Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/637
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorDiéguez Santana, Karel-
dc.contributor.authorPuris, Amilkar-
dc.contributor.authorRivera Borroto, Oscar M-
dc.contributor.authorCasanola Martin, Gerardo M-
dc.contributor.authorRasulev, Bakhtiyor-
dc.contributor.authorGonzález Díaz, Humberto-
dc.date.accessioned2023-01-09T17:26:07Z-
dc.date.available2023-01-09T17:26:07Z-
dc.date.issued2022-
dc.identifier.citationDiéguez-Santana, K., Puris, A., Rivera-Borroto, O. M., Casanola-Martin, G. M., Rasulev, B., & González-Díaz, H. (2022). A Fuzzy System Classification Approach for QSAR Modeling of α- Amylase and α-Glucosidase Inhibitors. Current computer-aided drug design, 18(7), 469–479. https://doi.org/10.2174/1573409918666220929124820es
dc.identifier.issnhttps://doi.org/10.2174/1573409918666220929124820-
dc.identifier.urihttp://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/637-
dc.description.abstractIntroduction This report proposes the application of a new Machine Learning algorithm called Fuzzy Unordered Rules Induction Algorithm (FURIA)-C in the classification of drug-like compounds with antidiabetic inhibitory ability toward the main two pharmacological targets: α-amylase and α-glucosidase. Methods The two obtained QSAR models were tested for classification capability, achieving satisfactory accuracy scores of 94.5% and 96.5%, respectively. Another important outcome was to achieve various α-amylase and α-glucosidase fuzzy rules with high Certainty Factor values. Fuzzy-Rules derived from the training series and active classification rules were interpreted. An important external validation step, comparing our method with those previously reported, was also included. Results The Holm’s test comparison showed significant differences (p-value<0.05) between FURIA-C, Linear Discriminating Analysis (LDA), and Bayesian Networks, the former beating the two latter ones according to the relative ranking score of the Holm’s test. Conclusion From these results, the FURIA-C algorithm could be used as a cutting-edge technique to predict (classify or screen) the α-amylase and α-glucosidase inhibitory activity of new compounds and hence speed up the discovery of new potent multi-target antidiabetic agents.es
dc.language.isoenes
dc.publisherScopuses
dc.subjectAnti-diabetic agentses
dc.subjectFURIA-Ces
dc.subjectLDAes
dc.subjectQSARes
dc.subjectInduction rulees
dc.subjectMachine learning techniqueses
dc.titleA Fuzzy System Classification Approach for QSAR Modeling of α- Amylase and α-Glucosidase Inhibitorses
dc.typeArticlees
Aparece en las colecciones: ARTÍCULOS CIENTÍFICOS

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
A-IKIAM-000430.docxA Fuzzy System Classification Approach for QSAR Modeling of α- Amylase and α-Glucosidase Inhibitors185,58 kBMicrosoft Word XMLVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.