Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/153
Título : | Estimation Procedure for Reduced Rank Regression, PLSSVD |
Autor : | Álvarez, Willin |
Palabras clave : | Reduced Rank Multivariate Regression Partial Least Squares Singular Value Decomposition PLSSVD Multicollinearity |
Fecha de publicación : | 2016 |
Editorial : | International Academic Press |
Citación : | Álvarez, W., & Griffin, V. J. (2016). Estimation Procedure for Reduced Rank Regression, PLSSVD. Statistics, Optimization & Information Computing, 4(2). doi.org/10.19139/soic.v4i2.146 |
Citación : | PRODUCCIÓN CIENTÍFICA-ARTÍCULOS;A-IKIAM-000088 |
Resumen : | This paper presents a procedure for coefficient estimation in a multivariate regression model of reduced rank in the presence of multicollinearity. The procedure permits the prediction of the dependent variables taking advantage of both Partial Least Squares (PLS) and Singular Value Decomposition (SVD) methods, which is denoted by PLSSVD. Global variability indices and prediction error sums are used to compare the results obtained by classical regression with reduced rank (OLSSVD) and the PLSSVD procedure when applied to examples with different grades of multicollinearity (severe, moderate and low). In addition, simulations to compare the methods were performed with different sample sizes under four scenarios. The new PLSSVD method is shown to be more effective when the multicollinearity is severe and especially for small sample sizes. |
URI : | http://dspace.ikiam.edu.ec:8080/jspui/handle/RD_IKIAM/153 https://doi.org/10.19139/soic.v4i2.146 |
Aparece en las colecciones: | ARTÍCULOS CIENTÍFICOS |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
A-IKIAM-000088.pdf | Estimation Procedure for Reduced Rank Regression, PLSSVD | 218,98 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons