Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/813
Título : Sulfured FeMo carbides and nitrides catalysts upgrade extra heavy crude oil quality
Autor : Villasana, Yanet
Brito, Joaquin Luis
Luis Luis, Miguel Ángel
Méndez, Franklin J.
Palabras clave : Carbides
Extra-heavy crude oil
FeMo-catalysts
Nitrides
S-removal
Sulfides
Fecha de publicación : 2024
Editorial : Scopus
Citación : Villasana, Y., Brito, J. L., Luis-Luis, M. Á., & Méndez, F. J. (2025). Sulfured FeMo carbides and nitrides catalysts upgrade extra heavy crude oil quality. Catalysis Today, 443, 114964. https://doi.org/10.1016/j.cattod.2024.114964
Citación : PRODUCCIÓN CIENTÍFICA-ARTÍCULO CIENTÍFICO;A-IKIAM-000545
Resumen : In the context of the energy transition scenario, effective sulfur management is crucial. Enhancing the quality of extra heavy crude oil (EHCO) through catalytic processes, specifically hydrotreatment, is essential for reducing pollutant emissions like SOx into the atmosphere. Traditional hydrotreatment, utilizing MoS2-based catalysts typically on Al2O3 support, faces challenges with EHCO due to its elevated S and N content, which hampers catalyst efficiency. Metal carbides and nitrides exhibit promising electronic structures that confer resistance to deactivation in the presence of heteroatoms. This study compares the catalytic performances of Fe-promoted Mo sulfides, carbides, and nitrides (FeMoS(C,N)) in the thiophene hydrodesulfurization (HDS) reaction, serving as a model molecule for sulfur removal. Subsequently, we investigate the upgrading of a Venezuelan EHCO in terms of pollutant reduction, API gravity, and feedstock aromaticity. Catalysts were prepared from oxide precursors, varying the (Fe/(Fe+Mo)) atomic ratios (x = 0.00, 0.10, 0.33, 0.50, and 1.00), employing a temperature-programmed reaction protocol. Catalytic upgrading of EHCO was conducted in a stirred batch reactor, and the results were compared with a commercial CoMo-based catalyst. FeMoC(N) outperformed the commercial catalyst in sulfur removal. The elemental composition and nitrogen content of the feed remained constant; however, the sulfur content of asphaltenes decreased. Furthermore, the API gravity of crude oil increased when employing FeMoS and FeMoN catalysts, except with FeMoC, possibly linked to dealkylation reactions and the enrichment of lighter fractions with alkanes. FeMoN increased asphaltene aromaticity, while FeMoC decreased it. These results highlight the promise of FeMoC(N) as catalysts for HDS and upgrading heavy feedstocks.
URI : https://doi.org/10.1016/j.cattod.2024.114964
http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/813
ISSN : 1873-4308
Aparece en las colecciones: ARTÍCULOS CIENTÍFICOS

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
A-IKIAM-000545.pdfSulfured FeMo carbides and nitrides catalysts upgrade extra heavy crude oil quality4,95 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.