Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/117
Título : | Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature |
Autor : | Alvarez Dávila, Esteban A. Cayuela, Luis González Caro, Sebastian Aldana, Ana M. Stevenson, Pablo R., Phillips, Oliver L. Hildebrand, Patricio von Jiménez, Eliana Melo, Omar Londoño Vega, Ana Catalina Mendoza, Irina Peñuela Mora, María Cristina |
Palabras clave : | Water availability Climate gradients Biomass temperature |
Fecha de publicación : | 2017 |
Editorial : | Public Library of Science |
Citación : | Álvarez Dávila, E., Cayuela, L., González Caro, S., Aldana, A. M., Stevenson, P. R., Phillips, O., … Rey Benayas, J. M. (2017). Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS ONE, 12(3). doi:10.1371/journal.pone.0171072 |
Resumen : | Understanding and predicting the likely response of ecosystems to climate change are cru- cial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to cor- relate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at eleva- tions ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot- level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by deter- mining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage |
URI : | http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/117 http://doi.org/10.1371/journal.pone.0171072 |
Aparece en las colecciones: | ARTÍCULOS CIENTÍFICOS |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
A-IKIAM-000058.pdf | Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature | 1,82 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons