Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/463
Título : GH Biplot in Reduced-Rank Regression Based on Partial Least Squares
Autor : Álvarez, Willin
Griffin, Victor
Palabras clave : GH biplot
Reduced-rank regression
Partial least squares,
Singular value decomposition
Fecha de publicación : 2021
Editorial : Scopus
Citación : Alvarez, W., & Griffin, V. (2021). GH Biplot in Reduced-Rank Regression Based on Partial Least Squares. Statistics, Optimization and Information Computing, 9(3), 717–734. doi.org/10.19139/soic-2310-5070-1112
Resumen : One of the challenges facing statisticians is to provide tools to enable researchers to interpret and present theirdata and conclusions in ways easily understood by the scientific community. One of the tools available for this purpose is amultivariate graphical representation called reduced rank regression biplot. This biplot describes how to construct a graphicalrepresentation in nonsymmetric contexts such as approximations by least squares in multivariate linear regression models ofreduced rank. However multicollinearity invalidates the interpretation of a regression coefficient as the conditional effect of aregressor, given the values of the other regressors, and hence makes biplots of regression coefficients useless. So it was, in thesearch to overcome this problem, Alvarez and Griffin [1], presented a procedure for coefficient estimation in a multivariateregression model of reduced rank in the presence of multicollinearity based on PLS (Partial Least Squares) and generalizedsingular value decomposition. Based on these same procedures, a biplot construction is now presented for a multivariateregression model of reduced rank in the presence of multicollinearity. This procedure, called PLSSVD GH biplot, provides auseful data analysis tool which allows the visual appraisal of the structure of the dependent and independent variables. Thispaper defines the procedure and shows several of its properties. It also provides an implementation of the routines in R andpresents a real life application involving data from the FAO food database to illustrate the procedure and its properties.
URI : http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/463
ISSN : https://doi.org/10.19139/soic-2310-5070-1112
Aparece en las colecciones: ARTÍCULOS CIENTÍFICOS

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
A-IKIAM-000343.pdfGH Biplot in Reduced-Rank Regression Based on Partial Least Squares399,39 kBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.