Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/194
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Santos, Fabian | - |
dc.contributor.author | Meneses Játiva, Pablo Esteban | - |
dc.contributor.author | Hostert, Patrick | - |
dc.date.accessioned | 2019-06-10T20:35:00Z | - |
dc.date.available | 2019-06-10T20:35:00Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Santos, F., Meneses, P., & Hostert, P. (2019). Monitoring long-term forest dynamics with scarce data: a multi-date classification implementation in the Ecuadorian Amazon. European Journal of Remote Sensing, 52(sup1), 62-78. doi:10.1080/22797254.2018.1533793. | es |
dc.identifier.other | https://doi.org/10.1080/22797254.2018.1533793 | - |
dc.identifier.uri | http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/194 | - |
dc.identifier.uri | https://doi.org/10.1080/22797254.2018.1533793 | - |
dc.description.abstract | Monitoring long-term forest dynamics is essential for assessing human-induced land-cover changes, and related studies are often based on the multi-decadal Landsat archive. However, in areas such as the Tropical Andes, scarce data and the resulting poor signal-to-noise ratio in time series data render the implementation of automated time-series analysis algorithms difficult. The aim of this research was to investigate a novel approach that combines image compositing, multi-sensor data fusion, and postclassification change detection that is applicable in data-scarce regions of the Tropical Andes, exemplified for a case study in Ecuador. We derived biennial deforestation and reforestation patterns for the period from 1992 to 2014, achieving accuracies of 82 ± 3% for deforestation and 71 ± 3% for reforestation mapping. Our research demonstrated that an adapted methodology allowed us to derive the forest dynamics from the Landsat time series, despite the abundant regional data gaps in the archive, namely across the Tropical Andes. This study, therefore, presented a novel methodology in support of monitoring long-term forest dynamics in areas with limited historical data availability. | es |
dc.language.iso | en | es |
dc.publisher | Associazione Italiana di Telerilevamento | es |
dc.relation.ispartofseries | PRODUCCIÓN CIENTÍFICA-ARTÍCULOS;A-IKIAM-000131 | - |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights | openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Forests dynamics | es |
dc.subject | Ecosystem monitoring | es |
dc.subject | Deforestation | es |
dc.subject | Reforestation | es |
dc.subject | Landsat | es |
dc.subject | Time-series analysis | es |
dc.title | Monitoring long-term forest dynamics with scarce data: a multi-date classification implementation in the Ecuadorian Amazon | es |
dc.type | Article | es |
Aparece en las colecciones: | ARTÍCULOS CIENTÍFICOS |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
A-IKIAM-000131.pdf | Monitoring long-term forest dynamics with scarce data: a multi-date classification implementation in the Ecuadorian Amazon | 4,18 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons