Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/599
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Diéguez Santana, Karel | - |
dc.contributor.author | Nachimba Mayanchi, Manuel Mesias | - |
dc.contributor.author | Puris, Amilkar | - |
dc.contributor.author | Torres Gutiérrez, Roldan | - |
dc.contributor.author | González Díaz, Humberto | - |
dc.date.accessioned | 2022-09-14T14:47:51Z | - |
dc.date.available | 2022-09-14T14:47:51Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Karel Diéguez-Santana, Manuel Mesias Nachimba-Mayanchi, Amilkar Puris, Roldan Torres Gutiérrez, Humberto González-Díaz, Prediction of acute toxicity of pesticides for Americamysis bahia using linear and nonlinear QSTR modelling approaches, Environmental Research, Volume 214, Part 3, 2022, 113984, ISSN 0013-9351, | es |
dc.identifier.issn | https://doi.org/10.1016/j.envres.2022.113984. | - |
dc.identifier.uri | http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/599 | - |
dc.description.abstract | Globally, pesticides are toxic substances with wide applications. However, the widespread use of pesticides has received increasing attention from regulatory agencies due to their various acute and chronic effects on multiple organisms. In this study, Quantitative Structure-Toxicity Relationship (QSTR) models were established using Multiple Linear Regression (MLR) and five Machine Learning (ML) algorithms to predict pesticide toxicity in Americamysis bahia. The most influential descriptors included in the MLR model are RBF, JGI2, nCbH, nRCOOR, nRSR, nPO4 and ‘Cl-090’, with positive contributions to the dependent variable (negative decimal logarithm of median lethal concentration at 96-h). The Random Forest (RF) regression model was superior amongst the five ML models. We observed higher values of R2 (0.812) and lower values of RMSE (0.595) and MAE (0.462) in the cross-validation training set and external validation set. Similarly, this study had a high level of fitness and was internally robust and externally predictive compared to models presented in similar studies. The results suggest that the developed QSTR models are suitable for reliably predicting the aquatic toxicity of structurally diverse pesticides and can be used for screening, prioritising new pesticides, filling data gaps and overcoming the limitations of in vivo and in vitro tests. | es |
dc.language.iso | en | es |
dc.publisher | Scopus | es |
dc.relation.ispartofseries | PRODUCCIÓN CIENTÍFICA-ARTÍCULO CIENTÍFICO;A-IKIAM-000407 | - |
dc.subject | Acute toxicity | es |
dc.subject | Pesticides | es |
dc.subject | Americamysis | es |
dc.subject | QSTR | es |
dc.title | Prediction of acute toxicity of pesticides for Americamysis bahia using linear and nonlinear QSTR modelling approaches | es |
dc.type | Article | es |
Aparece en las colecciones: | ARTÍCULOS CIENTÍFICOS |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
A-IKIAM-000407.pdf | Prediction of acute toxicity of pesticides for Americamysis bahia using linear and nonlinear QSTR modelling approaches | 174,15 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.