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Abstract:

Janzen’s seasonality hypothesis predicts that organisms inhabiting environments with limited cli-
matic variability will evolve a reduced thermal tolerance breadth compared with organisms experi-
encing greater climatic variability. In turn, narrow tolerance breadth may select against dispersal
across strong temperature gradients, such as those found across elevation. This can result in
narrow elevational ranges and generate a pattern of isolation-by-environment, or neutral genetic
differentiation correlated with environmental variables that is independent of geographic distance.
We tested for signatures of isolation-by-environment across elevation using genome-wide SNP data
from five species of Andean dung beetles (subfamily Scarabaeinae) with well-characterized, narrow
thermal physiologies and narrow elevational distributions. Contrary to our expectations, we found
no evidence of population genetic structure associated with elevation and little signal of isolation-
by-environment. Further, elevational ranges for four of five species appear to be at equilibrium and
show no evidence of demographic constraints at range limits. Taken together, these results suggest
physiological constraints on dispersal may primarily operate outside of a stable realized niche.

Keywords: climatic variability hypothesis, mountain passes, isolation-by-environment, Scarabaeinae,
tropics, Ecuador

Introduction:

The movement of individual organisms has profound consequences for biogeography, ecology, and
evolution. Dispersal and its absence shape range limits (Kirkpatrick & Barton, 1997; Sexton, McIn-
tyre, Angert, & Rice, 2009), community assembly and disassembly (Cody, MacArthur, Diamond, &
Diamond, 1975; Sheldon, Yang, & Tewksbury, 2011), and a species’ ability to track its niche under
a changing climate (Schloss, Núñez, & Lawler, 2012; Urban, Tewksbury, & Sheldon, 2012). When
followed by interbreeding between immigrants and residents, dispersal influences rates of gene flow
between physically separated populations. In turn, rates of gene flow can affect demography and
population structure (Bohonak, 1999; Slatkin, 1985, 1987), probabilities of extinction (Soulé, 1987;
Tallmon, Luikart, & Waples, 2004; Whiteley, Fitzpatrick, Funk, & Tallmon, 2015), adaptive poten-
tial (Aitken & Whitlock, 2013; Garant, Forde, & Hendry, 2007; García‐Ramos & Kirkpatrick, 1997;
Lenormand, 2002), and ultimately speciation and biogeography (Cadena et al., 2012; Kisel & Bar-
raclough, 2010; Mallet, 2008). Yet despite its obvious importance, general predictors of dispersal
rate remain elusive (Bowler & Benton, 2005; Johnson & Gaines, 1990).

A theory that is a notable exception in attempting to predict dispersal rates of organisms is Dan
Janzen’s seasonality hypothesis, which mechanistically links temperature variation across latitude
with its consequences for dispersal and biogeographic patterns (Janzen, 1967). The hypothesis
begins with the assumptions that 1) tropical ecosystems generally have less seasonal variation in
temperature than temperate ecosystems and that 2) populations and species are adapted to the
range of climates they experience. As a result, Janzen predicted that a tropical organism climbing
a mountainside is more likely to encounter a physiologically challenging climate than a temperate
organism would be, leading to selection against dispersal across elevational gradients. A suite
of downstream predictions naturally follow, e.g. that tropical organisms should also have narrower
elevational ranges, show increased population subdivision and a pattern of isolation by environment,
and ultimately have higher speciation rates (Ghalambor, Huey, Martin, Tewksbury, & Wang, 2006;
Wang & Bradburd, 2014; Gadek et al., 2018; Sheldon, Huey, Kaspari, & Sanders, 2018).

Tests of Janzen’s seasonality hypothesis across taxa have supported its physiological assumptions
and predictions, albeit with caveats (Ghalambor et al., 2006; Sheldon et al., 2018). Salamanders
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(Feder, 1982) and lizards (van Berkum, 1988) show narrower ranges of body temperature in the
tropics, suggesting the limited thermal variability they directly experience is strongly correlated
with regional climate. Dung beetles (Sheldon & Tewksbury, 2014) and montane stream insects
(Polato et al., 2018), as well as amphibians (Snyder & Weathers, 1975) and insects (Abraham et
al., 2000) more broadly show increased thermal tolerance (as measured by CTmax - CTmin) at
higher latitudes, though this effect is reduced in the more aseasonal southern hemisphere. On the
other hand, evidence for reduced thermal plasticity in tropical organisms—which Janzen expected
in aseasonal environments for the same reason as reduced thermal tolerance, i.e. as its costs would
outweigh its benefits—is mixed at best (Brattstrom, 1968; Feder, 1982; Tsuji, 1988; Gunderson
& Stillman, 2015). Studies have generally found that elevational ranges are narrower in tropical
species (Terborgh, 1977; Huey, 1978; Rahbek & Graves, 2001; Sheldon & Tewksbury, 2014; Gadek
et al., 2018), though endotherms may be an exception to this pattern (Sheldon, Yang, & Tewksbury,
2011; Cadena et al., 2012).

Despite reduced thermal tolerance and generally smaller elevational ranges of tropical species, sur-
prisingly few researchers have examined dispersal across tropical gradients, though it is the mecha-
nism in the seasonality hypothesis that links physiology with elevational ranges. Population genetic
structure across elevation in Andean sparrows (Cheviron & Brumfield, 2009) and subtropical forest
trees in China (Shi, Michalski, Chen, & Durka, 2011) indicate gene flow across mountain sides
can be sufficiently reduced to permit genome-wide differentiation. Evidence for speciation across
elevational gradients—a possible long-term consequences of population genetic structure—has been
reported in tropical kingfishers (Linck, Freeman, & Dumbacher, 2019) and butterflies (Elias et al.,
2009). To our knowledge, the only paper explicitly estimating effective migration rates across ele-
vational gradients found reduced gene flow and greater population subdivision in tropical stream
insects compared to their temperate relatives (Polato et al., 2018). However, the authors did not
control for the possibility that dispersal is systematically reduced in the tropics for reasons other
than physiological tolerance, e.g. by comparing the relative contributions of isolation by environ-
ment and isolation by distance across latitude.

We used a densely sampled population genomic dataset to ask whether mountain passes are “higher”
in five species of dung beetles (Scarabaeinae) with well-characterized thermal physiologies and
elevational distributions that conform to predictions of Janzen’s seasonality hypothesis. We test for
reduced dispersal across elevational gradients relative to within elevational bands by estimating fine-
scale population genetic structure, Wright’s neighborhood size, and by using a Bayesian approach
for describing the relative contribution of geographic distance and environmental distance to neutral
genetic differentiation. To understand whether observed patterns are temporary artifacts of recent
population expansion, we further ask whether elevational ranges are at equilibrium, and test for
evidence of demographic constraints at elevational range limits.

Materials and Methods:

Study system and sampling. The true dung beetles (subfamily Scarabaeinae) are increasingly pop-
ular organisms in studies of ecology and evolution (Simmons & Ridsdill-Smith, 2011; Hanski &
Cambefort, 2014). Ectotherms with a global distribution, they are useful taxa for comparative
studies of natural history, physiology, and population genetics. Our previous work using phyloge-
netically matched dung beetles from locations spanning 60° of latitude found thermal tolerance of
species in the tribes Canthonini and Dichotomini generally increased with seasonality and was pos-
itively correlated with elevational range width—key predictions of Janzen’s seasonality hypothesis
(Sheldon & Tewksbury, 2014). We focused our current study on two species in the tribe Canthonini
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(Deltochilum speciosissimum, Deltochilum tessellatum), two species in the tribe Dichotomini (Di-
chotomius podalirius, Dichotomius satanas) and a single species (Eurysternus affin. flocossus) from
a third tribe, Oniticellini. Species in the genus Deltochilum are ball rolling dung beetles that feed
and breed using dung or carrion, though at least one tropical species of Deltochilum is predatory
and kills millipedes (Larsen et al. 2009). Beetles in the tribe Dichotomini excavate tunnels near or
below dung deposits and then transport it underground to create brood balls for laying and incubat-
ing eggs, often closing off the tunnel’s entrance (Hanski & Cambefort, 2014). Finally, Eurysternus
spp. are unique among dung beetles in several aspects of their reproductive biology, including a
“nuptial feast”, or aggregation and consumption of dung balls prior to nesting, an inability to roll
balls with their legs, multiple nests consisting of a shallow crater with several brood balls, nest
care, and pair bond behavior in some species (Halffter, Halffter, & Huerta, 1980).

We sampled beetles using pitfall traps baited with human dung (Davis, Scholtz, & Chown, 1999)
along two elevational and two horizontal transects on the eastern slope of the Andes Mountains
in Napo Province, Ecuador (Figure 1). Our two elevational transects spanned 730 to 1175 m
and 1500 to 1950 m in largely undisturbed humid forest, with four sampling localities spaced as
close to 125 m apart as possible given local constraints of soil and topography. Our two horizontal
transects were each approximately 2 km long, with one transect having four points and the other
having two points. Both horizontal transects were located in replicate corridors of montane forest at
2150 m asl separated by a natural barrier, the Cosanga River. No species were shared between the
two elevational transects, reflecting high beta diversity in Andean scarabs (Sheldon & Tewksbury,
2014). In all cases, we sampled nearly the complete elevational range of our focal species (K.
Sheldon, unpublished data.) Following capture, all beetles were euthanized and stored in 95%
EtOH prior to processing.

●
●●
●●●●●●
●
●●
●●
●
●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●

−0.66

−0.64

−0.62

−0.60

−0.58

La
tit

ud
e

−77.900 −77.875 −77.850 −77.825 −77.800
Longitude

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

−0.96

−0.95

−0.94

−0.93

−0.92

−0.91

La
tit

ud
e

−77.91 −77.90 −77.89 −77.88 −77.87
Longitude

Elevation (m)

●

●

●

●
●
●

1600

1700

1800

1900

2000

2100

Locality

●

●

●

●

●

●

●

●

1575

1700

1825

1950

HU−3

HU−4

Macucaloma

Yanayacu

Elevation (m)

●

●

●
●

800

900

1000

1100

Locality

●

●

●

●

●

1050

1175

730

800

925

Pipeline Colonso Chalupas

Figure 1: Sampling localities across two elevational transects in Napo Province, EC.

Library preparation and DNA sequencing. We extracted genomic DNA from all samples using
Qiagen DNeasy kits and the manufacturer’s recommended protocol for insects, homogenizing a
small amount of wing muscle tissue in pH 7.2 PBS prior to lysis (Qiagen, Hilden, Germany).
To prepare libraries for reduced representation high throughput sequencing, we used a double
restriction enzyme digest approach adapted from Gompert et al., 2014 and described below.

We placed 6 𝜇L DNA from each sample (with a minimum concentration of 20 ng/𝜇L) in separate

4

.CC-BY-NC 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/783233doi: bioRxiv preprint 

https://doi.org/10.1101/783233
http://creativecommons.org/licenses/by-nc/4.0/


wells of a chilled 384 well plate, filling the remainder with samples from a separate but related
study. We then added 2.6 𝜇L of a restriction digest master mix consisting of 10X T4 buffer, 1M
NaCL, 1 mg/mL BSA, water, and the MseI and EcoRI enzymes in a 1:0.52:0.52:0.2125:0.10:0.25
ratio. After sealing, vortexing, and centrifuging the plate, we incubated it for 2 hours at 37°C on
a thermocycler with a heated lid, followed by 20 minutes at 65°C to denature the active enzymes.
We next added 1.44 𝜇L of an adaptor ligation master mix to each well. This master mix consisted
of a MseI-specific adaptor, water, 10x T4 buffer, 1M NaCl, 1 mg/mL BSA, and T4 DNA ligase in
a 1:0.072:0.1:0.05:0.05:0.1675 ratio. We independently added 1 𝜇L of a set of uniquely barcoded
EcoRI adaptors to each well, permitting pooled samples to later be identified and demultiplexed.
Again sealing, vortexing and centrifuging the plate, we incubated it on a thermocycler at 16°C for
2 hours, then diluted the reaction by adding 3 𝜇L to 19.5 𝜇L water on a new plate.

To enrich our libraries, we performed two separate 20 𝜇L PCR amplifications, each of which was
conducted according to the following protocol. We added 3 𝜇L of our libraries to 17 𝜇L of a PCR
mix in a new plate, and performed the reaction using a thermocycler profile of 98°C for 30 seconds,
30 cycles of 98°C for 20 seconds, 60°C for 30 seconds, 72°C for 40 seconds, and final extension at
72°C for 10 minutes. Our PCR mix consisted of water, 5x iProof Buffer, dNTPs, 50mM MgCl2,
5𝜇M Illpcr1 and Illpcr2 oligos, iProof polymerase, and DMSO in a 10.4:4.0:0.4:0.4:1.3:0.2:0.3 ratio.
We then performed an additional PCR cycle to eliminate any remaining single stranded DNA and
reduce sequencing errors, adding 2.1 𝜇L of a new master mix consisting of 5x iProof buffer, 5 𝜇M
Illpcr1 and Illpcr2 oligos, and 10 𝜇M dNTPs in a 0.425:1.3:0.4 ratio to each well. We ran this
additional cycle at 98°C for 3 minutes, 60°C for 2 minutes and 72°C for 10 minutes.

After merging our replicate PCR reactions to reduce stochastic differences in sequencing effort, we
selected fragments between 250 bp and 250 bp using a Blue Pippin machine (Sage Science, Beverly,
MA). We confirmed fragments observed the size expected size distribution using a bioanalyzer
and sent the plate for 100 bp single end read Illumina sequencing at the Genome Sequencing and
Analysis Facility (GSAF) & DNA Sequencing Facility at The University of Texas (Austin, Texas).

Sequence assembly and variant calling. After initially demultiplexing our libraries using our unique
barcodes and a Python script implemented in the first step of ipyrad (Eaton, 2014), we assem-
bled sequencing reads and called and filtered variants for each species independently using the
dDocent pipeline (v. 2.7.8), a set of bash wrapper scripts optimized for population genomics of
nonmodel organisms requiring de novo assemblies (Puritz, Hollenbeck, & Gold, 2014). dDocent
first removes Illumina adapter sequences and low-quality reads using Trim Galore (v. 0.6.2) (http:
//www.bioinformatics.babraham.ac.uk/projects/trim_galore/), itself a wrapper around the Cu-
tAdapt (Martin, 2011) and FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
tools. The pipeline then assembles reads into loci within individuals using the RADseq assembly
program Rainbow (Chong, Ruan, & Wu, 2012) allowing a maximum number of 6 mismatches, and
aligns loci across individuals using CD-HIT (v. 4.8.1) (Fu, Niu, Zhu, Wu, & Li, 2012). CD-HIT
requires a user-input similarity threshold, which we set to 0.9 for Deltochilum speciosissimum, Del-
tochilum tessellatum, Dichotomius podalirius, and Eurysternus affin. flocossus. We used a threshold
of 0.8 for Dichotomius satanas, as exploratory data analysis suggested high genetic diversity and
we had poor assembly performance with more stringent parameter values. dDocent next calls on
BWA-MEM (v. 0.7.17) (Li, 2013) to align reads to the assembled reference in BAM format; here we
used default parameter values. After read alignment, dDocent uses BEDtools (v. 2.28.0) to create
intervals along contigs with high quality mapping scores, which are piped to FreeBayes (v. 1.3.1)
(Garrison & Marth, 2012) for Bayesian variant detection, taking advantage of the total coverage
for a given base across all individuals. The pipeline concatenates single nucleotide polymorphism
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(SNP) and insertion-deletion calls from FreeBayes into a single .vcf file using VCFtools (v. 0.1.16)
(Danecek et al., 2011).

We then used VCFtools, vcffilter (1.0.0) (https://github.com/vcflib/vcflib), and the dDocent script
dDocent_filters to filter this file to high quality SNPs alone. We first dropped any individuals with
missing data at more than 30% of loci, any loci missing data at more than 25% of individuals,
all SNPs with a minimum minor allele frequency of 0.05 and a minimum minor allele count of 3,
all SNPs with a quality (Phred) score of <30, and any genotypes with fewer than 5 reads across
all individuals. We subsequently dropped sites with an allelic balance of >0.75 or <0.25, where
the proportion indicates the ratio of reference allele reads to all reads; sites with reads from both
strands; sites with a ratio of mapping qualities between reference and alternate alleles that were
>0.9 or <1.05, and sites with a quality score >¼ below its depth. Finally, we identified sites with a
depth exceeding 3X the square of the mean, and removed any from this subset that lacked quality
scores exceeding 2X their depth or were outliers, which we identified qualitatively based on the
approximate point at which a histogram of mean depth across loci began to asymptote. For the
remainder of the paper we refer to genotypes filtered in this way as our ‘primary’ SNP datasets.

Describing population genetic structure. To estimate population genetic structure within species
across our gradients, we used two approaches appropriate for large SNP datasets. First, we per-
formed principal component analysis (PCA) of genotypes using our primary SNP datasets using
adegenet v. 2.1.1. We plotted samples on principal component axes 1 and 2, and visually identi-
fied outliers representing misidentified samples, cryptic species, or highly divergent subpopulations.
Second, we tested for fine-scale population subdivision within each species using fineRADstructure
v. 0.3.2, which uses haplotype data to identify a closest relative for each allele and then sums these
data into coancestry similarity matrix among all individuals. We again used our primary SNP
datasets, but dropped individuals identified as potentially belonging to different species through
our PCA.

Testing for isolation-by-environment. We quantified the relative contributions of geographic dis-
tance and environmental distance to observed genetic differentiation within all five species using
BEDASSLE v. 1.5 (Bradburd, Ralph, & Coop, 2013). BEDASSLE is a Bayesian method that mod-
els allele frequencies in unlinked loci in a set of populations as a spatially correlated Gaussian process.
Covariance is a decreasing function of both ecological and geographic distance, and parameters are
estimated with a Markov Chain Monte Carlo simulation. We first filtered out primary SNP datasets
for linkage disequilibrium using bcftools v. 1.9 and a maximum r2 value of 0.1, and converted these
files into allele counts per population (sampling locality) using adegenet v. 2.1.1 and custom
R code (https://github.com/elinck/scarab_migration/blob/master/scripts/bedassle.R). We calcu-
lated geographic distances among all sampling localities using the earth.dist() function in the R
package fossil (Vavrek, 2011), and calculated environmental distances using the R package raster
(Hijmans et al., 2019) and data for elevation, mean annual precipitation, and mean annual tem-
perature from WorldClim2 (Fick & Hijmans, 2017). To promote more efficient chain mixing, we
standardized both distance matrices by dividing values by their standard deviations and stored
standard deviation constants to later back-transform our results (G. Bradburd, pers. comm.). We
tuned MCMC parameters by conducting short runs of 10,000 generations, changing step sizes for
parameters until preliminary results suggested convergence on a stationary distribution and (if
possible) acceptance rates fell between 20% and 70%. After discovering computational time was
prohibitive for the species with the most data (D. tessellatum), we reduced its SNP matrix to 2000
sites through random sampling. We then ran the MCMC for 2 million generations for each species,
sampling every 250 generations, and assessed convergence by examining whether parameter values
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and log-likelihood values approximated stationarity. After discarding the first 25% of generations
as burnin, we calculated the mean and standard deviation of the posterior probability of the ratio
of isolation-by-environment to isolation-by-distance using the remaining MCMC output.

Demographic modeling. To test whether elevational ranges were in equilibrium or the product of
recent population expansion, we compared simple demographic models of drift-mutation equilib-
rium and exponential population growth using an approximate Bayesian computation approach
(Beaumont, Zhang, & Balding, 2002). We first calculated the site frequency spectrum (SFS) of a
separate SNP dataset treated identically to our primary SNP dataset except for filters based on
minimum minor allele count and minor allele frequency using the R package adegenet’s glSum()
function (Jombart, 2008). We next defined demographic models of a single population with either
a single population-scaled nucleotide diversity parameter 𝜃 (our “null”) model, or both 𝜃 and an
exponential population growth parameter 𝛼 (our “growth”) model using the coalescent simulator
framework coala v. 0.5.3 in R (Staab & Metzler, 2016). Under the “growth” model, the population
size changes by a factor 𝑒−𝛼𝑡, where 𝑡 is the time in generations since the growth has started. To
approximate our empirical SNP data, we used scrm to simulate 50 three-nucleotide diploid loci for
a sample size equivalent to each of our five species after filtering using the sequential coalescent
with recombination model (Staab, Zhu, Metzler, & Lunter, 2015). We ran 100,000 simulations
for each and calculated the resulting SFS. We then used the R package abc v. 2.1 to estimate
parameters and perform model selection for each species (Csilléry, François, & Blum, 2012). We
first performed leave-one-out cross validation to evaluate the ability of ABC to distinguish among
our models using tolerance rates of 0.01, 0.05, and 100 simulations. We then estimated parameters
and performed model selection using the abc() and postpr() functions, implementing the rejection
algorithm with a tolerance rate of 0.05 for both.

Spatial patterns of genetic diversity and Wright’s neighborhood size. To describe genetic diver-
sity across the elevational distribution of our focal species, we calculated the population-scaled
nucleotide diversity of each sampling locality using an estimator of theta (𝜃 = 4𝑁𝑒𝜇) based on the
mean homozygosity of gene frequencies in the R package pegas v. 0.1.1. (Paradis, 2010). We used
our primary SNP dataset and calculated theta values for each RAD locus independently, plotting
their full distribution. We examined the relationship between theta and the absolute distance in
meters from mean sampling elevation (as a proxy for proximity to putative range limits) using linear
mixed effects models with population as a fixed effect and tested for statistical significance using
a likelihood ratio test. We additionally calculated Wright’s neighborhood size for each species, a
metric proportional to the average number of potential mates for an individual given its dispersal
ability and defined as 𝑁𝑤 = 4𝜋𝜌𝜎2 , where 𝜎 is mean parent-offspring distance and 𝜌 is population
density (Battey, Ralph, & Kern, 2019; Wright, 1946). To do so, we used Rousset’s finding that
the reciprocal of the slope of a linear regression of the natural log of geographic distance against
𝐹𝑆𝑇 / (1-𝐹𝑆𝑇 ) is an estimator of 4𝜋𝜌𝜎2 (Rousset, 1997). We analyzed pairwise 𝐹𝑆𝑇 values from
BEDASSLE’s calculate.all.pairwise.Fst() function and pairwise geographic distances calculated as
described above (Bradburd et al., 2013). We transformed variables and ran simple linear regressions
using custom R code (https://github.com/elinck/scarab_migration/blob/master/stats.R).

Results:

Sampling and DNA sequencing. In total, we extracted DNA from 230 individuals of our five fo-
cal species: Dichotomius satanas (n=100), Dichotomius podalirius (n=26), Dichotomius satanas
(n=100), Dichotomius podalirius (n=26), Deltochilum speciosissimum (n=49), Deltochilum tessel-
latum (n=20), and Eurysternus affin. flocossus (n=35). Coverage was largely even across species,
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with mean read count ranging from 824,833.5 for Eurysternus affin. flocossus to 917,563.1 for D.
satanas. After assembly and quality filtering of data, we dropped 1 individual of D. satanas, 2
individuals of D. speciosissimum, 1 individual of D. tessellatum, and 11 individuals of E. affin.
flocossus. Our primary SNP datasets showed marked heterogeneity in both the number of loci
and the resulting number of SNPs across species, with a minimum of 73 assembled RAD loci and
147 SNPs for D. podalirius and a maximum of 27,379 loci and 54,890 SNPs for D. tessellatum.
As exploratory tuning of assembly parameters did not qualitatively change our results, we believe
this variation is an artifact of underlying template quality, relative genetic diversity, or structural
variation. Our secondary SNP dataset, which was not filtered by minor allele frequency or count,
also showed substantial variation (albeit with less dramatic extremes), ranging from 347 loci and
1314 SNPs for E. affin. flocossus to 19,068 loci and 68,373 SNPs for D. speciosissimum.

Population genetic structure. Principal component analysis and fineRADstructure found no ev-
idence of population genetic structure associated with elevation in any species. After dropping
outlier samples representing putative cryptic species, the first principal component of individual
genotypes explained a minimum of 3.27% of variation (in D. speciosissimum) and a maximum of
23.74% of variation (in D. podalirius). Sampling elevation was uncorrelated with PC1 across the
5 species (p>0.05 and R2<0.05 for all tests) (Figure 2A). Similarly, coancestry matrices esti-
mated with fineRADstructure (reflecting patterns of recent coalescence) showed no clustering of
individuals by elevation in any species (Figure 2B).

Isolation-by-environment. Bayesian analysis of the relative contribution of isolation-by-environment
(IBE) and isolation-by-distance (IBD) to genetic differentiation in BEDASSLE found little evidence
of IBE in any focal species (Figure 3). Mean ratios (±SD) for the posterior probability of the
parameter 𝛼E (reflecting the contribution of environment) to aD (reflecting the contribution of
geographic distance) were 0.0006 (±.0002) for D. satanas, 0.0303 (±0.4417) for D. speciosissimum,
0.0006 (±0.0001) for D. tessellatum, 0.0171 (±0.0406) for D. podalirius, and 0.0221 (±0.176) for
E. affin. flocossus. Overall, low global 𝐹𝑆𝑇 values (ranging from -0.036 for D. satanas to 0.029 for
D. speciosissimum; negative values reflect higher than expected heterozygosity when using Weir
and Hill’s 𝜃 as an estimator (Weir and Hill 2002)) likely impeded MCMC efficiency: in all but one
species, acceptance rates fell to near 0 following burnin.

Demographic modeling. Demographic model testing with approximate Bayesian computation sug-
gests four out of five focal taxa have not experienced recent range expansion (Figure 4A). Bayes
factor values for a model representing a null hypothesis of no recent population growth compared
to a model representing a hypothesis of exponential population growth were 5.165 for D. satanas,
3.814 for D. speciosissimum, 7.605 for D. tessellatum, and 4.081 for D. podalirius, all consistent
with moderate to strong support (Kass & Raftery, 1995). In contrast, the Bayes factor value for a
comparison of population growth to the null model for E. affin. flocossus was 1.631, indicating low
to moderate support. These patterns were reflected in the posterior probabilities of the population
growth rate parameter in coala (“r” in Figure 4B).

Spatial patterns of genetic diversity and Wright’s neighborhood size. Estimates of theta were uncor-
related to distance from mean sampling elevation (𝜒2 (1)<2.5 and p>0.1 for all species), indicating
genetic diversity remains constant even in samples from near putative range limits (Figure 5).
After correcting negative 𝐹𝑆𝑇 values and negative slope coefficients to 0 to account for artifacts of
excess heterozygosity, estimates of Wright’s neighborhood size for all species were infinite (Figure
2C), indicating panmixia relative to the spatial scale of our sampling.
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Figure 2: Panmixia across elevation in Andean dung beetles. A) The relationship between
genotype PC1 and elevation by species. B) Coancestry matrices from pairwise estimates of indi-
vidual relatedness. Rows and columns are ordered by elevation and sampling locality. Values are
scaled from 0 to 1 to be comparable across species. C) The relationship between the natural log of
geographic distance and standardized 𝐹𝑆𝑇 scores. Negative or flat slopes indicate panmixia.
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Discussion:

Janzen’s seasonality hypothesis predicts that organisms distributed in regions with relatively lim-
ited climatic variability—as is true in much of the tropics—will evolve a reduced physiological
tolerance breadth for temperature (hereafter thermal tolerance) (Janzen, 1967). In turn, narrow
thermal tolerances should bias dispersal to occur most frequently between environments with sim-
ilar temperature regimes, leading to neutral genetic differentiation associated with temperature
and independent of geographic distance (Wang & Bradburd, 2014). Given recent evidence for
the apparent ubiquity of isolation-by-environment in nature (Herrera, Medrano, & Bazaga, 2017;
Manthey & Moyle, 2015; Sexton, Hangartner, & Hoffmann, 2014; Sexton et al., 2014; Shi et al.,
2011; Wang & Bradburd, 2014; Weber, Bradburd, Stuart, Stutz, & Bolnick, 2017) and previous
work demonstrating elevational ranges and thermal physiologies of our focal taxa broadly conform
to predictions of the seasonality hypothesis (Sheldon & Tewksbury, 2014), we expected to see ev-
idence of genetic differentiation across elevational ranges in the present study. We were therefore
surprised to find no evidence of population genetic structure associated with elevation, and little
evidence of isolation-by-environment in any form (Figures 2-3). Reflecting these patterns, Wright’s
neighborhood sizes for all five species—proportional to the average number of potential mates for
an individual given its dispersal ability—were effectively infinite relative to the geographic and
environmental scale of our sampling (Figure 2C), indicating panmixia.

Importantly, this result appears to reflect long-term population dynamics rather than a temporary
artifact of when we sampled. Over evolutionary time scales, demographic processes may obscure
the signal of selection against maladaptive physiological phenotypes, biasing inferences about the
drivers of genetic differentiation. For example, rapid population expansion across an environmental
gradient may temporarily generate a signal of panmixia, before subsequent range contraction due to
fitness costs, or the emergence of population genetic structure as a consequence of divergent selection
(Gadek et al., 2018). Evidence that four of five focal species in the present study show no evidence
of recent population growth (Figure 4A) is consistent with selection-migration equilibrium and
indicates no genome-wide reduction in gene flow based on elevational origin.

What biological processes might explain rampant gene flow across elevation in Andean dung beetles?
We suggest that, while initially unintuitive to us, this result could be considered a predictable
consequence of their natural history. Dung beetles in Canthonini, Dichotomini and Oniticellini
are strong fliers with highly developed olfactory systems (Hanski & Cambefort, 2014), and they
rely on an ephemeral, randomly distributed resource for feeding and reproduction. With low
mammal population density in the tropical Andes (Jiménez et al., 2010; Lizcano, Pizarro, Cavelier,
& Carmona, 2002; Ríos-Uzeda, Gómez, & Wallace, 2007) and putative variation in the nutritional
content of mammalian dung (Hanski & Cambefort, 2014), large, protein-rich deposits from species
such as Andean bear (Tremarctos ornatus) might represent a rare “windfall” event, attracting
large numbers of individuals and providing opportunities for gene flow among individuals with
relatively distant locations. Given the dramatic relief of the eastern Andes and concurrently short
geographic distances between upper and lower elevational range limits of the beetles, this span
could easily encompass populations otherwise subject to divergent selection on thermal physiologies.
Additionally, our focal species’ demonstrated ability to detect and reach dung resources (such as
our traps) may make them inherently less likely to show signatures of isolation by environment.

Our findings strike a marked contrast to the results of Polato et al. (2018), to our knowledge the
only other study to explicitly test Janzen’s prediction of reduced dispersal across tropical moun-
tainsides. In their study, Polato and coauthors found gene flow across tropical elevational gradients
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was reduced relative to temperate elevational gradients in freshwater stream insects. We suggest
the discrepancy between our conclusions may be driven by several nonexclusive mechanisms. First,
as discussed above, dung beetles are highly vagile and likely show greater baseline rates of gene flow
than the focal taxa in Polato et al.’s study. Second, Polato et al. did not attempt to distinguish
isolation-by-environment from isolation-by-distance, perhaps due to constraints imposed by the
linear nature of freshwater montane habitats. In the absence of this control, it is possible dispersal
is reduced systematically across latitude, and not simply as a result of narrower thermal tolerance
driven by reduced seasonality. Third, Polato et al. analyzed gene flow within morphological taxo-
nomic units (MTUs)—putative species identified by morphology alone—rather than biological or
coalescent-delimited species. They justify this by arguing reductions in gene flow between incipient
species contained within a single MTU are still informative as to the validity of Janzen’s hypothesis,
as speciation is one of its potential consequences. Given previous work in this system demonstrating
a greater number of cryptic species at lower latitudes (Gill et al., 2016), it seems likely intraspecific
reproductive isolation is a major driver of their observed reduction in gene flow across elevation.
However, it is at least as plausible that cryptic speciation was driven by the evolution of reproduc-
tive isolation through processes unrelated to physiology, such as genetic incompatibilities arising
during a period of allopatry prior to secondary contact and range displacement. In the absence of
further evidence that estimates of gene flow in Polato et al. are truly intraspecific, it’s possible our
studies examine different evolutionary time scales, and thus are not directly comparable.

Nonetheless, narrower elevational ranges in tropical compared to temperate confamilials remains
consistent with a role for narrow thermal tolerance in restricting dispersal in Andean dung beetles.
We hypothesize that selection against dispersal into environments with temperature regimes that
exceed an organism’s thermal tolerance breadth primarily acts outside of a stable realized niche.
Under this scenario, physiological tolerance breadths exceed the range of temperatures regularly
experienced across the elevational distributions of our focal species, and fitness within this range
shows relatively little variation. However, much below or above these elevational range limits,
performance might decline rapidly and dispersers experience severe fitness costs (Hargreaves, Samis,
& Eckert, 2014). More detailed characterization of performance curves across temperature in these
species could inform a mechanistic niche model (Kearney & Porter, 2009) and establish whether
their current distributions approach abiotic tolerance limits.

Though Janzen (1967) did not directly address the consequences of the seasonality hypothesis
for speciation, our findings raise two points related to the field that merit discussion. First, as
discussed above, populations in the tropics separated by climatically challenging regions should be
more isolated and diverge more rapidly than similarly separated populations of temperate congeners.
While an absence of robust taxonomic, phylogenetic, and distributional data have largely precluded
tests of diversification rates in tropical dung beetles (but see Davis & Scholtz, 2001; Davis et al.,
1999), well-designed comparative phylogeographic studies across latitude targeting common species
could help evaluate this hypothesis. Second, strong constraints on thermal niche might trigger
divergent selection and ecological speciation (Schluter, 2001; Nosil, 2012) in the event of niche
expansion. However, the apparent stability of elevational ranges over evolutionary time scales
suggests unusual circumstances might be required to facilitate this process, such as ecological
release from a competitor, or a change in standing genetic variation enabling adaptation.

Our results suggest tropical dung beetles may have limited capacity to respond to climate change.
Anthropogenic global warming may have a dramatic impact on tropical dung beetle communities
assuming species cannot keep pace with their thermal niche through range shifts (Sheldon, Yang,
& Tewksbury, 2011), though the magnitude and direction of range shifts remain unpredictable
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given variation in responses among closely related taxa and uncertainty in climate forecasts for
tropical regions (Sheldon, 2019). Regardless, these predictions of community change ignore the
potential for adaptation. Though experimental approaches to local adaptation remain the gold
standard, data on the evolutionary ecology of range limits can inform predictions of the likelihood
species can respond to climate changes at evolutionary timescales. Our data suggest this may be
difficult for the species in the present study. In addition to evidence that most species’ ranges
are at equilibrium, the absence of any decay in genetic diversity away from the elevational range
center (Figure 5) suggests elevational ranges are not constrained by demographic effects or limited
standing variation—i.e. source-sink dynamics driven by fitness costs or poor habitat quality at
range limits. While it is beyond the scope of our work to identify the ultimate drivers of elevational
distributions, this pattern is consistent with range limits formed by either a biotic interaction or
swamping of maladaptive alleles (Sexton, McIntyre, Angert, & Rice, 2009). Assuming the latter
process dominates, and niche constraints are primarily evolutionary, a complex change in patterns
of gene flow might be required to permit adaptation to novel climates. We encourage future workers
to explore this rich area of inquiry.
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