitation
mainly occurs by orographic and convective events, reaching maximum intensities up to
~85 mm/h [41].

The piedmont rainforest is located in the eastern lowlands of the NRB (i.e., below
900 m.a.s.l.). This region is dominated by a humid tropical climate with annual rainfall
between 3500 and 5000 mm, and mean temperatures from 20 to 27 ◦C [42]. Overall,
precipitation presents intensities from 20 to 40 mm/h. However, extreme events above
95 mm/h have been recorded [35]. The piedmont rainforest is the most critical region within
the NRB as its soil-saturation conditions and strong precipitation regime generate frequent
flooding. Indeed, nine flash floods with peak discharges above 6000 m3/s have been
recorded near the NRB outlet during the last 12 years, affecting on average 8000 families
per year [42–44].

In the NRB, there are two additional critical points that suffer recurrent flash floods,
which are the outlets of the Tena River Basin (TRB) and Jatunyacu River Basin (JRB). The
TRB drains 239 km2 above the HI001 hydrological station in Tena City. The streamflow and
baseflow average 24.4 m3/s and 8 m3/s, respectively [42]. In the last years, four flash floods
have been registered in the TRB, reaching peak discharges above 1800 m3/s [35]. On the
other hand, the JRB has a drainage area of 3128 km2 above the H0721 hydrological station.
According to this station, discharge averages 290 m3/s [45]. Since 2010, three flash floods
with peak discharges above 2500 m3/s have been recorded near the JRB outlet [45,46].
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3. Datasets and Methods
3.1. Data
3.1.1. Ground-Observed Precipitation and Streamflow Data

Hourly precipitation and streamflow data were obtained from 12 meteorological
stations and 3 hydrological stations (Figure 1c) belonging to the Ikiam Hydrometeorological
Service [42] and the National Institute of Meteorology and Hydrology of Ecuador [45,46].
The analysis period was from January 2016 to December 2020 (5 years). We chose this
period due to the availability of hourly data within the study area. Prior to this study,
a data quality analysis was performed to find and remove outliers using the graphical
method described in Chebana et al. [47]. It consists in visualizing data by a rainbow plot
and then identifying outliers using bagplots and highest-density region boxplots.

3.1.2. Satellite-Based Data

Satellite-based precipitation data were obtained from the Integrated Multi-Satellite
Retrievals for GPM Early Run (IMERG-E) and Late Run (IMERG-L) [48,49], the Global
Satellite Mapping of Precipitation (GSMAP) [50,51], and the Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks—Cloud Classification
System (PERSIANN-CCS) [52]. We focus on these products as they are widely used for
flash flood analysis [53–56] due to their high spatiotemporal resolutions and low latency
(Table 1). Likewise, soil moisture data at surface level (SM) and root zone (RM), as well
their temporal variation (i.e., ∆SM and ∆RM), were derived from the Soil Moisture Active-
Passive Satellite Mission (SMAP L4-SM product).

Table 1. General information of satellite-based precipitation and soil-moisture data used in this study.

Satellite
Product

Spatial
Resolution

Temporal
Resolution

Latency Download Website 1

GPM IMERG-E 0.10◦ 0.5 h 6 h https://giovanni.gsfc.nasa.gov/giovanni/
GPM IMERG-L 0.10◦ 0.5 h 12 h https://giovanni.gsfc.nasa.gov/giovanni/

GSMAP 0.10◦ 1 h 1 h https://sharaku.eorc.jaxa.jp/GSMaP/
PERSIANN-CCS 0.04◦ 1 h 1 h https://chrsdata.eng.uci.edu/

SMAP L4-SM 0.09◦ 3 h 7 d https://nsidc.org/data/SPL4SMGP/versions/5
1 Accessed on 7 March 2021.

3.2. Integration of Satellite-Based Products

To achieve a new high-resolution and fitting precipitation product over the NRB, the
proposed framework was implemented into three steps (Figure 2): (i) preprocessing,
(ii) random forest precipitation modeling, and (iii) postprocessing or bias correction.
Further details of the framework are described as follows.

3.2.1. Preprocessing

To ensure spatial consistency, the SPPs and SMPs were resampled to 4 km (the highest
resolution provided by the precipitation products) using the bilinear method, following
recommendations presented in Baez et al. [27]. Temporal consistency was obtained by
aggregating or disaggregating the satellite-based products to hourly intervals [57]. The SPPs
were aggregated by simple sum, whereas SMPs were disaggregated using the proximal
interpolation method [58].

Since topographic features and temporal variability play an important role in pre-
cipitation patterns [59], variables such as altitude (ALT), monthly variability (MON), and
hourly variability (HOUR) were considered as ancillary covariates. Altitude was derived
from the Shuttle Radar Topography Mission (SRTM v4.1 90m) which was previously re-
sampled to 4 km. Once the covariates were on the same temporal and spatial scales, we
generated a data matrix joining information from the SPPs and SMPs, ancillary covariates,
and ground-observed precipitation of each meteorological station. Data extraction was
performed by point-to-pixel scale (Figure 2).

https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
https://sharaku.eorc.jaxa.jp/GSMaP/
https://chrsdata.eng.uci.edu/
https://nsidc.org/data/SPL4SMGP/versions/5
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tegrates multiples satellite-based precipitation and soil-moisture products by random forest modeling
and bias correction to generate a new hourly fitting precipitation product.

3.2.2. Random Forest Precipitation (RFP) Modeling

To integrate the SPPs and SMPs with ground-observed precipitation data and the
ancillary covariates, we used a random forest (RF) model as the core of the framework.

A RF model is a machine learning technique that combines a large number of regres-
sion trees [60]. Each tree is generated with random data subsets sampled independently.
These random data subsets are permuted at each splitting node for each tree, which reduces
overfitting and improves the strength of predictions [61]. Thus, the error converges to the
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minimum possible as the number of trees increases within the forest. Given that the RF
model generates a prediction for each tree, the final output is the average of all predictions.

We implemented the RF model using the R package “randomForest” [62]. With this
package, the RF model requires two parameters: the number of regression trees (ntree) and
the number of predictor variables at each node (ntry). We established ntree = 1000 and
ntry = 4, following recommendations presented in Wolfensberger et al. [26]. The k-fold
cross-validation method (k = 10) was proposed for model training. For this, the input data
was previously divided into training (70%) and testing (30%) subsets.

Additionally, a variable importance analysis was simultaneously performed with the
model training, calculating the percentage increase in mean square error (%IncMSE) for out-
of-bag samples after permutating each covariate [59]. High %IncMSE values correspond
to high importance and hence greatest influence on the precipitation prediction. Since
the RF model generates a new gridded precipitation product, we called it random forest
precipitation (hereafter RFP).

3.2.3. Postprocessing: The Bias-Corrected Random Forest Precipitation (BC-RFP)

Given the RFP model could present systematic bias due to the error associated with
satellite-based covariates and the resampling process [59], we carried out a bias correction
by the gamma quantile mapping method (GQM). This parametric method corrects precipi-
tation assuming a gamma distribution. Thus, GQM nonlinearly corrects the mean, variance,
intensities, and frequencies of wet hours [63]. A further description of this method is pre-
sented in Fang et al. [64]. The bias correction was performed considering the three main
ecosystems of the study area. Note that each ecosystem presents a specific precipitation
regime (see Section 2).

3.3. Statistical Criteria for Performance Assessment

Performance of precipitation estimates derived from the integration framework (i.e.,
RFP and BC-RFP) was assessed by comparison with observed precipitation data at a point-
to-pixel scale. For this, we used three common continuous-statistic metrics: root mean
square error (RMSE), correlation coefficient (R), and Kling–Gupta efficiency (KGE). Fur-
thermore, three categorical statistics were used to assess the precipitation detection ability:
probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI).

Likewise, the SPPs used as covariates in the integrative framework were previously
assessed to determine a reference for the improvement reached by RFP and BC-RFP.
Mathematical definitions and characteristics of the aforementioned statistical metrics are
described in Appendix A Table A1.

3.4. Hydrological Aplication

The bias-corrected estimates derived from the integrative framework (i.e., BC-RFP)
were used as forcing precipitation inputs for the GR4H model. This hydrological model
has been widely used for flash floods modeling due to its simple structure, low comput-
ing needs, and ability to simulate hourly streamflow [65,66]. Previous studies, such as
Llauca et al. [67] and Espitia et al. [68], showed that the GR4H model can satisfactorily
simulate the hydrological processes over the Andean-Amazon sub-basins. Details of the
hydrological modeling process are described as follows.

3.4.1. Model Parameters and Inputs

The GR4H model has four free parameters that characterize the storage processes
and unit hydrograph: X1, maximum capacity of moisture store (mm); X2, groundwater
exchange coefficient (mm/h); X3, maximum capacity of the routing store (mm); and X4,
base time of the unit hydrograph (h). A complete description of the model structure and
equations are shown in Mathevet [65] and Bennett et al. [66]. The GR4H model requires pre-
cipitation and potential evapotranspiration (ETP) data as inputs. As previously mentioned,
precipitation data were derived from the BC-RFP. ETP was calculated using the modified
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FAO Penman–Monteith method at hourly steps using the R package “water” [69,70], and
interpolated along the study area with the Kriging method. For this, we used the meteoro-
logical data (temperature, relative humidity, solar radiation, and wind speed) provided by
stations located in the study area.

3.4.2. Hydrological Modeling Setup

The GR4H model was calibrated and validated for the three study sub-basins: TRB,
JRB, and NRB (Figure 1). We used the R package “airGR” [65,66] following a semi-
distributed setting as shown in Figure A1.

Model calibration considered 40 months for the NRB and JRB (January 2016–March 2019),
and 18 months for the TRB (July 2018–December 2019). Before this, we considered a
warm-up period of six months to reduce the uncertainty associated with initial moisture
conditions of the model. Model parameters were automatically calibrated by the shuffled
complex evolution algorithm [71], using the nonparametric variant of the Kling–Gupta
efficiency (KGE*) as the objective function [72]. We chose this metric as it provides better
agreement between simulated and observed streamflow at sub-daily and hourly steps
compared to the Nash–Sutcliffe efficiency [72,73]. The flow duration curve (FDC) and the
percent bias (PBIAS) were also used to assess the model performance in term of streamflow
distribution and model bias. The mathematical definition of the evaluation metrics is
shown in Table A2.

Model validation consisted of evaluating the GR4H outputs using the optimal
parameters obtained in the calibration step. To perform the validation, we used 20 months
for the NRB and JRB (April 2019–December 2020), and 12 months for the TRB
(January 2020–December 2020).

3.4.3. Flash Flood Event Analysis

The five last flash flood events produced within the study area (Table 2) were used to
assess the performance of the coupling of the BC-RFP and GR4H models during high flow
conditions. These events were chosen based on:

1. Records of the National Service for Risk Management of Ecuador [44].
2. Streamflow thresholds defined by Hurtado et al. [35] and Lapo et al. [34] for flood

events in the TRB, JRB, and NRB (Table 2).

Table 2. Information of the last five flash flood events produced within the study area.

Event Start (Datetime) Duration (h)
Peak Discharge (m3/s)

TRB JRB NRB

1 2017-09-02 19:00 53 1896 1160 3570
2 2018-07-22 01:00 51 657 2579 4574
3 2019-05-25 20:00 28 242 1184 6407
4 2019-06-20 00:00 72 250 2659 6338
5 2020-05-01 00:00 80 593 896 8925

Streamflow threshold for flood events 210 2200 4500

For the event analysis, we focused on the differences between the simulated and ob-
served behavior of four hydrograph aspects widely examined in flash flood modeling [74]:

1. Streamflow dynamic or hydrograph shape.
2. Peak discharge.
3. Volume discharge.
4. Peak timing.
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4. Results and Discussion
4.1. Preliminary Evaluation of the SPPs

The SPPs used as covariates in the integration framework showed non-satisfactory
performances within the study area (Figure 3). In terms of the RMSE, the SPPs presented
errors that ranged between 0.6 and 3.3 mm/h. Compared to previous studies [75–77], these
values could be considered acceptable. However, CORR and KGE metrics were below
0.4, indicating a poor agreement between SPPs and observed precipitation data. Similarly,
detection performances (POD < 0.6, FAR > 0.5, CSI < 0.4) suggested that SSPs cannot
correctly capture the hourly precipitation occurrence. These results agreed with several
authors [67–79] who previously found important limitations in precipitation estimates
of SSPs at fine temporal scales over complex topography regions, as in the case of the
study area.
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shows the performance variation within the study area, considering each rain gauge as an individual data point. Red dashed
line indicates the optimal value for each performance metric: root mean square error (RMSE), correlation coefficient (CORR),
Kling–Gupta efficiency (KGE), probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI).

4.2. Variable Importance Analysis

The variable importance analysis revealed that all covariates, except PERSIANN,
strongly influenced the performance of the integration framework as %IncMSE values
ranged from 0.25 to 0.88 (Figure 4). The IMERG-E product and the soil-moisture change
at root zone (∆RM) were the most important covariates and hence those that contributed
more information to precipitation estimates. Likewise, IMERG-L and soil moisture change
at surface level (∆SM) showed relatively high importance (%IncMSE > 50). These findings
complied with those of Bhuiyan et al. [80,81], who discussed that the synergy among
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IMERG- and SMAP-derived soil-moisture products provides relevant insights to improve
the fitting of precipitation patterns.
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Monthly variability (MONTH) was the third most important predictor. However,
its importance varied along the study area. Note that paramo does not present a strong
precipitation seasonality [39,40], whereas the mountain forest and piedmont rainforest
have the wettest season from March to July [82]. Altitude (ALT) and hourly variability
(HOUR) showed similar importance. In general, both covariates are associated with the
valley–mountain effect that generates convective precipitation events with high occurrence
in the late afternoon and night along the study area [83].

As mentioned, PERSIANN was not a relevant covariate within the integration frame-
work. This finding was consistent with the prior evaluation of SPPs (Figure 3), which
indicated that PERSIANN was the worst performing product. In fact, this SPP presented
no correlation with the observed data (CORR < 0.1) and the lowest detection skill (i.e.,
CSI < 0.12). As discussed Tan et al. [84], the low performance of PERSIANN is related to
its low latency and hence lower processing compared to other SPPs. Note the PERSIANN
product used in this study was derived from the cloud classification system that runs in
real time.

4.3. Integration Framework Performance

The integration framework showed a high ability to capture the hourly precipitation
within the study area (Figure 5). Precipitation estimates derived from RFP exhibited good
performances for both training and testing periods (CORR ≈ 0.93, RMSE ≈ 0.77, and
KGE ≈ 0.67). However, these preliminary results presented a systematic error, under-
estimating events with intensities greater than 15 mm/h (Figure 5a,c). As discussed by
Zhang et al. [85], the RF algorithm uses the average of all prediction trees to generate model
outputs. Therefore, it tends to underestimate extreme precipitation events. Nevertheless,
this error was minimized in the postprocessing step by applying a bias correction using
the GQM method (Figure 5b,d). As result, the corrected precipitation estimates (BC-RFP)
showed notable improvements in accuracy and better captured the highest precipitation
intensities (CORR > 0.95, RMSE < 0.65, and KGE > 0.83).
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While the aforementioned results provide information about precipitation intensity
performances, they do not clearly denote the ability of the integration framework to capture
the occurrence of precipitation events. Capturing the precipitation occurrence is important
because even small amounts of rainfall can affect the initial soil moisture conditions in the
study area with subsequent impacts on the flash flood generation [86].

The precipitation detection ability of the BC-RFP model diminishes as the intensity
threshold decreases, meaning that the BC-RFP model is less able to capture the correct
magnitude of low-intensity events (Figure 6). Within the study area, low-intensity events
(below 0.2 mm/h) mainly occur on the paramo. This denoted the difficulty of estimating
precipitation at fine temporal scales over high-elevation regions [87]. For intensities be-
tween 2 and 50 mm/h, the precipitation detection ability (based on POD, FAR, and CSI)
reaches the highest performances, suggesting that the BC-RFP model correctly estimates
both intensity and occurrence of precipitation events in this precipitation range. Above
50 mm/h, the detection performance decreases slightly compared to precipitation events
below 50 mm/h. However, these results suggested that BC-RFP presents a high potential
to detect flash flood caused by heavy rainfalls (i.e., 50–100 mm/h).
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Considering intensity thresholds altogether, the BC-RFP model showed satisfactory
performances in detection metrics (POD = 0.67, FAR = 0.27, and CSI = 0.54). This indicates
the proposed framework improved the detection ability between 43% and 88% compared to
the original SPPs (i.e., IMERG-E/L, GSMAP, and PERSIANN). In fact, general performances
reached by the BC-RFP model were similar to those reported by more complex methods
that use RF models to correct and downscale the hourly precipitation estimates [25,26].

4.4. Spatial Consistency Analysis

As shown in Figure 7, the spatial distribution of annual precipitation obtained by
the BC-RFP model was consistent with climate precipitation trends that characterize the
Andean-Amazon region (see Section 2). No anomalous or out-of-trend pixels were found
in the paramo and mountain forest regions. However, few pixels located in the lowest
reaches of the NRB (piedmont rainforest) showed an important overestimation. While the
long-term measurements in the aforementioned area indicate that annual precipitation
does not exceed 5500 mm [88,89], the BC-RFP model showed values above 6500 mm/year.
This can be explained by two reasons: (i) the SMAP-derived data exhibited the highest soil-
moisture contents over the lowest reaches of the NRB, and (ii) the training of the integrative
framework did not consider a rain gauge in this sector. Therefore, the BC-RFP model
incorrectly interpreted these high moisture contents as more amounts of rainfall due to the
lack of hourly precipitation data in the training set. Given that few pixels presented this
problem, we considered they provided no significant impact in our hydrological modeling.
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4.5. Calibration and Validation of the GR4H Model

The assessment of the BC-RFP model’s ability to force precipitation input for the GR4H
model presented satisfactory performances (Figure 8). Overall, KGE* values between
simulated and observed streamflows were above the acceptable threshold (KGE* > 0.5) [72].
Likewise, PBIAS showed scores below ±20%, indicating a good fitting [90]. The visual
assessment based on the flow duration curve (FDC) revealed that the combination of the
BC-RFP and GR4H models correctly captured the cumulative frequency of the streamflow
distribution, except above the 95th percentile where the streamflow was underestimated.

In the TRB, the GR4H model showed the highest performances, reaching KGE* of
0.87 and 0.79 for calibration and validation, respectively (Figure 8a). These yields were
higher than those reported by Espitia et al. [68], who previously implemented the GR4H
model in the TRB. The main limitation faced by previous hydrological studies in the
TRB was the lack of spatial precipitation data [35,68]. Our results partially overcame this
limitation and corroborated that streamflow simulations of the TRB can be improved by
the spatialization of the precipitation.

Regarding the JRB, streamflow simulations showed ~30% lower performance than
that shown by the TRB, reaching KGE* values of 0.65 and 0.54 for calibration and val-
idation, respectively (Figure 8b). FDCs revealed a high underestimation of streamflow
distribution above 300 m3/s that was corroborated by PBIAS that shows a value of −18.2%
for the validation period. This notable reduction in model performance is explained by the
larger hydrological heterogeneity of the JRB produced by its complex topography and the
transition between the paramo and the mountain forest. In fact, various studies such as
Du et al. [91] and Liu et al. [92] have discussed that uncertainty on the parameter estima-
tion increases considerably under these conditions. The error associated with low-intensity
precipitation estimates produced in the paramo was another driver performance reduction
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in the JRB (see Section 4.3). Given the low ability of the BC-RFP model to detect drizzle
events (>0.2 mm/h), the humidity conditions of the JRB may have been underestimated
during most of the simulation time which affected the runoff generation [93].
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Considering the whole study basin (NRB), the GR4H model showed KGE* values of
about 0.54 ± 0.03. The streamflow was overestimated during calibration (PBIAS = 3.1%) and
underestimated during the validation (PBIAS = −16.2%). Although this basin presented
the lowest performances (Figure 8c), the FDC analysis indicated that high streamflows were
better simulated compared to the JRB. This confirms that regardless of the overestimation
problem occurring in lowest reaches of the NRB (see Section 4.4), the BC-RFP model better
captured the high precipitation events in the piedmont rainforest compared to other regions
within the study area. Note the piedmont rain forest presented the highest precipitation
intensities and hence produced more runoff within the NRB [37].

4.6. Flood Event Analysis

As discussed in the previous section, streamflow simulations of the GR4H model
underestimated high discharges. For the last five flash flood events that occurred in the TRB,
JRB, and NRB (Figure 9), simulated peak flows were 3.8% to 47.8% lower than observed
peak flows (Table 3). Similarly, runoff volume was underestimated by 8.1% to 48.9% in
most cases, especially during events 2, 3, and 4. Despite this, hydrograph shapes of the
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analyzed events were suitably simulated. Note that KGE* values ranged from 0.56 to 0.94.
Moreover, the visual inspection of hourly precipitation pulses (i.e., hyetograph) revealed
high similarities with the observed streamflow, meaning that the BC-RFP model properly
captured the temporal distribution of precipitation over the study sub-basins.

Time differences between observed and simulated peak flows were no greater than ±3 h,
except for event 3 in the JRB (Figure 9c) and event 4 in the TRB (Figure 9d) where the peak
timing difference was above ±6 h (Table 3). In both cases, the peak precipitation pulses
derived from the BC-RFP model presented better agreements with the observed peak flows
contrasted to simulations (Figure 9). Considering the latter, errors in peak timing may be
explained by the routing routine used in the semi-distributed GR4H model (i.e., the lag
routing method; Tables A3 and A4). Bentura et al. [94] highlighted that the lag routing
method does not consider physical features of the channel, which may produce limitations
in the propagation and routing of hydrographs over complex topography areas [95]. In
spite of this, altogether, results provided sufficient evidence to propose the coupling of the
BC-RFP and the GR4H models as a preliminary tool to recreate streamflow dynamics and
flood events.
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Jatunyacu River Basin (JRB), and upper Napo River Basin at Ahuano (NRB). (a) Event 1, September 2017. (b) Event 2,
July 2018. (c) Event 3, May 2019. (d) Event 4, June 2019. (e) Event 5, May 2020.

Table 3. Results of the event analysis considering the last five floods that occurred in the Tena River
Basin (TRB), Jatunyacu River Basin (JRB), and upper Napo River Basin (NRB).

Event Basin
Peak Flow (m3/s) Runoff Volume (Hm3) Difference in

Peak Timing (h)Obs. Sim. Diff. (%) Obs. Sim. Diff. (%)

1 TRB 1896 1379 −27.2 33.8 29.9 −11.5 0
JRB 1160 2117 82.4 109.4 160.8 46.9 −3
NRB 3570 3231 −9.5 245.5 333.7 35.9 2

2 TRB 657 365 −44.4 30.1 23.0 −23.6 0
JRB 2579 1344 −47.8 270.3 198.0 −26.2 1
NRB 4574 3614 −20.9 390.5 359.0 −8.1 1

3 TRB 242 258 6.5 8.7 5.8 −33.3 0
JRB 1184 877 −25.9 60.2 73.0 21.2 12
NRB 6407 5661 −11.6 276.2 240.4 −13.0 −1

4 TRB 250 241 −3.8 17.2 16.6 −3.5 −3
JRB 2659 1573 −40.8 294.3 150.4 −48.9 0
NRB 6338 5952 −6.1 733.4 605.5 −17.4 −6

5 TRB 593 486 −18.0 19.7 21.3 8.12 0
JRB 896 640 −28.6 100.1 69.4 −44.2 2
NRB 8925 7980 −10.6 668.9 453.9 −47.4 −1

5. Future Perspectives and Final Remarks

Precipitation estimates derived from the integration framework (i.e., BC-RFP) showed
a high ability to reproduce the intensity, distribution, and occurrence of rainfall events on
hourly scales over the study area. Indeed, the BC-RFP model improved the detection ability
between 43% and 88%, reducing the estimation error between 72% and 93% compared to the
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IMERG, GSMAP, and PERSIANN products. This contributes new evidence to corroborate
that the combination of soil-moisture products (SMPs) with satellite-based precipitation
products (SPPs) significantly improves the spatiotemporal precipitation estimates over
complex topography areas, such as the Andean-Amazon region.

Overall, the latency of the BC-RFP model depends on the soil-moisture products
used as predictors within the integration framework (~7 days; Table 1). Thus, the use of
the BC-RFP model in real-time forecasting systems is limited. However, as we discussed
in previous sections, the BC-RFP model provides suitable information to improve the
parameterization of hydrological models that are indispensable components of flood-
forecasting systems. In fact, our results show that the combination of the BC-RFP and
the GR4H models better simulate the fast-hydrological responses of the TRB, JRB, and
NRB. However, simulations still present some limitations, such as the underestimation of
peak streamflows, that could be addressed by testing other rainfall-runoff models. Physics-
based distributed models (e.g., SWAT, TESTIS) are alternatives to reduce the uncertainties
produced by the high hydrological heterogeneity of the study sub-basins.

Given that the proposed framework offers a robust way to estimate hourly precip-
itation dynamics, it opens up new opportunities for the physical parameterization of
numerical weather models (e.g., WRF) over the Ecuadorian Andean-Amazon region. These
models are essential for flood forecasting and early warning systems, as they provide
valuable information on the future atmospheric state that could produce heavy rainfalls.
However, there are no studies that determine the optimal physical schemes of the WRF
model in the Ecuadorian Andean-Amazon region. Thus, we consider that future studies
should focus on this underexplored issue.

The information generated in this study not only contributes to flood forecast or
weather prediction but also to new research avenues on environmental modelling, pro-
viding relevant insight in different research fields such as ecology, ecohydrology, hy-
drogeology, water quality, and hence integrated water resources management over the
Andean-Amazon region.
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Appendix A

Table A1. Statistical criteria used to evaluate the performance of the integrative framework that
combine multiple SPPs and SMPs with observed precipitation data and spatiotemporal covariates.

Metric Definition Optimum Value Range Unit

RMSE RMSE =

√
∑n

i=1(Si − Oi)
2

n
0 (0, Inf) mm/h

CORR CORR =
cov (S, O)√

var(S)
√

var(O)
1 (−1, 1) -

KGE KGE = 1−
√
(α − 1)2 + (β − 1)2 + (r − 1)2 1 (−Inf, 1) -

POD POD =
A

A + B
1 (0, 1) -

FAR FAR =
C

A + C
0 (0, 1) -

CSI CSI =
A

A + B + C
1 (0, 1) -

Where n is the total number of observations, Si is the ith simulated element, Oi is the
ith observed element, cov() is the covariance, var() is the variance, α is the ratio between
simulated and observed mean, β is the ratio between simulated and observed standard
deviation, r = CORR, A is the number of hits (Si > 0 and Oi > 0), B is the number of misses
(Si = 0 and Oi > 0), C is the number of false positive (Si > 0 and Oi = 0).

Table A2. Statistical criteria used to evaluate the performance of the GR4H model.

Metric Definition Optimum Value Range Unit

KGE* KGE∗ = 1−
√
(α − 1)2 + (βNP − 1)2 + (rNP − 1)2 1 (−Inf, 1) -

PBIAS PBIAS =
∑n

i=1(Si − Oi)

∑n
i=1( Oi)

0 (−1, 1) -

For KGE*, the variability and dynamic terms (i.e., β and r, see Table A1) are expressed
in nonparametric way using the flow duration curve (βNP) and the Spearman rank correla-
tion (rNP), respectively. Mathematical definitions are shown in Equations (A1) and (A2).

βNP = 1 − 1
2∑

n
k=1

∣∣∣∣Qsim(Ik)− Qobs(Jk)

n

∣∣∣∣ (A1)

rNP =
∑n

i=1
(

Robs(i)− Robs
) (

Rsim(i)− Rsim
)√(

∑n
i=1
(

Robs(i)− Robs
)2
) (

∑n
i=1
(

Rsim(i)− Rsim
)2
) (A2)

where Ik and Jk represent the time steps when the kth largest flow occurs within the
simulated (Qsim) and observed (Qobs) time series, respectively. Robs and Rsim are the ranks
of the observed and simulated streamflows, respectively.

In this section, we present further details of the semi-distributed setting used in the
implementation of the GR4H model and its optimal parameters.
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Figure A1. Disaggregation of the study sub-basins (TRB, JRB, and NRB) into 18 hydrological units
for the semi-distributed setting of the GR4H model.

Table A3. Optimal parameter of the GR4H model for each hydrological unit.

Hydrological Unit Drainage Area (km2) X1 (mm) X2 (mm/h) X3 (mm) X4 (h)

1 328.39 372.531 3.545 91.785 1.457
2 466.98 798.960 2.912 203.279 5.888
3 369.02 1427.643 −0.616 381.813 6.067
4 423.61 372.098 4.673 208.614 3.718
5 319.81 862.500 −3.369 25.443 4.300
6 377.84 1655.687 −2.707 37.678 5.290
7 397.35 637.224 −2.467 42.853 11.838
8 443.70 1525.332 −1.473 95.359 4.400
9 290.62 7793.437 5.571 11.600 46.452

10 250.62 3343.290 0.395 376.779 20.223
11 342.42 1965.463 2.554 306.836 16.395
12 317.35 7165.090 −3.850 672.142 22.799
13 239.31 1764.858 0.237 9.706 4.586
14 230.22 2624.721 9.469 929.230 6.712
15 423.28 195.575 1.922 657.576 11.714
16 312.19 10.933 −0.507 98.951 1.902
17 319.57 24.993 4.878 45.301 4.939
18 240.08 10.734 6.262 66.297 13.210

To transfer the volume of runoff generated in each hydrological unit (Figure A1), the
semi-distributed GR4H model uses the lag routing method. For this method, it is required
to know the travel time (or lag time). This parameter represents the time that the inflow
hydrograph will be translated as it moves through the reach. Calibrated lag times are
presented as follows.
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Table A4. Calibrated lag times for each connection among the hydrological units.

Hydrological Unit
Lag Time (h)

Upstream Downstream

1 2 0.81
2 3 2.84
4 5 3.09
3 5 3.53
6 7 2.33
7 8 4.01
9 10 5.54
10 11 0.97
12 13 3.15
11 14 6.89
13 14 5.96
15 16 3.94
16 17 10.84
8 17 10.47
17 18 7.10
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