Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/194
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSantos, Fabian-
dc.contributor.authorMeneses Játiva, Pablo Esteban-
dc.contributor.authorHostert, Patrick-
dc.date.accessioned2019-06-10T20:35:00Z-
dc.date.available2019-06-10T20:35:00Z-
dc.date.issued2019-
dc.identifier.citationSantos, F., Meneses, P., & Hostert, P. (2019). Monitoring long-term forest dynamics with scarce data: a multi-date classification implementation in the Ecuadorian Amazon. European Journal of Remote Sensing, 52(sup1), 62-78. doi:10.1080/22797254.2018.1533793.es
dc.identifier.otherhttps://doi.org/10.1080/22797254.2018.1533793-
dc.identifier.urihttp://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/194-
dc.identifier.urihttps://doi.org/10.1080/22797254.2018.1533793-
dc.description.abstractMonitoring long-term forest dynamics is essential for assessing human-induced land-cover changes, and related studies are often based on the multi-decadal Landsat archive. However, in areas such as the Tropical Andes, scarce data and the resulting poor signal-to-noise ratio in time series data render the implementation of automated time-series analysis algorithms difficult. The aim of this research was to investigate a novel approach that combines image compositing, multi-sensor data fusion, and postclassification change detection that is applicable in data-scarce regions of the Tropical Andes, exemplified for a case study in Ecuador. We derived biennial deforestation and reforestation patterns for the period from 1992 to 2014, achieving accuracies of 82 ± 3% for deforestation and 71 ± 3% for reforestation mapping. Our research demonstrated that an adapted methodology allowed us to derive the forest dynamics from the Landsat time series, despite the abundant regional data gaps in the archive, namely across the Tropical Andes. This study, therefore, presented a novel methodology in support of monitoring long-term forest dynamics in areas with limited historical data availability.es
dc.language.isoenes
dc.publisherAssociazione Italiana di Telerilevamentoes
dc.relation.ispartofseriesPRODUCCIÓN CIENTÍFICA-ARTÍCULOS;A-IKIAM-000131-
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rightsopenAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectForests dynamicses
dc.subjectEcosystem monitoringes
dc.subjectDeforestationes
dc.subjectReforestationes
dc.subjectLandsates
dc.subjectTime-series analysises
dc.titleMonitoring long-term forest dynamics with scarce data: a multi-date classification implementation in the Ecuadorian Amazones
dc.typeArticlees
Aparece en las colecciones: ARTÍCULOS CIENTÍFICOS

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
A-IKIAM-000131.pdfMonitoring long-term forest dynamics with scarce data: a multi-date classification implementation in the Ecuadorian Amazon4,18 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons