Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/524
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorZuquim, Gabriela-
dc.contributor.authorTuomisto, Hanna-
dc.contributor.authorThaise, Emilio-
dc.contributor.authorPerez, Pablo-
dc.contributor.authorRuokolainen, Kalle-
dc.contributor.authorMassaine Moulatlet, Gabriel-
dc.contributor.authorVan doninck, Jasper-
dc.contributor.authorBalslev, Henrik-
dc.date.accessioned2022-05-10T18:01:37Z-
dc.date.available2022-05-10T18:01:37Z-
dc.date.issued2021-
dc.identifier.citationZuquim, Gabriela & Tuomisto, Hanna & Perez, Pablo & Emilio, Thaise & Moulatlet, G. & Ruokolainen, Kalle & Van doninck, Jasper & Balslev, Henrik. (2021). Revealing floristic variation and map uncertainties for different plant groups in western Amazonia. Journal of Vegetation Science. 32. 10.1111/jvs.13081.es
dc.identifier.issnDOI:10.1111/jvs.13081-
dc.identifier.urihttp://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/524-
dc.description.abstractQuestions Understanding spatial variation in floristic composition is crucial to quantify the extent, patchiness and connectivity of distinct habitats and their spatial relationships. Broad-scale variation in floristic composition and the degree of uniqueness of different regions remains poorly mapped and understood in several areas across the globe. We here aim to map vegetation heterogeneity in Amazonia. Location Middle Juruá river region, Amazonas State, Brazil. Methods We mapped four plant groups by applying machine learning to scale-up locally observed community composition and using environmental and remote sensed variables as predictors, which were obtained as GIS-layers. To quantify how reliable our predictions were, we made an assessment of model transferability and spatial applicability. We also compared our floristic composition map to the official Brazilian national-level vegetation classification. Results The overall performance of our floristic models was high for all four plant groups, especially ferns, and the predictions were found to be spatially congruent and highly transferable in space. For some areas, the models were assessed not to be applicable, as the field sampling did not cover the spectral or environmental characteristics of those regions. Our maps show extensive habitat heterogeneity across the region. When compared to the Brazilian vegetation classification, floristic composition was relatively homogeneous within dense forests, while floristic heterogeneity in rainforests classified as open was high. Conclusion Our maps provide geoecological characterization of the regions and can be used to test biogeographical hypotheses, develop species distribution models and, ultimately, aid science-based conservation and land-use planning.es
dc.language.isoenes
dc.publisherScopuses
dc.relation.ispartofseriesPRODUCIÓN CIENTIFICA- ARTÍCULOS CIENTÍFICOS;A-IKIAM-000290-
dc.subjectPlant communityes
dc.subjectÁrea of applicabilityes
dc.subjectRemote sensinges
dc.subjectVegetation mapping,es
dc.subjectTropical forests,es
dc.subjectSpecies-environmental relationshipses
dc.subjectNiche,es
dc.subjectJuruá river,es
dc.subjectMachine learninges
dc.subjectAmazonian biogeographyes
dc.subjectFernses
dc.subjectPalmses
dc.subjectMelastomataceaees
dc.subjectZingiberaleses
dc.titleRevealing floristic variation and map uncertainties for different plant groups in western Amazoniaes
dc.typeArticlees
Aparece en las colecciones: ARTÍCULOS CIENTÍFICOS

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
A-IKIAM-000290.pdfRevealing floristic variation and map uncertainties for different plant groups in western Amazonia3,15 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.