Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/648
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorDiéguez Santana, Karel-
dc.contributor.authorGonzález Díaz, Humberto-
dc.date.accessioned2023-03-01T17:47:04Z-
dc.date.available2023-03-01T17:47:04Z-
dc.date.issued2023-
dc.identifier.citationDiéguez-Santana, K., & González-Díaz, H. (2023). Machine learning in antibacterial discovery and development: A bibliometric and network analysis of research hotspots and trends. Computers in biology and medicine, 155, 106638. Advance online publication. https://doi.org/10.1016/j.compbiomed.2023.106638es
dc.identifier.issnhttps://doi.org/10.1016/j.compbiomed.2023.106638-
dc.identifier.urihttp://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/648-
dc.description.abstractMachine learning (ML) methods are used in cheminformatics processes to predict the activity of an unknown drug and thus discover new potential antibacterial drugs. This article conducts a bibliometric study to analyse the contributions of leading authors, universities/organisations and countries in terms of productivity, citations and bibliographic linkage. A sample of 1596 Scopus documents for the period 2006–2022 is the basis of the study. In order to develop the analysis, bibliometrix R-Tool and VOSviewer software were used. We determined essential topics related to the application of ML in the field of antibacterial development (Computer model in antibacterial drug design, and Learning algorithms and systems for forecasting). We identified obsolete and saturated areas of research. At the same time, we proposed emerging topics according to the various analyses carried out on the corpus of published scientific literature (Title, abstract and keywords). Finally, the applied methodology contributed to building a broader and more specific “big picture” of ML research in antibacterial studies for the focus of future projects.es
dc.language.isoenes
dc.publisherScopuses
dc.relation.ispartofseriesPRODUCCIÓN CIENTÍFICA-ARTÍCULO CIENTÍFICO;A-IKIAM-000442-
dc.subjectAntibacterial agentses
dc.subjectAntibiotic resistancees
dc.subjectBibliometric analysises
dc.subjectComputer model in drug designes
dc.subjectMachine learninges
dc.subjectNetwork analysises
dc.titleMachine learning in antibacterial discovery and development: A bibliometric and network analysis of research hotspots and trendses
dc.typeArticlees
Aparece en las colecciones: ARTÍCULOS CIENTÍFICOS

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
A-IKIAM-000442.pdfMachine learning in antibacterial discovery and development: A bibliometric and network analysis of research hotspots and trends165,15 kBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.