Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/153
Título : Estimation Procedure for Reduced Rank Regression, PLSSVD
Autor : Álvarez, Willin
Palabras clave : Reduced Rank
Multivariate Regression
Partial Least Squares
Singular Value Decomposition
PLSSVD
Multicollinearity
Fecha de publicación : 2016
Editorial : International Academic Press
Citación : Álvarez, W., & Griffin, V. J. (2016). Estimation Procedure for Reduced Rank Regression, PLSSVD. Statistics, Optimization & Information Computing, 4(2). doi.org/10.19139/soic.v4i2.146
Citación : PRODUCCIÓN CIENTÍFICA-ARTÍCULOS;A-IKIAM-000088
Resumen : This paper presents a procedure for coefficient estimation in a multivariate regression model of reduced rank in the presence of multicollinearity. The procedure permits the prediction of the dependent variables taking advantage of both Partial Least Squares (PLS) and Singular Value Decomposition (SVD) methods, which is denoted by PLSSVD. Global variability indices and prediction error sums are used to compare the results obtained by classical regression with reduced rank (OLSSVD) and the PLSSVD procedure when applied to examples with different grades of multicollinearity (severe, moderate and low). In addition, simulations to compare the methods were performed with different sample sizes under four scenarios. The new PLSSVD method is shown to be more effective when the multicollinearity is severe and especially for small sample sizes.
URI : http://dspace.ikiam.edu.ec:8080/jspui/handle/RD_IKIAM/153
https://doi.org/10.19139/soic.v4i2.146
Aparece en las colecciones: ARTÍCULOS CIENTÍFICOS

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
A-IKIAM-000088.pdfEstimation Procedure for Reduced Rank Regression, PLSSVD218,98 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons