Bi4O5I2 microbars were synthesized by a hydrothermal method and then characterized using a set of instrumental techniques. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed the successful preparation of Bi4O5I2 microbars. X-ray diffraction (XRD) patterns of the sample were well indexed to the monoclinic phase of Bi4O5I2. The elemental composition was studied by energy dispersive X-ray spectroscopy (EDS), and it was similar to the theorical formula Bi4O5I2. The synthetized microbars despite of their low visible-light response could degrade up to 92.66% of Bisphenol A under white light-emitting diode (LED) light irradiation. The photocatalytic degradation and mineralization tests showed that Bi4O5I2 microbars could be efficiently used for the degradation of organic chemical pollutants.