Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/153
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorÁlvarez, Willin-
dc.date.accessioned2019-06-05T14:49:34Z-
dc.date.available2019-06-05T14:49:34Z-
dc.date.issued2016-
dc.identifier.citationÁlvarez, W., & Griffin, V. J. (2016). Estimation Procedure for Reduced Rank Regression, PLSSVD. Statistics, Optimization & Information Computing, 4(2). doi.org/10.19139/soic.v4i2.146es
dc.identifier.otherDOI: 10.19139/soic.v4i2.146-
dc.identifier.urihttp://dspace.ikiam.edu.ec:8080/jspui/handle/RD_IKIAM/153-
dc.identifier.urihttps://doi.org/10.19139/soic.v4i2.146-
dc.description.abstractThis paper presents a procedure for coefficient estimation in a multivariate regression model of reduced rank in the presence of multicollinearity. The procedure permits the prediction of the dependent variables taking advantage of both Partial Least Squares (PLS) and Singular Value Decomposition (SVD) methods, which is denoted by PLSSVD. Global variability indices and prediction error sums are used to compare the results obtained by classical regression with reduced rank (OLSSVD) and the PLSSVD procedure when applied to examples with different grades of multicollinearity (severe, moderate and low). In addition, simulations to compare the methods were performed with different sample sizes under four scenarios. The new PLSSVD method is shown to be more effective when the multicollinearity is severe and especially for small sample sizes.es
dc.language.isoenes
dc.publisherInternational Academic Presses
dc.relation.ispartofseriesPRODUCCIÓN CIENTÍFICA-ARTÍCULOS;A-IKIAM-000088-
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rightsopenAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectReduced Rankes
dc.subjectMultivariate Regressiones
dc.subjectPartial Least Squareses
dc.subjectSingular Value Decompositiones
dc.subjectPLSSVDes
dc.subjectMulticollinearityes
dc.titleEstimation Procedure for Reduced Rank Regression, PLSSVDes
dc.typeArticlees
Aparece en las colecciones: ARTÍCULOS CIENTÍFICOS

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
A-IKIAM-000088.pdfEstimation Procedure for Reduced Rank Regression, PLSSVD218,98 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons