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A B S T R A C T

Comprehensive two-dimensional gas chromatography (GC×GC) offers detailed chemical information about
volatile and semivolatile analytes from complex samples. However, the high complexity of the data structure
encourages the development of new tools for a more efficient data handling and analysis. Although some tools
have already been presented to overcome this challenge, there is still need for improvement. In this manuscript,
we present a toolbox containing a pipeline for end-to-end basic GC×GC data processing which can be used for
both, signal pre-processing and multivariate data analysis. The pre-processing algorithms perform signal
smoothing, baseline correction, and peak alignment, while the multivariate analysis is done through Multiway
Principal Component Analysis (MPCA). The software is capable to prepare the chromatographic data for further
applications with other chemometric tools, e.g.: cluster analysis, regression, discriminant analysis, etc. The
performance of this new software was tested on in-house experimental dataset and on two other published
datasets.

1. Introduction

Gas chromatography (GC), and particularly comprehensive two-di-
mensional gas chromatography, have come practically a mandatory
technique for the analysis of the volatile and semivolatile compounds in
matrices of high chemical complexity [1]. In GC×GC, the enhanced
separation power is achieved by two capillary columns with preferably
orthogonal separation capabilities, connected by the modulator. The
modulator periodically concentrates a (coeluting) fraction of the eluate
coming from the first column (first dimension, 1D) and next, reinjects
this fraction as a narrower band into the second column (second di-
mension, 2D). Therefore, compounds that would coelute in conven-
tional GC can be potentially separated in GC × GC system [2,3]. Be-
cause of the benefits provided by GC×GC, it has been widely applied in
forensic [4], environmental [5], fuel [6], and metabolomics [7] ana-
lysis.
Apart from the enhanced peak capacity of the GC × GC and the

better elucidation of the chemical fingerprint from complex samples,
isomers and homologous series are usually identified more easily in the
two-dimensional chromatograms, e.g.: the roof-lite effect of

hydrocarbons, and therefore the non-ambiguous identifications of un-
knowns is also improved [8,9]. However, GC × GC can be coupled to
multichannel detectors, such as mass spectrometers, which results in a
large amount of data, e.g.: up to 2 GB raw files per sample in
GC×GC–MS, and therefore efficient data handing tools are necessary
[10–12].
Chemometrics use mathematical and statistical methods to analyze

multivariate chemical data [13,14]. However, the efficient application
of chemometrics in chromatography usually requires a previous pre-
processing of the signals to reduce or mitigate undesirable artifacts,
such as instrumental noise (e.g.: detectors' signal fluctuation and re-
tention time shifts across multiple runs) and chemical noise (e.g.:
column bleeding and peak saturation) [15]. The common pre-proces-
sing algorithms used in GC/GC×GC to correct for column bleeding and
signal fluctuation are baseline correction and signal smoothing [15].
For GC×GC, the algorithms for correction of retention time shifts
across samples should handle shifts in both 1D and 2D, such as the two-
dimension correlation optimized warping (2D-COW) [16], parametric
time warping (DTW) [17], distance and spectrum correlation optimi-
zation (DISCO and DISCO2) [18,19], graph-based multiple alignment
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(BIPACE 2D) [20].
Data handling in GC×GC, especially the pre-processing step, is

usually performed by commercial software, and a minor percentage is
done using open source tools [21]. For instance, over 85% of data
analysis has been performed with the vendor or commercial software in
metabolomics research [22]. Although the open-source toolbox Guineu
[23] and R2DGC [23] have been developed for data handling and pre-
processing of GC×GC using single-and/or multichannel detection,
there is a still lack for extended workflow pipeline that also performs
data analysis using chemometrics. In this stream, the RMet toolbox has
been proposed as an end-to-end pipeline to process GC/GC×GC–MS
data [24]. One of the main advantages of RMet is that presents a Gra-
phical User Interface, which makes the analysis easier for inexperienced
users. In contrast with command line toolboxes, GUI based ones do not
allow an easy way to run multiple sets of parameter combinations until
reach convergence, as usually needed in order to tune parameters.
Moreover, in the RMet toolbox, discriminant analysis is performed only
by building a partial least squares-discriminant analysis model. Su-
pervised models, such as PLS-DA, has to be built carefully, since one of
the main disadvantages is model overfitting [25].
Data analysis in GC/GC×GC has been commonly performed by

pixel-based level, or by peak picking approaches [11,26,27]. The pixel-
based approach performs the data analysis directly in the two-dimen-
sional chromatogram which can be considered as a pixel image, ob-
tained at the retention times in 1D and 2D, respectively [28]. Con-
versely, the peak picking approach picks, integrates, and then organizes
the individual peaks of the chromatograms in a peak table where the
variances of the areas can be analyzed between multiple samples. There
are advantages and drawbacks for both, pixel-based and peak picking
approaches, and the decision about which approach to choose depends
on the goals of the study. For instance, data analysis based on peak
picking handles significantly fewer variables than in the pixel-based
approach, which is an advantage for data analysis using the conven-
tional univariate statistic. However, the quality of the data depends on
the efficient selection and integration of the peaks, which can be pro-
blematic for highly coeluting peaks. Furthermore, the two-dimensional
structure of the chromatograms is not seen straightforwardly as with a
pixel-based approach. Therefore, interpreting the chromatographic
differences between samples can be less intuitive than the pixel-based
approach.
In this work, we present the toolbox RGCxGC which was developed

for data processing in GC×GC–MS, based on the open-source R en-
vironment. This toolbox contains an end-to-end pipeline for the most
common processing techniques that are required for GC×GC, such as
baseline correction, signal smoothing, and two-dimensional peak
alignment. Moreover, the pixel-based analysis can be performed using
MPCA. On the other hand, the data can be exported in a more com-
patible format to be used with external toolboxes for chemometrics. The
performance of this open-source is demonstrated with three datasets in
total. Two datasets are from microbial antagonism interaction and one
of the was homemade created, while the third dataset was retrieved
from literature and is related to typhoid carriage diagnosis.

2. Materials and methods

2.1. Methods

2.1.1. Biological material and its maintenance
All fungal strains were obtained from "Collection of Bahia

Microorganisms " (CCMB) and were kept in Petri dishes containing
20 mL of carrot-maize-agar (CMA) culture media at (25,0 ± 1,0) °C in
a growth chamber (Eletrolab, model EL202) with 12 h of photo-period.

2.1.2. Fungal inoculation and headspace extraction
PDA culture media (25 mL) was placed in 50 mL polypropylene

centrifuge tubes using angulation (elevation of 1,5 cm). The tube cap
was modified with a 15 mm diameter hole and PTFE septa held by the
aluminum ring.
Inoculation was made from Petri dishes with the fully grown fungal

cells, and sterile distilled water was used to wash the surface of the
plate. The plate was scraped with a sterile glass handle to obtain the
spore suspension. The suspension was liquated and the concentration of
2.4 × 105 spores / mL was determined using a Neubauer chamber and
an optical microscope. Then, 50 μL of the suspension was inoculated in
a flow chamber into the tubes containing the culture medium. Tubes
were kept at (25,0 ± 1,0) °C in a growth chamber (Eletrolab, model
EL202) with 12 h of photoperiod.
A solid-phase microextraction (SPME) assay containing a DVB /

CAR / PDMS (Divinylbenzene / Carboxene / Polymethylsiloxane 50/
30 mm, Supelco) fiber was placed into the tube headspace for 35 min at
(25,0 ± 1,0) °C.

2.1.3. GCxGC-QMS
A set of columns consisting of HP-5MS 30 m× 0,25 mm× 0,25 µm

(Supelco) connected to a Supelcowax 1 m × 0.10 mm × 0.10 µm
(Supelco) with a 1 m× 0.25 mm deactivated silica capillary being used
as the loop. The modulation period was set to 5.0 s. For GC × GC-QMS
experiments was used a temperature program were 60 °C - 165 °C @3
°C/min; 165 °C - 260 °C @20 °C/min; 260 °C (5 min); flow rate 0,6 mL/
min (Helium 5.0 carrier gas); splitless injection mode, ion source tem-
perature 200 °C, interface temperature 260 °C; voltage 0,9 kV; mass
range 50–380 m/z; acquisition rate 25 Hz and electron ionization
(70 eV). For GC × GC-QMS data acquisition, GCMSsolution version 5.3
software (Shimadzu, Tokyo, Japan) and GCImage version 2.0 software
(Zoex - Houston, TX, USA) was used for the analysis of two-dimensional
chromatograms.

2.1.4. Tentative identification
For tentative identification, a two-dimensional chromatographic run

was performed before the experiment with standards of homologs n-alkanes
(C8eC20, Sigma Aldrich). 2 μL of the standard solution was transferred to a
vial and the SPME fiber was exposed during 15 min after chromatographic
desorption. The NIST 2008 spectra library (NIST – Gaithersburg, MD, EUA)
was used (considering 80% of similarity) and comparison was made with
the van den Don and Kratz retention index [29].

Abbreviations

GC Gas chromatography
GC×GC Comprehensive two-dimensional gas chromatography
TOF Time of flying
NetCDF Network common data form
2DCOW Two-dimensional correlation optimized warping
TIC Total ion current
PLS Partial least squares
PLS-DA Partial least squares – discriminant analysis

PCA Principal component analysis
MPCA Multiway principal component analysis
PC Principal component
S/N Singal to noise ratio
MYL Myrothecium sp.
CUI Curvularia sp.
PDA Potato-dextrose-agar
SPME Solid-phase microextraction
GUI Graphical user interface
CRAN Comprehensive R archive network

C. Quiroz-Moreno, et al. Microchemical Journal 156 (2020) 104830

2



2.2. Software implementation

The basic workflow of the RGCxGC package is composed of three
main steps; data importing, pre-processing and multivariate analysis.
First, the raw Network Common Data Form (NetCDF) chromatogram is
imported with the “read_chrom” function, in which the user needs to set
the modulation time in which the GC× GC data was acquired. Next, you
can perform smoothing and baseline correction using the function
“wsmooth” and “baseline_corr”, respectively. Then, peak alignment from
a single sample can be done using the “twod_cow” function, based on the
two-dimensional correlation optimized warping (2DCOW) algorithm.
Alternatively, multiple sample alignments can be performed with the
“batch_2DCOW” routine, where the first chromatogram will be con-
sidered as the reference while aligning the remaining chromatograms.
After pre-processing, MPCA can be performed on the dataset using the
“m_prcomp” function, which provides the scores and loadings matrices
and the summary with the explained and cumulative variance per
Principal Component (PC). In the case of the loading matrix, they can be
plotted using “plot_loading” and retrieved with the “scores” functions,
while the “print” function you can access to the MPCA summary. The
toolbox pipeline is summarized in Fig. 1. Library methods, and their
arguments and comments, are summarized in Table 1.

2.1.1. Importing data
This initial step is an adaptation of the Skov routine [30]. The

procedure about how to extract and handle chromatographic signals

was based also on Skov's routine. In the importing function, an option
to import specific retention times ranges in both dimensions were in-
cluded (see x_cut and y_cut) see Table 1. First, the chromatogram has to
be exported from vendor software into a NetCDF file. This file extension
is commonly used in scientific approaches. The exported chromatogram
contains the retention time and the Total Ion Current (TIC). Due to
NetCDF architecture, data is stored into one-dimensional arrays,
therefore, the signal is accessed through the arrays named scan_acqui-
sition_time and total_intensity. Since the acquired data by both mass
analyzers, time of flying and quadrupole, converge in a NetCDF file,
they can be imported and analyzed with the proposed toolbox. Thus,
the retention time is divided by sixty to transform the signal from
seconds to minutes. Before the one-dimensional array is folded into a
more familiar two-dimensional chromatogram, the sampling rate is
evaluated to be homogenous. In other words, the software ensures that
the entire run has the same sampling rate since non-integer sampling
rates leads to unpaired data points over the chromatographic run.
Once the one-dimensional vector is stored in memory, the routine

proceeds to fold it into a two-dimensional chromatogram. Each mod-
ulation period creates a matrix C(I, J), where I is the mass spectra scans,
acquired in a given modulation and J is the modulation index. The
number of mass spectra scans is related to the sampling rate (Hz) of the
mass analyzer. The sampling rate exhibit by TOF mass analyzer is
greater than quadrupole mass analyzers. Thus, a chromatogram ac-
quired with a TOF will have more scans per seconds than a chroma-
togram acquired with a quadrupole. Therefore, in order to calculate the

Fig. 1. The proposed pipeline of non-targeted GC×GC-MS data analysis workflow in the RGCxGC toolbox. First, chromatograms are imported with the “read_chrom”
function. Next, the user can pre-process them by smoothing, baseline correction, and peak alignment with the “wsmooth”, “baseline_corr” and “twod_cow” functions,
respectively. Then, chromatograms from multiple cohorts are gathering in a single object, before to be subjected to multiway principal component analysis. On the
other hand, the user is able to export all chromatograms with the “unfold_chrom”, in order to perform different statistical analysis. While the dashed lines enclose the
functionalities implemented in the RGCxGC toolbox, the external parts show functionalities of external R toolboxes.
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total number of modulations, the total number of scans is divided by the
number of scans per modulation. Finally, once the number of scans per
modulation (I) and the total number of modulations (J) are calculated,
the one-dimensional array is folded into a two-dimensional matrix.
Usually, a chromatographic run contains incomplete modulation scans
at the end of the run, these scans are removed previous to create the
two-dimensional chromatogram while printing a message.
In GC, solvent effect and column bleeding are almost unavoidable.

Therefore, in order to remove parts of the chromatogram that does not
contain significant information, the user can provide the retention time
range that they would like to keep. Another example is large chroma-
tographic runs, where a cleaning ramp at high temperatures is included
at the end of the run, producing large values at 1D. Here, the user can
avoid importing the last part of the chromatogram by changing the
“x_cut” argument.

2.1.2. Visualization
As described by Reichenbach [31], the GC × GC image visualiza-

tion consists of colored pixels layers. In this case, interpolation tech-
niques are used for a two-dimensional image view. The interpolation
function evaluates the collection of TIC at the C(I) and C(J) coordinates,
and then approximate the contours with the computed interpolation.
On the other hand, it is common in chromatography that the signals
contain highly similar intensities, or a certain group of chemical entities
produces signals several times higher than the rest of the molecules.
Therefore, in this library, the user has two options to display two-di-
mensional chromatograms, filled contour, and contour plot. While
contour plot displays low and high-intensity TIC signals as isolines with
a white background, filled contour assigns a different color to the
background, which may obscure low-intensity signals. In other words,
analyte concentrations are not usually evenly distributed in the sample,
they may produce a large range of signal intensities. Thus, analytes with
greater concentrations my opaque the visualization of the analytes with
lower concentrations. To overcome this issue, the user can choose the
contour plot to display low signal intensities.
Moreover, the color palette must be taken into consideration in this

type of graphical representations, since they play the main role by
capturing reader attention [32]. Building an effective color ramp may
be difficult for inexperienced users. We encourage users to employ the
colorRmps package [33]. On the other hand, users with more pro-
gramming skills can create a color palette from scratch, as explained in
[32].

2.1.3. Pre-processing
High throughput chemical equipment achieves a great level of de-

tail, in which external artifacts are also included, such as instrument
variability or sample matrix effect. Therefore, the analysist has to
eliminate undesirable information to convert the raw data into useful
information, because it has a huge effect on the downstream analysis
[11,28,34]. Consequently, several pre-processing techniques have been
developed in order to remove chemical and instrument noise. In gen-
eral, pre-processing techniques include three basic modules: smoothing,
baseline correction, and peak alignment.

2.1.3.1. Smoothing. Denoising signals enhance the signal to noise ratio
(S/N) in the chromatogram, increasing both accuracy and precision
analytical results. Although the pioneers in smoothing were Savitzky
and Golay with the local likelihood approach [35,36], Whittaker
smoother was introduced as a general-purpose algorithm in
chemistry, showing better performance [37]. Whittaker smoothing
works in the time domain by discrete penalized least squares taking
into consideration data fidelity of original data and roughness of the
fitted data. This algorithm starts with a supposition of a noisy signal y
and a smoothed signal z that fits y. The roughness (R) of the smoother
can be described as the sum square of z R= ∑i (zi – zi-1)2. Moreover, the
lack of fitting can be expressed as the sum of squares of differences

S= ∑i (yi - zi)2. Finally, the governing equation of Whittaker smoother
can be stated as:

= +Q S R

Where λ is a user given multiplicative factor to the roughness. The
aim of Whittaker smoother is to find the combination of z that mini-
mizes Q. While the user gives λ larger values, z will be more smoothed.
Different results by varying λ are showed in [38]. These advantages
account for automatically boundaries adaptation, missing values and
sparse handling, and good computational efficiency in a desktop com-
puter. The Whittaker routing is available through the “wsmooth”
function.

2.1.3.2. Baseline correction. The baseline drift in GC/GC× GC is mostly
caused by column bleeding or complex mixtures that cannot be
separated [11]. In order to remove this type of noise, baseline
correction removes the baseline noise and centering the signal around
zero. The proposed library implements baseline correction by
asymmetric least squares algorithm [39]. Eilers proposed the baseline
correction by adapting Whittaker smoothing to calculate the trend of
the baseline. In this extension, weights (ω) are introduced, stated as.

= +Q y z z( ) ( )
i

i i i
i

i
2 2 2

While ordinary least squares obtain the residual based on the dif-
ference of the raw and fitted signal (y - z), and the sign of the residuals
has the same effects over the penalties, the asymmetric least squares
give more weight to negative residuals than positive residuals. This
approach is considered based on the positive residuals are obtained
when a peak is detected. Therefore, the analytical peak signal has not
had to be distorted. In contrast, negative residuals are more penalized.
As stated above, weights are assigned based on the sign of the residual
as follows: ωi = p if yi > zi and ωi = 1 – p otherwise. Here, p is
introduced as a user parameter. In cases when the fitted signal is greater
than the raw signal, weights are the difference of ωi = 1 – p.
Although asymmetric least squares offer advantages, such as short

computational times, parameter flexibility, the parameters have to
optimize by hand. This function is available in the library through the
“baseline_corr” command.

2.1.3.3. Peak alignment. The retention shift in chromatography is an
unavoidable source of experimental variation [34]. Retention shift can
be caused by stationary phase decomposition, column change during
usage, or different modulation temperatures over the experiment. As
described above, this software follows the stream of pixel-based
analysis. Therefore, 2DCOW algorithm was implemented [40].
Basically, the 2DCOW works by splitting the sample (A) and
reference (B) chromatogram of X(I, J) dimensions into m segments for
both dimensions (1D and 2D), respectively. The new partitioned matrix
can be stated as ni and nj with column nodes in the first {e0, e1, •••, eni},
and the second {{f0, f1, •••, fnj}} column, which are a segment subset of
{1, 2, •••, I} and {1, 2, •••, J}, respectively. Each grid from the
partitioned matrix, for the sample and the reference chromatogram,
can be expressed as {(ek, fl): k = 0, 1, •••, ni; l = 0, 1, •••, nj}. At each
row ek of A, a new row vector = ( )A A A A, , ···,e e e e I1 2k k k k is
obtained, with the jth component Ae fk through.

=
= =

A A W e e h We e h/ / /i j
e

n

ef k
e

n

k
1 1

k

This routine requires one pair of arguments for each of the first and
second dimensions that are called segment length, which is the number
of sections to split the chromatogram and slack, which is the maximum
warping level. In the proposed library, there are two functions to per-
form two-dimensional peak alignment, “twod_cow” and
“batch_2DCOW”. While the first command can align a single chroma-
togram against a reference, the second routine can align a set of
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chromatograms to a reference. Regarding the reference chromatogram,
it has to keep high peak similarity between sample chromatograms
since the signals should match to perform the alignment, a more de-
tailed explanation about criteria to choose the target chromatogram is
provided in [11,15]. One of the main advantages that provides 2DCOW
is the interpolative warping of the warped region and the reference in
order to maximize the correlation between them, correcting the re-
tention time shifts.
One strategy to select the reference chromatogram is to create an

artificial chromatogram by summing or averaging pixels of a set of
chromatograms from different groups. In the proposed toolbox, we
provide the “ref_chrom” function, which receives multiple chromato-
grams and computes a new temporal chromatogram to be employed as
the reference.

2.1.4. Multivariate analysis
Multivariate methods are capable to analyze multiple variables at a

time in order to expose group-wise variation. There are two flavors for
multivariate analysis focused on statistical learning, supervised and
unsupervised analysis. Supervised analysis requires prior information
about the sample space composition, a predicted variable, which
commonly is the sample class, to train the model. In contrast, the un-
supervised approach does not need extra information about sample
composition to compute its routines and creates a discrimination
model. In consequence, supervised approaches receive more informa-
tion about group arrangement, and usually show better results than
unsupervised techniques [41]. Concerning to multivariate analysis, the
toolbox presents multiway principal component analysis as an un-
supervised method. Also, RGCxGC presents capabilities to export
chromatographic data in a compatible format to be used in external
toolboxes. For example, the most popular supervised and unsupervised
routines, such as partial least squares-discriminant analysis such as
mixOmics [42].

2.1.4.1. Multiway principal component analysis. Principal Component
Analysis is probably the most unsupervised analysis in many areas
with multiple purposes such as clustering, classification, dimensional
reduction. It was introduced in 1901 by Karl Pearson [43]. In
chemometrics, PCA has been widely applied for pattern recognition.
An adaptation of PCA, is MPCA explained by Wold [44], which can deal
with higher-order data. Although there are methods that can analyze
high-order data, the authors conclude that the same results can be
obtained by unfolding the data into two-way matrices [45,46]. In the
case of GC×GC, as stated above, each chromatogram consists of a two-
way matrix of dimensions A(I, J), being I the number of modulations per
run, and J the number of scans per modulation. the unfolding procedure
is carried out as follows: the modulation I+ 1 is concatenated after the
modulation I, and so on for all modulations. As a result, the two-
dimensional chromatogram has been unfolded into a one-dimensional
row-wise vector. All chromatograms are subjected to this procedure in
order to obtain a two-way matrix where the columns are the retention
times and rows are samples. Then an ordinary PCA can be performed.
The PCA then decomposes X(q,r) into a score (S) and loading (L)

matrices, so that X= SLT. Score matrix is the projection in the reduced
multivariate space spanned by principal components, and it is related to
the (chromatographic) differences among the samples. On another

hand, the loading matrix explains the relationship between variables,
where positive values refer to similarities between variables and ne-
gative values denote differences in variables across samples [47]. The
MPCA can be performed with the “m_prcomp” command. Prior MPCA,
the user must center the signal in order to adjust flunctations around
the metabolite consentration [48]. In the proposed library, chromato-
grams are mean centering by setting to TRUE the center argument (see
Table 1).
Once data was subjected to MPCA, the user can access the chro-

matogram projection into the principal component space (scores ma-
trix) by the “scores” command. Differently in the loading matrix, each
eigenvector contains all input variables. Then, each principal compo-
nent should be interpreted as a two-dimensional chromatogram. Thus,
each eigenvector is retrieved from MPCA and folded again into a typical
GC×GC chromatogram. This task is carried out by the “plot_loading”
command. In order to improve the loading inspection, the “plo-
t_loading” function has a threshold argument (thresh) which filter the
loading value over the given value. Finally, one extra parameter in
MPCA is the explained variance, which can be retrieved through the
“print” command.

2.1.4.2. External discriminant analysis. Although PCA based techniques
are one of the most unsupervised algorithms, GC×GC data can also be
subjected to supervised algorithms, such as the Partial Least Squares-
Discriminant Analysis (PLS-DA) which is one of the most common
classification model widely applied in chemometrics [49]. Therefore, in
order to ensure a set of discriminant analysis that can be performed
once the chromatograms are exported, we also include the PLS-DA
analysis. The RGCxGC library can export chromatograms in a friendly
structure to communicate with external libraries. In this work, we
extend our analysis by testing our datasets with PLS-DA available in
mixOmics [42]. Even though, more external libraries can be used to
employ any desired classification algorithm such as hierarchical
clustering, artificial neural networks or supporting vector machine.

2.3. Benchmarking

In order to evaluate the performance with large GC×GC-TOF/MS
data, we perform a benchmarking of every important algorithm in
RGCxGC package with chromatograms from the Salmonella dataset, in
order to simulate a large scale experiment. The Salmonella dataset was
chosen since the mass analyzer used in this study was a time of flying.
In consecuence of TOF characteristics (i.e. resolution and acquisition
rate), cromatograms are dimensional higher than chromatograms ana-
lyzed with quadrupole mass analyzers. Thus, the computational effi-
ciency was monitored with the Salmonella dataset. We measured the
time elapsed to perform the desired routine from 1 sample, with an
upper limit of 100 samples with increments of 10 samples per step,
except in the first increment where it was 9 samples. The benchmarking
was performed in a computer with an Intel Core i7 2.7 GHz with a Linux
based operating system.

2.4. Application

The proposed software was fully tested with a real laboratory ex-
periment data based on microbial antagonism and two published

Table 2
Description of the dataset analyzed with the proposed RGCxGC toolbox. While the dimensions of the single chromatogram are given by A(I, J), the dimensions of the
entire datasets are given by A(I, J, K) where K represents the number of samples in each experiment.

Datasets Samples Number of categories Chromatogram dimensions A(I,J) Mass analyzer Reference

Salmonella 30 3 A(500, 709) TOF [52]
Penicillium 18 2 A(150, 368) Quadrupole [53]
Myrothecium 38 5 A(125, 381) Quadrupole in-house
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Fig. 2. The grid shows the results of the three datasets analyzed with the proposed toolbox; Salmonella (A, B, C, and D), Penicillium (E, F, G, and H) and Myrothecium
(I, J, K, L). The first row shows the representative two-dimensional TIC chromatograms, the second row presents the MPCA scores, the third row displays the MPCA
loadings, and the fourth row displays the PLS-DA scores. The results of unsupervised discriminant analysis by MPCA, of the Penicillium (F) and Myrothecium (G)
datasets, present a clear separation between categories (edges in blue) in the two first PC's, with an explained variance greater than 50%. On the other hand, the
MPCA cannot explain the differences between the Salmonella (B) dataset categories. In the case of supervised classification with PLS-DA, the model can discriminate
between categories for all datasets (D, H, and L).
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datasets. The first dataset was aforementioned in the methods section
(see 2.1). The second datasets come from research focused on the dis-
criminant analysis of chronic typhoid carriages acquired with a TOF
mass analyzer [50]. The third datasets is related to antiphytopathogenic
interaction of different yeast strains against P. digitatum acquired with
quadrupole mass analyzer [51]. One principal advantage to work with
the published dataset is the verification of the software performance
through the comparison with real datasets, and being able to show the
capability to work with different mass analyzers (Table 2).

3. Results and discussion

In the following section, we present the performance of the RGCxGC
package with three different datasets collected with different mass
analyzers. We have also performed a supervised analysis (PLS-DA) to
confirm the connection of RGCxGC with external tools.

3.1. Salmonella dataset

The Salmonella dataset was downloaded from MetaboLights data-
base with the MTBLS579 identifier [52]. Chromatograms were down-
loaded and manually checked for consistency; those with different di-
mensions specified in Table 2, were removed. The entire data comprises
30 blood plasma samples with two main categories related to carriage
diagnosis, control samples, and Salmonella sp. carriage. The acquisition
rate used in this study is 100 spectra/second. Moreover, in the second
category, authors collected samples from two different etiological
agents; S. typhi and S. Paratyphi A. A representative chromatogram,
based on the number of peaks detected, is presented in the Fig. 2A.
All chromatograms were smoothed with a quadratic penalty and a λ

equal to 10. Then, the baseline correction was performed with a cor-
rection factor equal to 1000. For the two-dimensional alignment, a
sample of confirmed S. Paratyphi sample carriage (07_GB, MetaboLight
identifier) was chosen to be used as a template and the remaining
chromatogram was aligned against it. First and the second dimension
was divided into 20 and 40 segments, respectively. The maximum
warping values for the first and second dimensions were 2 and 8, re-
spectively. Prior to principal component analysis, chromatograms were
mean-centered.
Samples groups do not present a clear classification in the projected

principal component space. Also, the explained variance for this dataset
is the lowest (< 15%) obtained by MPCA in the first two principal
components (Fig. 2B and C) and there is not a clear difference between
the two etiological agents. This poor differentiation between S. typhi
and S. Paratyphi A carriage patients maybe for the chromatogram si-
milarity and the performance of the statistical learning algorithm. In
other words, MPCA is an unsupervised approach, in which the classi-
fication is performed with no prior knowledge about the sample space
composition is not suitable to discriminate between control samples
and Salmonella carriage.
Subsequently, chromatograms were subjected to a supervised

learning algorithm, PLS-DA. For this analysis, the aligned chromato-
grams were exported by unfolding them into a matrix. This matrix re-
presents the explanatory variables, while the carriage status represents
the predicted variable. The PLS-DA was performed according to the
mixOmics procedure [42]. In contrast with the MPCA results, the PLS-
DA model defines clusters between control and carriage patients
(Fig. 2D). Furthermore, the model also clusters the two different etio-
logical agents (S. paratyphi A and S. typhi). The classification improve-
ment can be explained for the type of statistical learning employed. In
the case of PLS-DA, it is a supervised algorithm, which is trained with
the correct sample category. It is not surprising since supervised algo-
rithms show better performance than unsupervised algorithms. Even
though, the explained variance is not higher than the 15%.

3.2. Penicillium dataset

Raw chromatograms were provided by the authors of the anti-
phytopathogenic yeast strains experiment [53]. Penicillium digitatum is a
pathogen that infects citrus fruits, causing product degradation within
the product's storage, transportation, and market. For this reason, mi-
crobial activity was tested against different yeast strains by a coculture
experiment in triplicates. Yeast strains, with validated high and low
antagonist activity, was selected for downstream analysis.
All chromatograms were baseline corrected with a correction factor

equal to 0.5. Then, chromatograms were smoothed with a linear pen-
alty and a λ equal to 2 (Fig. 2E). For the peak alignment process, a
consensus chromatogram was computed by averaging the pixel values
for multiple chromatograms, as explained above, and the remaining
chromatogram was aligned against it. The maximum warping value for
the first and second dimension were 4 and 10, respectively. Prior to
principal component analysis, chromatograms were mean-centered.
The separation achieved by MPCA was clearly notorious. In this

context, the total explained variance between the first two PC was
60.48% (Fig. 2F and G). While all low activity yeast strains are clus-
tering at the negative PC1 scores, all high active antagonist yeast strains
clustered in positives values. Furthermore, triplicates of each high ac-
tive yeast strains were clustered together, expressing replicate and
strain similarities. For example, the strain pe2 (Saccharomyces cerevisiae
ACB-PE2) has different profiles than cat1 and kd1, (S. cerevisiae ACB-
CAT1 and S. cerevisiae ACB-KD1) together.
Furthermore, a PLS-DA classification we also conducted, as a su-

pervised discriminant algorithm. For this analysis, the aligned chro-
matograms were exported by unfolding them into a matrix. This matrix
represents the explanatory variables, with antiphytopathogenic activity
being the predicted variable. In this case, the MPCA and PLS-DA results
show high similarities, moth models can differentiate high and low
strain activities in the first projected dimension. The PLS-DA was not
able to separate yeast strains with low antagonist activity, it classifies
all strains into a single cluster (Fig. 2H).

3.3. Myrothecium dataset

The Myrothecium dataset was locally made with the aforementioned
methodology in the method section (2.2). The entire data comprise 38
samples with two main categories, control (Bco) and Myrothecium
(Myl) antagonism interaction. Within the Myl category, there were five
subcategories in concordance with the interaction days that the fungal
antagonism was in the culture.
For the peak alignment process, the chromatogram from the Myl

antagonism on the fourth day was selected as a representative chro-
matogram, and the remaining chromatograms were aligned against it
(Fig. 2I). Chromatograms were baseline corrected with λ equal to
10.The maximum warping value for the first and second dimension
were 4 and 10, respectively. Prior MPCA, chromatograms were mean-
centered. The effect of pre-processing procedure over the chromato-
grams of the Myrothecium dataset can be found in the supplemental
material.
In the MPCA score plot, the separation between control and an-

tagonism samples was clearly appreciated (Fig. 2J and 2K). Thus, the
accumulated explained variance in the two first principal components
of this model was about 70%. In contrast with the two previously dis-
cussed datasets, in this case, groups were separated by the second PC.
Therefore, for metabolite annotation, compounds with the highest ei-
genvector values were annotated, resulting in 48 metabolites with
higher values of similarity than 80% in the database (Supp. Tab. 1).
Between the annotated metabolites, several chemical species were
found that were previously described to have fungal biocontrol activity.
For example, the presence of phenylethyl alcohol, α-curcumeno and α-
terpineno that were described in Trichoderma genus control [54]. In the
same manner, these compounds had also been reported to be produced
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by Memnoniella genus, which can induce pathogen resistance in plants
through its volatilome [55]. Moreover, phenylethyl alcohol was also
found in antimicrobial extracts from the Glicladium genus [56].
Finally, we also performed a PLS-DA model on the in-house

Myrothecium dataset. As stated earlier, the pre-processed chromato-
grams were exported by unfolding them into a two-way matrix. The
PLS-DA, also present consistency with the MPCA, with a rotation in the
latent variables (Fig. 2L). In other words, in contrast with the MPCA
that captures the variance in the second projected variable (PC2), the
PLS-DA captured the experiment variance in the first projected variable
(latent variable). Moreover, both models can also explain intra-day
antagonism variability.

3.4. Computational efficiency

In order to simulate a large scale experiment, we performed the
benchmarking of the main functions of the proposed toolbox. Then,
chromatograms of the Salmonella dataset were chosen due to the higher

dimensions, as described in Table 1. All available functions showed to
have a linear increment in the elapsed time to be performed (Fig. 3).
Moreover, the longest time required to perform a chemometric routine
with 100 samples was 82 min was the “twod_cow” routine. This was
expected since peak alignment is the most time-consuming task and the
major bottleneck in this type of analysis, since different algorithms and
parameters may be tested before useful information can be extracted
from the raw signals. In the case of the MPCA routine, the bench-
marking showed to have the second longest elapsed time, requiring
17.5 min to analyze 100 samples. Furthermore, functions that manage
graphical components (“plot” and “plot_loading”) require over 3 min to
display 100 samples. On the other hand, the rest of the functions did not
need half of a minute to work with the maximum number of samples
tested. In comparison with similar alignment methodologies for
GC × GC, this procedure is the most time-consuming routine [57]. For
example, in the case of a MATLAB pixel-by-pixel alignment, between 10
to 20 min were required to align a 1 sample [57]. In the case of RGCxGC
package, with the same time range, 10 to 20 samples can be processed.

Fig. 3. Benchmarking results of the main functionalities of the RGCxGC toolbox. The head of each figure represents the function name that was tested. In order to
create a similar situation of a big scale experiment, we tested the elapsed time for each function from 1 to 100 chromatograms samples in increments of 10 samples,
except for the first step where the increment was 9 samples. All functions present a linear increment while the number of samples increases. Meanwhile “m_prcom”
and “twod_cow” require 20 and 82 min to process 100 samples, the rest of the functions requires less than 5 min to process 100 samples.
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Conclusions

In this manuscript, we present a novel end-to-end workflow for non-
targeted GC×GC–MS exploratory data analysis by signal processing
and with statistical learning algorithms. The currently available func-
tions for signal processing in the RGCxGC package are compiled with
baseline correction, smoothing, two-dimensional peak alignment.
While for statistical learning, the multiway principal component ana-
lysis was implemented for unsupervised classification and partial least
squares discriminant analysis was tested. Furthermore, we provide a
generic manner to connect with other libraries in order to provide a
wide spectrum of possible classification algorithms, such as linear dis-
criminant analysis, artificial neuronal networks.
The presented software showed to be capable to process a con-

siderable amount of data (> 1 GB). Also, the longest required time for
the desired routine to be performed was less than 2 h. This is an ad-
vantage for large-scale experiments, such as metabolomics studies, to
overcome the bottleneck of data analysis. On the other hand, the
characteristic of free open source implementation could help with re-
search reproducibility and reduce the dependence of private license
depending software. Our approach was successfully tested in two
published datasets and one in-house dataset. The key benefit of this
implementation is to avoid multiple software in non-target studies. In
addition, the software is continuously checked and maintained by
package developers and CRAN team, in order to ensure long term user
availability and avoid obsolescence. The proposed library, as well as a
detailed user manual and a complete tutorial, is freely available and can
be found at https://cran.r-project.org/web/packages/RGCxGC/in-
dex.html. mmc1.docx mmc2.xlsx mmc3.xlsx mmc4.xlsx
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