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RESUMEN: 

Los ambientes kársticos son susceptibles a la contaminación, afectados directamente por presiones 

antropogénicas como la minería, la extracción de petróleo y la agricultura extensiva. Los mapas de 

vulnerabilidad permiten generar zonas de protección considerando que el proceso de remediación 

podría ser costoso y largo. Por lo tanto, este estudio tiene como objetivo evaluar la vulnerabilidad 

de la Formación Kárstica Napo utilizando índices de vulnerabilidad. Para esto se consideraron dos 

índices: (i) EPIK, (ii) DRASTIC, y un DRASTIC modificado, DRASTIC-LUC.  

Los resultados muestran que DRASTIC (45.76%) y EPIK (35.38%) consideran a la zona de estudio 

como altamente vulnerable mientras que DRASTIC-LUC la muestra como moderadamente 

vulnerable (57.47%). La diferencia entre los métodos radica en los parámetros que modelo emplea 

y como calcula cada uno la vulnerabilidad. Además, es necesario considerar que la asignación de 

cada parámetro está sujeta a la subjetividad porque depende del conocimiento del autor y de los 

datos disponibles. El análisis de sensibilidad para evaluar la subjetividad en conjunto con el análisis 

espacial muestra que DRASTIC-LUC es el mejor método que se adapta a la zona de estudio porque 

el error en los datos empleados es menor e incluye un parámetro importante como la cobertura y 

uso de suelo. Los resultados obtenidos pueden servir de base para futuros estudios centrados en la 

validación de la metodología empleada. De igual forma, pueden incluirse en estudios técnicos para 

la toma de decisiones sobre actuaciones que puedan afectar directamente a la calidad de las aguas 

superficiales y subterráneas. 

Palabras clave: Vulnerabilidad del Agua Subterránea; EPIK; DRASTIC; Análisis de Sensibilidad; 

Amazonía 
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ABSTRACT:  

Karst environments are susceptible to contamination and directly affected by anthropogenic 

pressures such as mining, oil extraction, and extensive agriculture. Vulnerability maps allow the 

generation of protection zones, considering that the remediation process could be costly and time-

consuming. Therefore, this study aims to evaluate the vulnerability of the Napo karst formation 

using vulnerability indices. For this, two indices were considered: (i) EPIK, (ii) DRASTIC, and a 

modified DRASTIC, DRASTIC-LUC.  

The results show that DRASTIC (45.76%) and EPIK (35.38%) consider the study area highly 

vulnerable, while DRASTIC-LUC shows it as moderately vulnerable (57.47%). The difference 

between the methods lies in the parameters that the model uses and how each one calculates 

vulnerability. In addition, it is necessary to consider that the assignment of each parameter is 

subject to subjectivity because it depends on the author's knowledge and available data. The 

sensitivity analysis to evaluate subjectivity in conjunction with the spatial analysis shows that 

DRASTIC-LUC is the best method to adapt to the study area because the error in the data used is 

lower and it includes important parameters such as land cover and land use. The results obtained 

can serve as a basis for future studies focused on the validation of the methodology used. Similarly, 

they can be included in technical studies for decision-making on actions that may directly affect the 

quality of surface and groundwater. 

 Keywords: Groundwater vulnerability; EPIK; DRASTIC; Sensitivity analysis; Amazon  
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Comparación entre los métodos EPIK y DRASTIC para evaluar la vulnerabilidad 

de la Formación Kárstica Napo, cuenca occidental del río Amazonas (Ecuador) 

1. Introduction 

Groundwater pollution, which directly affects water supply, has become a growing concern in 

recent years (Hadžić et al., 2015). For example, aquifers, caves, caverns, and surface karst features 

can be contaminated by rural and urban development (Onac and van Beynen, 2020). Karst aquifers 

cover around 15.2% of the land surface of the Earth (Goldscheider et al., 2020) and are available in 

different climatic conditions, mainly in arid areas (34.2%). However, a small percentage of them 

occur in tropical regions (13.1%). In South America, 58.7% of the total carbonate rock areas have 

karst aquifers (Goldscheider et al., 2020).  

The importance of the karst aquifers is that they provide water for about 25% of the global 

population (Goldscheider, 2005; Kalhor et al., 2019). In addition, the water from this type of aquifer 

is characterized by its high quality and often does not require costly treatment (Stevanović, 2018). 

However, the characteristics that distinguish karst aquifers (Duarte et al., 2013; Jiménez-Madrid et 

al., 2019) and the lack of hydrogeological studies lead everyone wrongly to consider karst water 

sources pollution free (Constantin et al., 2018). Another factor to consider is that the development 

of above-ground activities can threaten groundwater quality, making karst aquifers extremely 

vulnerable to pollution compared to other hydrogeological environments (Foster et al., 2002; 

Ravbar and Goldscheider, 2009).   

In Ecuador, groundwater is primarily used for domestic supply and, secondarily, for industrial 

purposes and irrigation. Groundwater is important in sixteen cities (among the main ones are 

Tulcán, Ibarra, Ambato, Riobamba, Guaranda, Latacunga, Quito, Arenillas, Machala, Huaquillas, 

Milagro), particularly for domestic use (Burbano et al., 2015; Rebouças, 1999). Ecuador’s most 

crucial groundwater source is the Amazon region (Buckalew et al., 1998). Amazon region is 

characterized by high precipitation levels (2500–3000 mm/year) (INAMHI, 2013; Villacís et al., 

2008). This allows karstification process to take place, giving rise to different structures 

characteristic of karst environments (Andreo et al., 2010; Stevanović, 2015).  

According to Constantin et al. (2018), carbonate rocks in Ecuador represent between 5 and 10% of 

the land surface. The Amazon Karst System (AKS) is formed by many limestone or karst caves in the 

Amazon region that remain understudied, probably because of the dense vegetation that makes 

them inaccessible (Chamba, 2020). The AKS is exposed to environmental impacts caused by mining, 
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extensive agriculture, non-native fish farming, lack of basic infrastructure, and oil extraction 

(Lessmann et al., 2016). Moreover, ecological deterioration in the Amazon has increased as 

pollution sources have multiplied as the population has grown and economic activity has become 

more diverse (Pimm et al., 2014 as cited by Capparelli et al., 2019). 

A previous study by Capparelli et al. (2019) suggested that anthropogenic activities introduced 

metals into aquatic systems. In a new study, their results demonstrate that medium-scale to 

industrial-scale gold mining has impacted the quality of aquatic ecosystems in the Napo River and 

that the water is not recommended for human consumption (Capparelli et al., 2021). In addition, 

there is the presence of new emerging pollutants. For example, Lucas-Solis et al. (2021) attribute 

the presence of microplastics in the upper Amazon River basin to the deficient wastewater 

treatment plants, the mismanagement of solid waste in landfills, and the constant load of domestic 

waste outfall into the Misahuallí River and its tributaries. On the other hand, in the lower Napo 

River basin, the pollutants derived from oil exploration and extraction in the surrounding areas of 

Aguarico River may impact soil, groundwater, and surface water (Merchán and Chiogna, 2017). 

Because remediation processes could be costly and take a long time, the most reliable protection 

of groundwater is to prevent pollution (Hadžić et al., 2015). Thus, the term ‘‘vulnerability 

assessment’’ was introduced. The central concept of Groundwater Vulnerability Assessment (GVA) 

is to prioritize areas based on their pollution vulnerability (Ramaraju and Krishna Veni, 2017). To 

evaluate vulnerability, it is necessary to consider that there are two types of vulnerability: specific 

and intrinsic. The specific vulnerability is considered to be the likelihood that the aquifer could be 

polluted by a specific or group of pollutants that are introduced into the ground surface through 

human activities (Barzegar et al., 2020; Panagopoulos et al., 2006). On the other hand, an intrinsic 

vulnerability refers to the predisposition of an aquifer to pollution quantified only in terms of its 

hydrogeological (Jarrín et al., 2017). This study considers only intrinsic vulnerability. This 

vulnerability analysis does not consider the source of the pollutants and their specific nature, but 

instead focuses on the natural environment’s inherent geological, hydrological, and 

hydrogeological properties (Abiy et al., 2016).  

The GVA using spatial evaluation is crucial to protect and prevent groundwater pollution (Hadžić et 

al., 2015; Kumar and Krishna, 2020). For example, using thematic maps of groundwater 

vulnerability provides a way to understand the vulnerability derived from anthropogenic activities 

(Talozi and Hijazi, 2013). These maps are considered essential instruments for groundwater 

management because they provide decisive information to facilitate proper planning and 



3 
 

protection (Majandang and Sarapirome, 2013). It means that GVA can consolidate highly complex 

technical information about hydrogeologic and pollutants into a language that planners, decision-

makers, and the general public can use (Baloch and Sahar, 2014). From the point of view of 

groundwater protection, it is essential to define and map the areas with a potential risk of pollution 

(Hadžić et al., 2015). For all of the above reasons, the protection of groundwater resources is 

imperative, especially in karst areas (Pacheco et al., 2018). In this regard, this study aims to assess 

the vulnerability present in the Napo Karstic Formation using vulnerability indices and GIS 

techniques. This action allows approximate groundwater vulnerability mapping without significant 

economic investment (Sahoo et al., 2016). 

2. Study site 

The Napo Karstic Formation (NKF) has an estimated area of 2096 km2 and is part of the karstic 

formations of South America, many of them inside the Amazon River basin, Fig. 1a. Within the 

Ecuadorian territory, it is found mainly in the province of Napo and small parts of Sucumbíos and 

Orellana, Fig. 1b.  

 
Fig. 1. Study area. a) Karstic Formations in South America and the Amazon Basin, b) Napo Karstic Formation (NKF) at 

Napo province, Ecuador, c) Protected areas, Land Use and Cover, Karstic Caves in the NKF. 



4 
 

As shown in Fig. 1c., the NKF is located within protected areas: 28% are inside Sumaco Napo-Galeras 

National Park, 23% in the Cayambe-Coca Ecological Reserve, and 26% in the Napo-Sumaco 

Geopark. In the study area, the altitude ranges from 370 to 3039 masl. According to Espol Tech EP 

(2014), NKF lithology comprises black shales, limestone, and calcareous sandstones. The aquifers 

in NKF could be local or discontinuous (Constantin et al., 2018), shallow, with high flow velocity, 

and connected directly with the surface (Espol Tech EP, 2014). 

3. Materials and methods 

3.1. Data collection and processing 

Geographical data, such as thematic maps, used for this study came from secondary sources of 

data. All the data was collected from the different platforms of the governmental entities in charge 

of producing this type of data. The information was incorporated and processed with QGIS 3.12.3 

La Coruña.  

In this way, some missing data was filled in with similar information. For example, geopedological 

shapefiles from the years 2016 and 2019 were compared for the study area. Under the assumption 

that both shapefiles contained the same variables, the information available for both years was 

merged. In addition, the information used to determine some parameters was not available for the 

protected areas in the study area. This required a comparison with similar information developed 

in previous years. The other changes and adaptations made to some of the parameters are detailed 

below. 

Table 1  

Data collected for obtaining the parameters of each methodology. 

Data Source 

Land Use and Cover,  
Protected Areas – Shapefile (1:100.000) 

Ministry of the Environment and Water (MAAE), Unique 
Environmental Information System (SUIA) 
(http://suia.ambiente.gob.ec) 

Hydrogeologic, Soil, Geological, and 
Geopedological Data – Shapefile 
(1:100.000) 

Ministry of Agriculture, Livestock, Aquaculture and Fisheries 
(MAGAP) (http://geoportal.agricultura.gob.ec), National 
Information System (SNI) (https://sni.gob.ec/coberturas) 

STRM Worldwide Elevation Data - *DEM 
(30 m), South American Geology - Shapefile 

United States Geological Survey (USGS), USGS website 
(www.earthexplorer.com) (https://catalog.data.gov) 

Monthly Precipitation Average (1970-2000) 

- Raster 30 sec (~ 1 km2) 

WorldClim 2.1 (Fick and Hijmans, 2017) 
(https://worldclim.org) 

*Digital Elevation Model 

The methodology was designed to: (1) collect data from relevant sources and prepare each 

parameter for the vulnerability index computation; (2) generate vulnerability maps using DRASTIC, 

http://geoportal.agricultura.gob.ec/
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DRASTIC-LU, and EPIK; and (3) perform sensitivity analysis as an efficiency indicator. Fig. 2., shows 

the flowchart developed for the methodology. 

 
Fig. 2. Flowchart of the overall methodology. 

3.2. Vulnerability methods 

GVA is not a characteristic that can be directly measured in the field (Gogu and Dassargues, 2000a). 

This led some authors to develop different methods to evaluate vulnerability according to 

geographical or hydrogeological conditions. The final vulnerability map is created through 

overlaying the individual characteristics using QGIS (Shirazi et al., 2013). For this study, two 

methods were considered: one specific to karstic environments (EPIK) and another applied to any 

hydrogeological setting (DRASTIC). Also, it was considered a DRASTIC modified, DRASTIC-LUC, which 

included Land Use and Cover. 

3.2.1. DRASTIC Method 

The DRASTIC method was developed by Aller et al. (1987). It is calculated roughly analogous to the 

likelihood that pollutants released in a region reach the groundwater. So that implies that a high 

value is directly related to the probability of pollution (Shirazi et al., 2013; Talozi and Hijazi, 2013). 

DRASTIC is the most commonly used method for mapping groundwater vulnerability. Vulnerability 

maps using DRASTIC have become popular in recent years and have been applied to different 
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environments and show promising results in Algeria (Boufekane and Saighi, 2018), Tunisia (Ayed et 

al., 2017), Bangladesh (Hasan et al., 2019), India (Khan and Jhariya, 2019), Pakistan (Maqsoom et 

al., 2020), Nigeria (Oke, 2020), Iran (Oroji and Karimi, 2018), and England (Moustafa, 2019). For 

example, in a local context, Coello and Galárraga (2002) used the DRASTIC index in the North Quito 

Aquifer to determine its susceptibility to pollution. 

The acronyms of DRASTIC refer to seven hydrogeological parameters such as (D) depth to 

groundwater, (N) net recharge, (A) aquifer media, (S) soil media, (T) topography, (I) impact on the 

vadose zone, and (C) hydraulic conductivity (Pathak et al., 2009). Equation (1) describes how to 

calculate DRASTIC using the seven parameters: 

𝐃𝐫𝐚𝐬𝐭𝐢𝐜 𝐢𝐧𝐝𝐞𝐱 = 𝐃𝐰 ∙ 𝐃𝐫 + 𝐑𝐰 ∙ 𝐑𝐫 + 𝐀𝐰 ∙ 𝐀𝐫 + 𝐒𝐰 ∙ 𝐒𝐫 + 𝐓𝐰 ∙ 𝐓𝐫 + 𝐈𝐰 ∙ 𝐈𝐫 + 𝐂𝐰 ∙ 𝐂𝐫                 (1) 

The subscripts 𝒓 and 𝒘  are the rating and weight for each parameter, respectively, summarized in 

Table 2. Furthermore, DRASTIC assumes certain conditions, such as (1) pollutants are introduced 

through the soil, (2) precipitation carries pollutants into the groundwater, (3) pollutants move with 

the water, and (4) the assessment area is equal to or greater than 0.4 km2 (Shirazi et al., 2013; Talozi 

and Hijazi, 2013). 

Table 2  
Rating, ranges, and weight of each DRASTIC and DRASTIC-LU parameter. 

Thematic Layer Symbol Range Rating Symbol Weight 

Depth to Water Table (m) Dr 0 - 1.5 10 Dw 5 
 1.5 - 4.6 9  

 

 
 

  
 

 

Net Recharge (mm) 𝑅r 50 – 103 3 𝑅w 4 
 

 103 – 178 6  
 

 
 178 – 254 8  

 

 
 > 254 9  

 

 
 

  
 

 

Aquifer Media 𝐴r Sandstone, Limestone and 
Shale sequence 

6 𝐴w 3 

 
 

  
 

 

Soil media Sr Thin or Absent 10 Sw 2 
 

 Loamy sand 9  
 

 
 Loam 8  

 

 
 Sandy loamy 7  

 

 
 Silty loam 6  

 

 
 Clay loam 5  

 

 
 Sandy clay loam, Silty clay 

loam 
4  

 

 
 Silty 3  

 

 
 Sandy clay, Silty clay 2  

 

 
 Clay, Heavy clay 1  

 

 
 

  
 

 

Topography (%) Tr 0 – 2 10 Tw 1 



7 
 

 
 2.0 - 6.0 9  

 

 
 6.0 - 12.0 5  

 

 
 12.0 - 18.0 3  

 

 
 > 18.0 1  

 

 
 

  
 

 

Impact of Vadose Zone Ir Shale 3 Iw 5 

  Limestone 6   
 

 
  

 
 

Hydraulic Conductivity 
(mm/day) 

𝐶r 0.04 - 4.8 1 𝐶w 3 

 > 81.49 10  
 

Depth to water table could be defined as the distance from the ground surface to the water table 

(Al-Zabet, 2002). There is an inverse relationship between the depth of the water table and the 

pollution possibility. Therefore, a deeper water table level implies fewer pollution (Kumar and 

Krishna, 2020; Zghibi et al., 2016). Moreover, it is considered relevant to the depth of the material 

through which any pollutant travels before reaching the aquifer (Al-Zabet, 2002). This parameter 

was obtained from the geopedological shapefile that  contains a variable denominated depth to 

the water table (MAGAP, 2015).  

Net recharge  is the amount of recharge that is positively correlated with the vulnerability rating 

(Jang et al., 2017; Saidi et al., 2010; Zghibi et al., 2016). Net recharge includes the average annual 

amount of infiltration without considering the distribution, intensity, or duration of recharge events 

(Al-Zabet, 2002). Due to the lack of information for this parameter, the APLIS method was used. 

The method developed by Andreo et al. (2004) evaluates the mean annual recharge in carbonate 

aquifers (Zagana et al., 2011). It is expressed as the percentage of precipitation that infiltrates the 

soil. The APLIS method was applied to a karst aquifer terrain in Cuba (Farfán et al., 2010),  the 

Amazon region of Perú (Espinoza et al., 2015) and produced acceptable results. The APLIS method 

uses the following variables such as altitude (A), slope (P), lithology (L), infiltration (I), and soil (S). 

After the necessary process, the final map is calculated with equation (2):  

𝐑 = (𝐀 + 𝐏 + 𝟑 ∙ 𝐋 + 𝟐 ∙ 𝐈 + 𝐒)/𝟎. 𝟗                                                                  (2) 

The APLIS method was developed for arid areas, so modifications and adaptations were necessary 

for this study. These changes were applied to lithology, infiltration, and soil according to Napo 

Formation conditions. For example, in preferential infiltration, it was necessary to consider geologic 

faults and caverns, mapped by Sánchez Cortez (2017), as preferential infiltration areas and give 

them a value of 10. Moreover, on the other hand, the rest of the regions acquire valor of 5. Similar 

considerations were applied in Zagana et al. (2011) and Entezari et al. (2020). Table 3 contains the 

rating and range for each parameter and the adaptions mentioned above.  
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Table 3  
The range and rating of each parameter adapted from Andreo et al. ( 2008). 

Thematic Layer Symbol Range Rating 

Altitude (m) A 300 - 600 2 

   900 - 1200 4 

   1500 - 1800 6 

   2100 - 2400 8 

   ≥ 2700 10 
      

Slope (%) P ≤ 3 10 

   16 -21 7 

   31 - 46 4 

   >100 1 
      

Litology L Limestones 7 

   Shales 6 

   Sands, gravels 5 

   Granite, gneiss, methamorphic and intrusive rocks 4 

   Fine materials, conglomerates 3 

   Schists, slates, slimes, clays, clay slates 2 

   Basalts, ashes, andesites 1 
      

Infiltration I Geological faults 10 

   Caverns 10 

   Rest 5 
      

Soil S Andosols 10 

   Umbrisols 9 

   Leptosols 8 

   Regosols 7 

   Cambisols 6 

   Stagnosols 5 

   Gleysols 4 

   Fluvisols 3 

In addition, to obtain the amount of recharge (in mm), it is necessary to consider precipitation data. 

However, because the available data (1980-2010) only covered accumulated precipitation, and 

meteorological station data were incomplete, it was impossible to use information from the 

INAMHI. Consequently, it employed the average monthly rainfall for 1970-2000 from WorldClim 

(Table 1). Current data (2000-2010) were available at a different scale ~340 km2. Therefore, to 

calculate the amount of rainfall, equation (3) was used. So, the recharge obtained is considered a 

factor (recharge%/100%) multiplied by the precipitation raster. 

𝐍𝐞𝐭 𝐑𝐞𝐜𝐡𝐚𝐫𝐠𝐞 = (% 𝐑𝐞𝐜𝐡𝐚𝐫𝐠𝐞 𝟏𝟎𝟎%⁄ ) ∙ 𝐏𝐫𝐞𝐜𝐢𝐩𝐢𝐭𝐚𝐭𝐢𝐨𝐧 𝐢𝐬𝐨𝐡𝐲𝐞𝐭                                        (3) 

Aquifer media is the rock material that serves as an aquifer inside the saturated zone (Saida et al., 

2017), where the material properties control the pollutant attenuation processes (Awawdeh et al., 
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2015). This parameter is related to the permeability that is controlled by the geological 

characterization (Al-Zabet, 2002; Zghibi et al., 2016). Thus, a high permeability allows more water 

and, therefore, more pollutants to enter the aquifer (Bhuvaneswaran and Ganesh, 2019). In Table 

2, it is possible to establish the rating and range for this parameter based on the hydrogeological 

shapefile of the study area. 

Soil media is the first zone that water or any pollutant passes through when it percolates into the 

ground. For that reason, soil properties affect water transportation from the surface to the aquifer 

(Jang et al., 2017; Ouedraogo et al., 2016). Specifically, soil texture is the property that impacts the 

amount of recharge into the ground (Khosravi et al., 2018; Zghibi et al., 2016). This parameter was 

constructed using a geopedological and soil texture shapefile for the study area (MAGAP, 2015). 

So, the soil order data was under the USDA (United States Department of Agriculture) taxonomy 

while the methodology used the WRB 2015 (World Reference Base) taxonomy. This led to a change 

from one taxonomy to another based on bibliographic information and considering evolution, 

texture, and thickness characteristics. And, to avoid using incorrect data, all of them were reviewed 

one by one to be consistent with the characteristics of the study area. 

Topography determines the runoff and infiltration capacity of the water into the soil (Ouedraogo 

et al., 2016). Furthermore, it influences whether or not a pollutant can infiltrate the ground and 

allows the user to obtain geographic information about its concentration (Davis et al., 2002; Shirazi 

et al., 2013). The most important topographic parameter required is slope, which was estimated 

from a DEM using GDAL tools. The range and rating for this parameter are the same as those used 

in the original methodology for DRASTIC. 

Impact of the vadose zone. The vadose zone could be defined as the space between the water table 

and the ground surface (Jang et al., 2017; Shirazi et al., 2013). It is an essential parameter in the 

vulnerability assessment because it influences the residence time of the pollutants in the 

unsaturated zone (Ouedraogo et al., 2016; Shirazi et al., 2013). To estimate this parameter, the 

hydrogeological and geopedological shapefiles for the study area that contain a variable named 

lithology were compared and used. Here, considering the information above, it was only necessary 

to place the value obtained from the original DRASTIC methodology.  

Hydraulic conductivity is the capacity of an aquifer to allow fluids (water, any pollutant) to pass 

through it and regulate their movement in the saturated zone (Al-Zabet, 2002; Shirazi et al., 2013). 

In addition, hydraulic conductivity is positively correlated with the vulnerability rating (Hasan et al., 

2019; Jang et al., 2017; Khosravi et al., 2018; Zghibi et al., 2016). For this parameter, it is necessary 
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to obtain aquifer data (transmissivity, grain size information, and thickness) to obtain the 

permeability, which is the same as the hydraulic conductivity, and that could be estimated from 

well data and pump tests. Nonetheless, when there is no information available, it is possible to use 

theoretical tables. Hydraulic conductivity values were assigned considering values by Freeze and 

Cherry (1979) for each lithology (derived from the geopedological and hydrogeological shapefile). 

The range and rating assigned are depicted in Table 2. 

3.2.1.1. DRASTIC-LUC Method 

DRASTIC-LU is a modified DRASTIC that includes Land Use and Cover. It is used to assess 

groundwater vulnerability while taking land use and cover into account (Umar et al., 2009), which 

means how human activities have impacted karstic and non-karstic areas. This method has 

primarily been used in India, with positive results (Alam et al., 2014; Kumar and Krishna, 2020; 

Sahoo et al., 2016; Wei et al., 2021). 

Land Use and Cover (LUC) could be defined as the cover over the soil and the activities there. The 

water that has percolated through the soil, reaching an unsaturated zone, can also transport 

anthropogenic pollutants (Lerner and Harris, 2009). Groundwater quality can be influenced by 

human actions. For example, inefficient wastewater treatment, agricultural activities, mining, and 

industrial tailings change the physical and chemical composition of water and increase its 

vulnerability (Ramaraju and Krishna Veni, 2017). On the other hand, changes in land cover affect 

the available resources by changing recharge rates (Lerner and Harris, 2009). A shapefile with 

information about land use and cover from 2018 was considered for the study area. Equation (4) 

shows how DRASTIC-LUC is calculated. 

𝐃𝐑𝐀𝐒𝐓𝐈𝐂 − 𝐋𝐔𝐂 = 𝐃𝐫𝐚𝐬𝐭𝐢𝐜 𝐈𝐧𝐝𝐞𝐱 + 𝐋𝐔𝐂𝐫 ∙ 𝐋𝐔𝐂𝐰                                                        (4) 

Where the subscripts 𝒓 and 𝒘  are the rating and weight for each parameter, respectively. DRASTIC-

LUC assigned a low value to natural areas (forests) and high values to agricultural, urban, and water 

bodies. The values assigned are shown in Table 4 and their distribution in Fig. 1c. 

Table 4  
Rating, ranges, and weight for LUC parameter inside of DRASTIC-LUC index. 

Parameter Symbol Range Area % Rating Symbol Weight 

Land Use 
and Cover 

  Native Forest, Herbaceous Vegetation 78.91 3 

LUw  
  
  

5 
LU𝑟 Built-Up Land 0.18 5 

  Populated Area, Agricultural Land 20.62 7 

  Water Bodies 0.28 9 
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3.2.2. EPIK Method 

Intrinsic vulnerability assessment in karst areas requires a method that considers 

geomorphological, hydrological, and hydrogeological characteristics (de Castro and Menegasse, 

2017; Gogu and Dassargues, 2000b). The EPIK method was chosen because it is one of the most 

widely used methods for vulnerability assessment that is specific to karst environments (Hammouri 

and El-Naqa, 2008). EPIK was developed by Doerfliger and Zwahlen (1998). It is an acronym for 

epikarst (E), protective cover (P), infiltration conditions (I), and karst network development (K).  

A multi-attribute weighting-rating method (Doerfliger et al., 1999) analyzes four parameters 

individually and combines them using a raster calculator (Doummar et al., 2012). Also, this method 

has been applied in different environments such as Brazil (Lenhare and Sallun Filho, 2019; Pereira 

et al., 2019), Algeria (Nekkoub et al., 2020), Morocco (Alili et al., 2018), Greece (Vogelbacher et al., 

2019). The final product is the protection factor (F). Here, a low F value represents high 

vulnerability, while a high F value shows low vulnerability (Marín and Andreo, 2015). The index is 

calculated with the equation: 

𝐅𝐢 = (∝ ∙ 𝐄𝐢) + (𝛃 ∙ 𝐏𝐢) + (𝛄 ∙ 𝐈𝐢) + (𝛅 ∙ 𝐊𝐢)                                                             (5) 

Where, 𝑭𝒊 is the protection factor for each subarea 𝒊, 𝜶, 𝜷,𝜸, 𝜶, 𝜹 are the weighting factor for each 

parameter E, P, I, and K. Table 5 contains the value assigned for the weighting as mentioned earlier 

and the rating for each parameter. The ratings for each class of a given attribute are multiplied by 

the weight related to the point, and then the products are added up to arrive at a final score 

(Doerfliger et al., 1999).  

Table 5  
Values for each EPIK parameter were obtained from Doerfliger and Zwahlen (1998). 

Parameter Symbol Range Rating Symbol Weight 

Epikarst 
E1 Sinkholes or dolines, karren, polje, caves, springs 1 ∝ 3 

E2 Intermediate zones along doline alignments 2   

  
 

    

Protective 
Cover 

P2 20 - 100 cm of soil with low hydraulic conductivity 2 𝛽 2 

P3 > 1 m of soil with low hydraulic conductivity 3   
      

Infiltration 
Conditions 

I2 
The slope is more than 10% for cultivated areas and less 
than 25% for meadows and pastures 

1 𝛾 1 

I3 
The slope is less than 10% for cultivated areas and less 
than 25% for meadows and pastures 

2   

      

Karst 
Network 

K1 
Well-developed karstic network with little fill and well-
interconnected conduits 

1 𝛿 3 

K2 
Poorly karstic network with poorly interconnected or 
infilled drains or conduits 

2   
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Epikarst is the karstified zone under the soil cover. In some areas, this is open to the surface 

(Bakalowicz, 2019; Doummar et al., 2012; Stevanović, 2015). Furthermore, it controls the 

infiltration into the aquifer and stores water (Goldscheider, 2005). The geomorphological 

information available (SIGTIERRAS, 2015) and the speleological information of the Napo province 

(Sánchez Cortez, 2017) were used to determine this parameter. Here, areas around 500 m from the 

caves and karst morphologies were identified as E1 and the rest of the study area as E2. 

Protective cover is defined by soil cover, deposits, lithologic or non-karstic geological formations 

over the aquifer (Doummar et al., 2012; Nekkoub et al., 2020). It is one of the natural protection 

parameters generally accounted for in vulnerability mapping (Doerfliger and Zwahlen, 1998). To 

estimate this parameter, soil and a geopedological shapefile with detailed information were 

considered. In particular, the geopedological shapefile contains categories associated with soil 

depth that allow one to establish the weight for this parameter. 

Infiltration conditions are complex to estimate (Gogu and Dassargues, 2000b) because they 

determines how aquifer recharge occurs (Doerfliger and Zwahlen, 1998). Infiltration conditions can 

be estimated using the slope percentage and a land cover shapefile. A correlation between these 

variables allows assigning the rating values according to the original methodology for EPIK. 

Karst network refers to the degree of karstification or the dissolution process of soluble rocks 

(limestone, dolomites, gypsum) by physiochemical interaction with water (Barea et al., 2002; 

Doummar et al., 2012). This parameter can be determined through direct geomorphological 

identification, tracer tests, or variability in water quality (Nekkoub et al., 2020). Nevertheless, no 

field trips could be carried out to identify and register the karst network. For that reason, 

geomorphological (SIGTIERRAS, 2015), speleological (Sánchez Cortez, 2017), and other related data 

were employed to assign a value to this parameter. Areas with geomorphological characteristics of 

a karst environment and the presence of caves were assigned as K1 under the assumption that the 

karst network beneath the caves was well developed. And, on the other hand, the rest of the study 

area was assigned as K2.  

3.3. Categorization Scale 

Table 6 shows the categorization scale derived from each methodology. The fact that each 

methodology is different makes it difficult to compare the areas corresponding to each level of 

vulnerability. So, for comparative purposes, a new scale was established for all vulnerability indices. 
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Table 6  
Vulnerability classes according to Aller et al. (1987) and Doerfliger and Zwahlen (1998). 

Vulnerability Class Color Rango DRASTIC / DRASTIC-LUC Rango EPIK 

Low   65 - 105 > 25 con P4 + I3,4 

Moderate   105 - 146 > 25 

High   146 - 187 20 - 25 

Very High   187 - 230 9 - 19 

Each class of vulnerability index is assigned a specific color. The scale of colors allows the user to 

graphically identify areas with high values and regions with low vulnerability values. This scale 

ranges from 0 to 1 and was obtained using the equation: 

𝑿𝒊 = ( 𝐗 − 𝐦𝐢𝐧) (𝐦𝐚𝐱 − 𝐦𝐢𝐧)⁄                                                                 (6) 

Where, 𝑋𝑖  is the value derived from the new scale, 𝑋 is the original value obtained from each 

vulnerability index, 𝑚𝑖𝑛 and 𝑚𝑎𝑥 are the minimum and maximum value of the vulnerability index, 

respectively. And, to visually identify vulnerability, 5 ranges of vulnerability class were established 

and each was assigned a specific color, Table 7. 

Table 7  
Class and color assigned for each index adapted from the new scale. 

Vulnerability Class Color Range 

Very Low   0.0 - 0.2 

Low   0.2 - 0.4 

Moderate   0.4 - 0.6 

High   0.6 - 0.8 

Very High   0.8 - 1.0 

3.4. Sensitivity Analysis 

Sensitivity analysis considers the contribution of individual factors and entry parameters to the 

outcome of an analytical model (Napolitano and Fabbri, 1996). It means that estimating the change 

in the output map with each change in the input helps to understand the effect of the parameters 

on the output of the model (Thapa et al., 2018). The two types of sensitivity analyses (Single 

Parameter Sensitivity and Map Removal Sensitivity) were used for this study. These methods have 

been used to analyze the reliability of vulnerability criteria and validate developed vulnerability 

maps (Tomer et al., 2019). 
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3.4.1. Single Parameter Sensitivity 

A single parameter, or weighting factor, was developed by Napolitano and Fabbri (1996). The 

objective of this analysis is to determine the impact of each parameter within the vulnerability 

index. The effective weight of each parameter is calculated by using the following equation: 

𝐖𝐱𝐢 = (𝐏𝐫𝐢 ∙ 𝐏𝐰𝐢) 𝐕𝐢⁄ ∙ 𝟏𝟎𝟎%                                                                             (7) 

Where, 𝑷𝒓𝒊 is the rating of each parameter, 𝑷𝒘𝒊 is the weight corresponding to each parameter and 

𝑽𝒊 as the vulnerability index. The Mean Percent Error shows the increase or decrease of the 

effective weight compared with the theoretical value. It is calculated with the following equation: 

𝐌𝐞𝐚𝐧 𝐏𝐞𝐫𝐜𝐞𝐧𝐭 𝐄𝐫𝐫𝐨𝐫 = ( |𝐓𝐡𝐞𝐨𝐫𝐞𝐭𝐢𝐜𝐚𝐥 − 𝐑𝐞𝐚𝐥|) 𝐓𝐡𝐞𝐨𝐫𝐞𝐭𝐢𝐜𝐚𝐥 ⁄  ∙ 𝟏𝟎𝟎%                               (8) 

3.4.2. Map Removal Sensitivity 

Map removal sensitivity by Lodwick et al. ( 1990) describes the sensitivity of the vulnerability index 

when removing one or more parameters from the suitability analysis. It is computed with the 

equation: 

𝐒 = ( |𝐕𝐢 𝐍 − 𝐕𝐱𝐢 𝐧|⁄  ⁄ ) 𝐕𝐢⁄  ∙ 𝟏𝟎𝟎%                                                               (9) 

Where 𝑽𝒊 is the vulnerability index, 𝑵 is the number of layers used for computing 𝑽𝒊, 𝑽𝒙𝒊 is the 

vulnerability index excluding one layer and 𝑛 is the number of layers used for calculating 𝑽𝒙𝒊. 

4. Results and Discussion 

4.1. Vulnerability Indices 

The resulting values for the DRASTIC index were between 102 and 190, while for DRASTIC-LUC, the 

values were between 117 and 230. And, for the EPIK model, the values were between 13 and 22, 

as seen in Table 8. 

Table 8  
Statistics of the initial index. 

Vulnerability Index Mean *Min Max SD 

DRASTIC 157.21 102 190 18.27 

DRASTIC-LUC 165.45 117 230 17.09 

EPIK 17.6 13 22 2.06 
                                                                                         *Min = Minimun, Max = Maximun, SD = Standard Deviation 

Table 9 and Fig. 3 show the vulnerability maps adjusted to the new scale and the area percentage 

for each vulnerability class, respectively. Here, it is possible to observe areas under the same 

vulnerability class. The DRASTIC model shows that about 45.76% (959.40 km2) of the study area has 
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a high vulnerability, followed by 22.51% (471.96 km2) with low exposure, and a small percent 

pertains to very high vulnerability (1.06%). In contrast, the DRASTIC-LUC results show that 57.47% 

(1204.72 km2) has a moderate vulnerability meanwhile 23.10% (484.23 km2) of the area was 

classified as low vulnerable, and 0.81% as very highly vulnerable. Compared to the other indices, 

the EPIK model showed a similar distribution for low to high vulnerability, so that 35.38% (741.78 

km2) has high vulnerability followed by 25.72% (539.29 km2) as low vulnerable, and 24.24% (508.14 

km2) as moderate vulnerable. As in the previous models, the percentage of very high vulnerability 

is low (5.60%). This pattern was similar for the very low vulnerability with low values.  

Table 9  
Area distribution, in percentage and km2, for each initial index. 

Vulnerability Class 
DRASTIC 

(%) 
DRASTIC 

(km2) 
DRASTIC-LUC 

(%) 
DRASTIC-LUC 

(km2) 
EPIK (%) EPIK (km2) 

Very Low 10.67 223.75 13.21 276.90 9.05 189.72 

Low 22.51 471.92 23.10 484.23 25.72 539.29 

Moderate 19.99 419.07 57.47 1204.72 24.24 508.14 

High 45.76 959.40 5.42 113.66 35.38 741.78 

Very High 1.06 22.25 0.81 16.89 5.60 117.47 

 
Fig. 3. Vulnerability maps developed for each methodology. 
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4.2. Sensitivity Analysis 

Table 10 summarizes the statistic values of all parameters employed for each vulnerability index. 

When each mean value is analyzed, the depth to the water table (9.02) appears to be the most 

critical contributor to the vulnerability index for DRASTIC/DRASTIC-LUC and infiltration conditions 

(2.86) for EPIK. Topography (2.87) and karst network (1.25), on the other hand, contribute the least 

to vulnerability indices. Thus, the contribution of each parameter is directly related to its weight in 

the final vulnerability calculation. 

Table 10  
Statistical summary of each model parameters. 

Parameters Symbol Mean Min Max SD 

Depth to Water Table D 9.02 9 10 0.14 

Net Recharge R 5.76 1 8 1.32 

Aquifer Media A 6.00 6 6 0.00 

Soil Media S 5.58 1 10 2.12 

Topography T 2.87 1 10 2.51 

Impact of the Vadose Zone I 4.98 3 6 1.42 

Hydraulic Conductivity C 6.93 1 10 4.27 

Land and Use Cover LUC 3.98 3 9 1.99 

Epikarst E 1.37 1 2 0.48 

Protective Cover P 2.43 2 3 0.50 

Infiltration Conditions I 2.86 2 3 0.35 

Karst Network K 1.25 1 2 0.43 

4.2.1. Single Parameter Sensitivity 

The change in the weighting values can be expressed both in percentage and in numerical values, 

and the effective weights should not be appraised on their own (Tomer et al., 2019). Statistics for 

effective weighting are shown in Table 11.  

Table 11  
Statistics of single parameter sensitivity analysis for each vulnerability index. 

Parameter 
Theoretical 

Weight 
Theoretical 
Weight (%) 

Effective Weight (%) Real 
Weight 

Mean 
Error % Mean Min Max SD 

*D 5 21.74 31.52 24.32 44.25 4.29 7.25 44.99 

R 4 17.39 16.13 2.70 27.59 4.38 3.71 7.25 

A 3 13.04 12.58 9.47 17.65 1.70 2.89 3.53 

S 2 8.70 7.72 1.23 16.81 3.09 1.77 11.26 

T 1 4.35 2.02 0.55 8.55 1.85 0.46 53.56 
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I 5 21.74 16.71 10.14 22.39 3.38 3.84 23.14 

C 3 13.04 13.31 2.03 22.39 7.96 3.06 2.07 

         

D 5 17.86 27.57 20.27 39.06 3.10 7.72 54.37 

R 4 14.29 14.07 2.27 24.43 3.53 3.94 1.54 

A 3 10.71 11.01 7.826 15.38 1.23 3.08 2.75 

S 2 7.14 6.74 1.00 14.93 2.60 1.89 5.60 

T 1 3.57 1.74 0.45 7.58 1.55 0.49 51.26 

I 5 17.86 14.82 7.77 20.13 3.55 4.15 17.02 

C 3 10.71 12.00 1.55 20.13 7.31 3.36 12.02 

LUC 5 17.86 12.06 7.32 29.41 5.83 3.38 32.47 

         

E 3 33.33 22.10 15.79 37.50 6.64 1.99 33.69 

P 1 11.11 14.26 9.52 21.43 2.95 1.28 28.35 

I 3 33.33 47.22 31.58 56.25 6.15 4.25 41.67 

K 2 22.22 16.43 10.00 26.67 5.16 1.48 26.06 

*D = Depth to Water Table, R = Net Recharge, A = Aquifer Media, S = Soil Media, T = Topography, I = Impact of the Vadose Zone, C = 

Hydraulic Conductivity, LUC = Land Use and Cover, E = Epikarst, P = Protective Cover, I = Infiltration Conditions, and K = Karst Network. 

These results indicate that DRASTIC parameter D dominates the vulnerability index. And, after 

calculating the effective weight, it is possible to notice that D became the most influential, with an 

effective weight of 31.52% (7.25). So that could happen because the weight and the values assigned 

to parameter D for the study area correspond to the water table close to the surface. This could be 

related to parameter I, because if the water table is close to the surface, it means that the vadose 

zone is smaller in size. Thus, any pollutant load would be more easily introduced into the 

groundwater, generating major contamination problems.  

However, Table 11 shows that parameter I decreases from 5 (21.74%) to 3.84 (16.71%), with a lower 

error percentage. This may be due to the information used for the categorization of each 

parameter. This is different from the study by Kumar and Krishna (2020), which concludes that 

factors such as depth to the water table and vadose zone thickness are important in determining 

the vulnerability index. Their results show that after the effective weighting factor, these 

parameters contribute more to vulnerability than the other parameters. In contrast, the weight for 

the parameters R, A, and S reduces their theoretical weight by a small fraction. In the case of T, on 

the other hand, the weight drastically reduces its value (1 to 0.46), causing the error percent to be 

high (53.56%) and indicating that the slope is not significant in the study area of the vulnerability 

calculation.  
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For DRASTIC-LUC, a comparable situation to that described above happens with the parameters D, 

A, and C. With the effective weight calculated, these values increased to 7.72 (27.57%), 3.08 

(11.01%), and 3.36 (12.00%), respectively. In addition, parameter R shows a decline from 4 (10.71%) 

to 3.94 (14.07%). On the other hand, it is interesting what happens with the parameter LUC. This 

parameter has a weight equal to 5 (17.86%) in the index calculation, which means LUC has a 

detrimental impact on the vulnerability. Nevertheless, with the recalculated weight, this value 

decreases to 3.38 (12.06%). This could be related to the fact that, for this study, the LUC parameter 

does not have a great influence on the increase in vulnerability because most of the study area 

contains natural areas followed by agricultural areas. This contrasts with the assignment given to 

the LUC parameter by Kumar and Krishna (2020), where the conditions of their study area show a 

predominance of agricultural areas, followed by coal mining areas, and a smaller proportion of 

natural areas. As a result, it indicated a significant influence on the DRASTIC-LUC model.   

Nevertheless, studies carried out in Napo province show that there are activities that generate 

pollution, such as mining, microplastics, and inefficient wastewater treatment, that are not mapped 

by the entities that generate geographic information. Therefore, it would be necessary to consider 

a more in-depth mapping of land use and cover in NKF. This could generate more realistic results 

for the study area. 

For the EPIK model, the value of the parameter E, despite having a high theoretical value, declined 

from 3 to 1.99 when the effective weight factor was calculated. The parameter K experiences a 

similar decline from 2 to 1.8. These results indicate that the impact on the vulnerability index of 

parameters E and K is less than the other parameters (P and I). This could be related to the criteria 

and the information that were used to obtain the E and K parameters. On the other hand, the 

weight of P and I increased. For I, the theoretical value was 3 (33.33%), and the new value is 4.25 

(47.22%), while in the case of P, the weight changed from 1 (11.11%) to 1.28 (14.26%). It is 

interesting that the parameter P presents a slight increase that could be related to the soil thickness 

above the water table that is close to the surface. On the other hand, the considerable increase in 

the P parameter could be associated with the fact that slope is considered when choosing the range 

of this parameter. The study area is in a foothill zone where the slope in the lower zone is less than 

25%, facilitating the infiltration of water and possibly pollutants. This differs from the DRASTIC 

model, where the slope parameter is not relevant for the calculation of vulnerability and its weight 

is lower. 
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Once the effective weight had been determined, each vulnerability index was reevaluated. The 

actual weight obtained from the effective weight produces a variation in each vulnerability class’s 

area. This shows somehow more realistic results in relation to the characteristics of the study area, 

the ranges and ratings employed. The statistics of each model were affected in the same way, as 

summarized in Table 12. And, the new distribution of the vulnerability classes is shown in Fig. 4. 

Table 12  
Statistics of the initial index and the index after weighting factor (WF). 

Statistics WF_DRASTIC WF_DRASTIC-LUC WF_EPIK 

Mean 155.26 179.77 19.82 

Minimun 115.5 133.6 14.53 

Maximun 195.8 236.6 23.53 

SD 17.26 17.26 2.05 

 
Fig. 4. Vulnerability maps after calculated the weighting factor.  

For example, for DRASTIC, the area percentage of high vulnerability (from 45.76% to 48.95%) 

increased slightly compared to a moderate vulnerability (from 19.99% to 15.21%) that was reduced 

by the same proportion. And, the values for very low and very high vulnerability also increased to 

a lesser degree. It is necessary to note that the values of moderate vulnerability (from 57.47% to 

48.09%) were reduced for DRASTIC-LUC, and the difference is recognizable when compared to the 

other classes, which reduced their values to a lesser extent. However, for high vulnerability, the 

value increased from 5.42% to 16.59%.  
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Whereas, for the EPIK model, the changes in the percentage distribution are more noticeable. The 

percentage of highly vulnerable areas increased from 35.38% to 47.98%, and similarly, the 

percentage of very highly vulnerable areas went from 5.60% to 17.15%. By contrast, moderate, low, 

and very low vulnerable areas decreased. It is especially noteworthy that low vulnerability has 

decreased from 25.72% to 5.91%, as can be shown in Fig. 5. 

 
Fig. 5. Area distribution in percentage for each vulnerability index after weighting factor. 

4.2.2. Map Removal Sensitivity Analysis 

The first section of the analysis removed each of the parameters by applying equation (8). The 

findings obtained are shown in Table 13. The values corresponding to the variation index show that 

removing each parameter causes a degree of variation in the vulnerability index. When analyzing 

the DRASTIC and DRASTIC-LUC statistical data, they follow a similar pattern, D > T > C > S > LUC > I 

> R > A, without the LUC parameter for DRASTIC. For DRASTIC, the parameters causing the least 

variation are A (0.35%), R (0.61%), and I (0.64%), while for DRASTIC-LUC, they are A (0.25%), R 

(0.45%), I (0.56%) and LUC (0.68%). Interestingly, these parameters produce the least variation 

considering their weight within the index calculation (Table 2 and Table 4).  On the other hand, for 

EPIK, the parameter that produces the least variation is E (2.13%), which contrasts with parameter 

I (7.97%), responsible for the greatest variation. The pattern of variation obtained from this method 

is I > P > K > E. 
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Table 13  
Statistics of map removal sensitivity analysis: one parameter removed. 

Parameter Removed 
Variation index (%) 

Mean Min Max SD 

D 2.87 1.67 4.99 0.71 

T 2.04 0.96 2.29 0.31 

C 1.21 0.25 2.04 0.57 

S 1.10 0.00 2.18 0.51 

I 0.64 0.02 1.35 0.27 

R 0.61 0.00 2.20 0.50 

A 0.35 0.00 0.80 0.19 
     

D 2.15 1.11 3.79 0.44 

T 1.54 0.70 1.72 0.22 

C 0.97 0.08 1.56 0.40 

S 0.82 0.01 1.64 0.37 

LUC 0.68 0.01 2.42 0.48 

I 0.56 0.01 1.09 0.22 

R 0.45 0.00 1.70 0.32 

A 0.25 0.00 0.67 0.11 
     

I 7.97 2.19 10.42 1.83 

P 3.69 1.19 5.16 0.96 

K 3.63 0.00 5.00 1.43 

E 2.13 0.64 4.17 0.68 

The variation pattern for each methodology allows performing the same analysis for parameter 

exclusion. However, not only one parameter is removed in this case, but in sequence until only the 

parameter that causes the most significant degree of variation remains. The results obtained are 

presented in Table 14. Here is calculated a new vulnerability index with the remaining parameters, 

using equation (8), to estimate the variation index. 

Table 14  
Statistics of map removal sensitivity analysis after using a parameter. 

Parameter Used 
Variation index (%) 

Mean Min Max SD 

DRASTIC     

D T C S I R  0.45 0.00 0.83 0.24 

D T C S I   0.36 0.00 1.37 0.33 

D T C S    1.87 0.00 4.79 1.56 

D T C     3.57 0.06 9.59 2.63 

D T      1.86 0.00 8.10 1.87 

D       14.84 9.52 27.73 3.78 

DRASTIC-LUC     

D T C S LUC I R 0.25 0.00 0.67 0.11 

D T C S LUC I  0.53 0.00 2.19 0.45 

D T C S LUC   0.66 0.00 2.42 0.39 

D T C S    0.89 0.00 4.33 0.87 
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D T C     1.88 0.00 5.37 0.98 

D T      2.20 0.00 9.40 1.78 

D       15.07 7.77 26.56 3.10 

EPIK     

I P K     2.13 0.64 4.17 0.68 

I P      6.48 0.00 10.29 3.03 

I       23.91 6.58 31.25 5.48 

The methods may agree on the same level of vulnerability in some areas while disagreeing in others. 

The notable difference may be related to the number of parameters considered by each 

methodology. For example, DRASTIC is based on seven hydrogeological parameters that are 

combined to assess vulnerability. DRASTIC-LUC includes the parameters mentioned above, plus 

land use and cover related to anthropogenic activities. In contrast, EPIK only consists of four 

parameters oriented to specific characteristics of karst environments that require a higher level of 

information and specificity. According to Hammouri and El-Naqa (2008), the capacity of EPIK to 

characterize epikarstic features is an essential distinction between it and DRASTIC when the area 

to be evaluated presents epikarstic traits.  

The sensitivity analysis has been used to analyze the reliability of vulnerability criteria (Tomer et al., 

2019). Applying these vulnerability indices may be subjective as the result depends on the author’s 

weighting assigned to each parameter. Therefore, sensitivity analysis provided useful information 

on the effects of weight and rating values applied to each parameter and allowed determining the 

importance of the subjective aspects (Gogu and Dassargues, 2000b). The findings of Kumar and 

Krishna (2020), which used DRASTIC and DRASTIC-LUC, show a different pattern on the parameters 

causing the least variation (I > D > C > LUC > S > T > R > A). In their study, the factor that exhibited 

the most variation was the impact on the vadose zone, which had a weight of 5. In other words, the 

variations are directly associated with values assigned to each parameter and their weight in the 

calculation. There is no direct association between the number of removed parameters and the 

variation on the vulnerability index. Nonetheless, it is unfeasible to evaluate vulnerability using one 

or three parameters because inconsistent values can be obtained and do not reflect the reality of 

the study area. 

When contrasted to DRASTIC or DRASTIC-LUC, EPIK employs just four parameters with a limited 

range of values and weights. Therefore, removing one or more parameters creates a significant 

variation in the final output. For example, eliminating parameter I causes more variation than 

removing parameter E. Nevertheless, the infiltration conditions are intriguing because they have a 

low vulnerability index weight but produce the highest variation when removed. That could be 
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related to how the protective factor operates, where low values represent high vulnerability and 

high values represent low vulnerability (Doerfliger et al., 1999; Doerfliger and Zwahlen, 1998).   

5. Conclusions and Recommendations  

In conclusion, the sensitivity analysis shows that the weight assigned to each parameter affects the 

final vulnerability index when the real weight is calculated. The previous values can be higher or 

lower than the originals. So that could be because the rating assigned can be subjective and the 

weight assigned does not reflect the characteristics of the study area, indicating that the weights 

need to be adjusted. Therefore, it is necessary to use detailed information that allows for a broader 

view of the study area in order to reduce subjectivity in the assignment of ranges and weights. 

Likewise, considering that it is necessary to have detailed data that was measured and confirmed 

in the field and that this study used data without validation that could have had an error, it would 

not be correct to say that this method is the best adapted to assess vulnerability for the study area. 

The information used for the DRASTIC-LUC model, on the other hand, has been measured with 

better accuracy and has been validated by government entities in charge of geographic information 

development. Therefore, after analyzing the whole process carried out to develop the vulnerability 

maps and the results obtained, DRASTIC-LUC is recommended as the most suitable index for the 

NKF. Since land use and cover have a great impact on groundwater quality, it is necessary to 

consider this in the vulnerability calculation.  

Moreover, it is crucial to consider that around 88.35% of the area in the NKF is protected. Despite 

this consideration, these areas are used for agricultural, mining, and population areas that are not 

mapped. It is for that reason that, in further research, it would be necessary to focus on land use 

and cover to adapt these results to the vulnerability map. Moreover, evidence shows degradation 

because of these activities, and there is no research on the status of groundwater. So, considering 

the interaction between surface and groundwater, this resource may be in danger if the appropriate 

actions are not taken. The results could be used as technical studies for decision-makers when 

constructing infrastructures such as sanitary landfills to avoid the pollution of the surface and 

groundwater. On the other hand, this study paves the way for research focused on the properties 

of the aquifer (hydrogeological, geophysical) in the study area and complementary investigations 

such as groundwater quality and other relevant information (well data: pH, conductivity, nitrates, 

nitrites, etc.), allowing the validation of these methodologies. 
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