Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/648
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Diéguez Santana, Karel | - |
dc.contributor.author | González Díaz, Humberto | - |
dc.date.accessioned | 2023-03-01T17:47:04Z | - |
dc.date.available | 2023-03-01T17:47:04Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Diéguez-Santana, K., & González-Díaz, H. (2023). Machine learning in antibacterial discovery and development: A bibliometric and network analysis of research hotspots and trends. Computers in biology and medicine, 155, 106638. Advance online publication. https://doi.org/10.1016/j.compbiomed.2023.106638 | es |
dc.identifier.issn | https://doi.org/10.1016/j.compbiomed.2023.106638 | - |
dc.identifier.uri | http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/648 | - |
dc.description.abstract | Machine learning (ML) methods are used in cheminformatics processes to predict the activity of an unknown drug and thus discover new potential antibacterial drugs. This article conducts a bibliometric study to analyse the contributions of leading authors, universities/organisations and countries in terms of productivity, citations and bibliographic linkage. A sample of 1596 Scopus documents for the period 2006–2022 is the basis of the study. In order to develop the analysis, bibliometrix R-Tool and VOSviewer software were used. We determined essential topics related to the application of ML in the field of antibacterial development (Computer model in antibacterial drug design, and Learning algorithms and systems for forecasting). We identified obsolete and saturated areas of research. At the same time, we proposed emerging topics according to the various analyses carried out on the corpus of published scientific literature (Title, abstract and keywords). Finally, the applied methodology contributed to building a broader and more specific “big picture” of ML research in antibacterial studies for the focus of future projects. | es |
dc.language.iso | en | es |
dc.publisher | Scopus | es |
dc.relation.ispartofseries | PRODUCCIÓN CIENTÍFICA-ARTÍCULO CIENTÍFICO;A-IKIAM-000442 | - |
dc.subject | Antibacterial agents | es |
dc.subject | Antibiotic resistance | es |
dc.subject | Bibliometric analysis | es |
dc.subject | Computer model in drug design | es |
dc.subject | Machine learning | es |
dc.subject | Network analysis | es |
dc.title | Machine learning in antibacterial discovery and development: A bibliometric and network analysis of research hotspots and trends | es |
dc.type | Article | es |
Aparece en las colecciones: | ARTÍCULOS CIENTÍFICOS |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
A-IKIAM-000442.pdf | Machine learning in antibacterial discovery and development: A bibliometric and network analysis of research hotspots and trends | 165,15 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.