Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/74
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGomes, Victor H.F.-
dc.contributor.authorD. IJff, Stéphanie-
dc.contributor.authorRaes, Niels-
dc.contributor.authorSalomão, Rafael P.-
dc.contributor.authorde Souza Coelho, Luiz-
dc.contributor.authorAlmeida Matos, Francisca Dionízia-
dc.contributor.authorCastilho, Carolina V.-
dc.contributor.authorde Andrade Lima Filho, Diogenes-
dc.contributor.authorCárdenas López, Dairon-
dc.contributor.authorGuevara, Juan Ernesto-
dc.contributor.authorPeñuela Mora, María Cristina-
dc.date.accessioned2019-05-15T17:27:59Z-
dc.date.available2019-05-15T17:27:59Z-
dc.date.issued2018-
dc.identifier.citationGomes, V. H. F., Ijff, S. D., Raes, N., Amaral, I. L., Salomão, R. P., Coelho, L. D. S., … Ter Steege, H. (2018). Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 8(1), 1–12. doi:10.1038/s41598-017-18927-1es
dc.identifier.otherhttp://repositorio.ikiam.edu.ec:8080/jspui/handle/RD_IKIAM/74-
dc.identifier.otherA-IKIAM-000017-
dc.identifier.urihttp://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/74-
dc.identifier.urihttps://doi.org/10.1038/s41598-017-18927-1-
dc.description.abstractSpecies distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species’ area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.es
dc.description.sponsorshipNature Publishing Groupes
dc.language.isoenes
dc.publisherNature Publishing Groupes
dc.relation.ispartofseriesPRODUCCION CIENTÍFICA-ARTÍCULOS;A-IKIAM-000017-
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rightsopenAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectSpecieses
dc.subjectEcologyes
dc.subjectConservationes
dc.subjectBiodiversityes
dc.titleSpecies distribution modelling: contrasting presence-only models with plot abundance dataes
dc.typeArticlees
Aparece en las colecciones: ARTÍCULOS CIENTÍFICOS

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
A-IKIAM-000017.pdfSpecies distribution modelling: contrasting presence-only models with plot abundance data1,64 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons