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A B S T R A C T

The mudflat fiddler crab Minuca rapax, typical of mangroves and intertidal zones in the Western Atlantic Ocean,
responds to fluctuations in environmental parameters by biochemical and physiological adjustments. Such
biochemical effects are commonly employed in environmental studies as biomarkers of estuarine contamination.
This study evaluates biochemical responses in the gills and hepatopancreas of M. rapax in situ from localities
exhibiting different types and levels of contamination, against a backdrop of fluctuations in environmental
parameters like salinity and temperature common to estuarine regions. The biochemical biomarkers me-
tallothionein (MT)-like protein titers and glutathione S-transferase (GST), glutathione peroxidase (GPx) and
acetylcholinesterase (AChE) activities were used to evaluate responses to environmental contamination and
seasonal changes in environmental parameters. Crabs were collected during two seasons, the austral winter and
summer, at three sites along the coast of the state of São Paulo, Brazil that present decreasing degrees of en-
vironmental contamination: Ilha Diana, Santos (ID) > Rio Itapanhaú, Bertioga (RI) > Picinguaba, Ubatuba
(P), a pristine control site. Our findings show that MT were induced in crabs from the contaminated sites (ID and
RI) mainly during winter, revealing the activation of detoxification mechanisms; however MT were also induced
in P crabs during the summer rainy season. GPX, GST and AChE activities were altered in P crabs during summer
and in ID and RI crabs in winter. While enzyme activities in summer crabs may reflect seasonal changes in
precipitation and salinity, in winter these altered activities appear to reflect contamination, although an effect of
environmental parameters cannot be excluded. These findings reveal a strong seasonal influence on biochemical
biomarker responses in Minuca rapax, a relevant factor to consider when interpreting the impact of environ-
mental contamination in estuaries.

1. Introduction

Estuarine organisms are often exposed to a wide variety of chemical
compounds, released in ever increasing amounts into the environment,
owing to the continuous expansion of human activities (Kennish, 2002).
The uptake of contaminants in target tissues takes place from sedi-
ments, suspended particulate matter, the water column, or via the diet,
depending on the trophic level and ecological niche of the exposed
organism (van der Oost et al., 2003).

Metals and organic xenobiotics are environmentally relevant classes
of pro-oxidant chemicals that exhibit different pathways of oxidative
challenge at the biochemical level. Various mechanisms of detoxifica-
tion may exist for a single compound, determining a very complex

network of oxidative interactions and cascade effects (Regoli et al.,
2011). The physiological challenges confronted by aquatic species as a
result of such contamination are considerable, and even more so for
estuarine inhabitants. These species often already exhibit mechanisms
of physiological homeostasis as a consequence of the challenges arising
from natural physico-chemical variations in ambient parameters like
salinity, temperature, oxygen availability, pH, turbidity and, fre-
quently, from contaminant input (Romano and Zeng, 2010).

Regardless of the degree of contamination, exposure to ambient
challenge often leads to oxidative stress and other kinds of cellular
damage, which require cells to redirect their resources towards main-
tenance and mitigation (Sokolova et al., 2012). The presence of a single
chemical species or of complex mixtures of environmental
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contaminants may impair an organism's antioxidant defense system and
other metabolic pathways, producing oxidative stress, protein oxida-
tion, lipid peroxidation and alterations in the activities of anti-oxidant
enzymes or in potential non-specific biomarkers that respond similarly
to various stressors (Bainy et al., 1996; Geracitano et al., 2004; Gusso-
Choueri et al., 2015). These biochemical responses to contaminants are
widely used as biomarkers, which provide an indirect measure of the
health of a habitat (Giguere et al., 2003). To illustrate, the activation of
antioxidant responses can be evaluated employing a set of enzymes
such as glutathione peroxidase (GPx), catalase (Cat), glutathione re-
ductase (GR) and peroxiredoxins (PrX), while the conjugation or de-
puration process is routinely measured using glutathione S-transferase
(GST) activity. Acetylcholinesterase (AChE) activity provides evidence
of neurotoxicity, while increased total metallothionein or metallothio-
nein-like protein (MT) titers indicates exposure to metals.

In aquatic and semi-terrestrial crustaceans, the gills act mostly as a
transient tissue store for contaminants accumulated during waterborne
exposure to xenobiotics (Soegianto et al., 1999a, 1999b). The gills are
also the main site through which many toxic xenobiotics are taken up
by aquatic crustaceans, and thus they play an important role in the
toxicology of these species (Henry et al., 2003). Waterborne toxic me-
tals accumulated via the gills impair numerous biochemical and phy-
siological functions in aquatic crustaceans. Such toxic xenobiotics in-
teract with the gills by adsorption to the cuticular surface, and after
crossing the epithelium, are transported via the hemolymph to the he-
patopancreas (Brouwer and Lee, 2007); in crustaceans the hepatopan-
creas accumulates higher xenobiotic titers than do the gills (Martin-
Diaz et al., 2008; Capparelli et al., 2016). The hepatopancreas tissues
are effectively involved in a variety of physiological processes and play
an important role in the detoxification and storage of contaminants
(Viarengo, 1989; Rainbow, 1997a, 1997b).

Toxic metals are detoxified through their binding to metallothio-
nein-like proteins, by accumulation in intracellular vacuolar granules,
or through the formation of extracellular granules. Increased MT titers
are found in response to elevated metal concentrations (Hogstrand and
Haux, 1991; Mouneyrac et al., 2002). The positive correlation between
tissue MT titers and environmental concentrations of toxic metals
suggests that MTs are useful biomarkers of environmental contamina-
tion. In contrast, semi-terrestrial species, which spend much of their life
in contact with sediment, may exhibit other mechanisms for detoxifying
metal contaminants, related to this particular route of exposure.

The mudflat fiddler crab Minuca rapax is a semi-terrestrial estuarine
species that lives in direct contact with the sediment (Crane, 1967).
Fiddler crabs pick up sediment and use their mouthparts to separate

edible detritus and algae from the mineral material. Their intense and
extensive burrowing and feeding activities constitute part of the bio-
turbation process (Bertness, 1985). Minuca rapax is abundant in both
pristine and chronically contaminated areas along the Atlantic coast of
Brazil (Masunari, 2006; Capparelli et al., 2016). The crabs encounter
ample daily and seasonal variations in environmental parameters such
as salinity (Thurman, 2003;Thurman et al., 2017) and temperature
(Faria et al., 2017a, 2017b) and are exposed to environmental con-
tamination (Capparelli et al., 2016, 2017). Thus, they constitute an
attractive model in which to examine the biochemical mechanisms
available to mitigate these different factors in situ, particularly because
the crabs build burrows and live in direct contact with contaminated
sediment from which they feed on organic matter adhering to the se-
diment particles, absorbing contaminants via the diet. Being territorial
and lacking extensive mobility, they can be exposed chronically to
environmental contamination.

To better comprehend the biochemical mechanisms underpinning
chronic exposure to contamination in situ, this study evaluates how
Minuca rapax, a species inhabiting localities showing different levels of
environmental contamination along the coast of São Paulo State, re-
sponds to exposure to pollution in situ. Further, M. rapax may in-
corporate and detoxify such contaminants differently from fully aquatic
crustacean model species, since it is a semi-terrestrial crab. Just how
fiddler crabs deal with environmental contaminants is very poorly
known. To this end, we analyzed seasonal variation in the biochemical
biomarkers MT, GST, GPx and AChE in the gills and hepatopancreas of
crabs from three differentially contaminated sites. Unraveling how
seasonal parameters influence biochemical responses is a key factor to
consider when using model species as sentinels for monitoring impacted
estuarine regions.

2. Materials and methods

2.1. The test-species, Minuca rapax

The species used as a model in this study is the mudflat fiddler crab
Minuca rapax (Brachyura, Ocypodidae), a semi-terrestrial estuarine
decapod (Crane, 1975). Minuca rapax is distributed from Florida,
throughout the Gulf of Mexico, the Antilles and Venezuela to Brazil
where it ranges from Pará to Santa Catarina states (Thurman et al.,
2013). One hundred adult specimens of both male and female M. rapax
were collected by hand, during low tide, during the austral winter of
2012 (June–July) and summer of 2013 (January–February) from three
study sites located on the southern Atlantic coast of the State of São

Fig. 1. Location map showing the collection sites for the
mudflat fiddler crab Minuca rapax along the northern coast
of the State of São Paulo, Brazil. 1, Ilha Diana; 2, Rio
Itapanhaú, both metal contaminated sites within the Santos
Estuarine System; 3, Picinguaba, a pristine control area in
the Serra do Mar State Park.
Figure adapted from Capparelli et al. (2016).
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Paulo, Brazil (Fig. 1).
The crabs were collected individually, removing them from their

burrows, and were transported to the laboratory in large plastic boxes
containing 1–2 cm of water and a thin layer of sediment from the re-
spective collection sites. The boxes were maintained on a slightly in-
clined plane so that the crabs had free access to a dry surface. Crabs
were not fed before or during experiments. Crabs were processed to
obtain tissues for posterior analysis of biochemical biomarkers im-
mediately on arrival at the laboratory.

2.2. Site locations and contamination characteristics

Table 1 provides a compilation of overall contamination data
available in the literature for the three study areas located along the
northern coast of São Paulo state.

1. Ilha Diana, Santos (ID) (23° 55′ 4.5” S; 46° 18′ 31.5” W) is located
within the central region of the Santos Estuarine System (SES), and
is potentially influenced by multiple sources of contamination from
industries, sewage from specific and diffuse sources, urban drainage
and storm waters, domestic and industrial landfills, and the Port of
Santos. The SES is considered to be a critical area in terms of pol-
lution, and various contaminants such as metals and polyaromatic
hydrocarbons have been detected in potentially toxic concentra-
tions.

2. The second sampling locality was chosen in the lower reaches of the
Rio Itapanhaú, Bertioga (RI) (23° 50′ 0.2” S; 46° 9′ 10.6” W). This
site is located in the northern sector of the SES, and shows some
degree of environmental degradation owing to local urban expan-
sion and domestic effluent, and the establishment of nautical in-
frastructure and sport fishing marinas.

3. The third sampling site was situated within the estuary of the Rio da
Fazenda, Picinguaba (P) (23° 22′ 73.0” S; 44° 50′ 50.0” W), located
in the Serra do Mar State Park (SMSP) near the Picinguaba Park
headquarters, in Ubatuba. The SMSP constitutes an ecological cor-
ridor of Atlantic rainforest that is legally protected. This site is
considered to be pristine, since it is well removed from relevant
sources of anthropogenic pollution.

2.3. Biochemical biomarkers

Immediately upon arrival at the laboratory, the crabs were cryo-
anesthetized in crushed ice for 10min after which all gill pairs and the
hepatopancreas were dissected from each crab, weighed, placed

separately in labeled micro-Eppendorf tubes, frozen at −20 °C and held
at −80 °C until the biochemical and enzymatic analyses were per-
formed. Ten crabs were used for each locality, and seven to ten samples
of each tissue were processed for the activity of each biochemical
biomarker.

For assays, the tissues were gradually thawed on ice, once only,
homogenized in ice-cold potassium phosphate buffer (0.1M, pH 7.2) 1:
5 (w/v) and centrifuged at 4 °C (10,000 rpm) for 30min. The super-
natant fractions were divided into five aliquots, according to the ana-
lyses to be performed (GST, GPx, AchE, MT and total protein). All
samples were stored in an ultrafreezer at −80 °C until the assays were
carried out. All biochemical analyses were performed within three
weeks of tissue homogenization using a microplate reader (Biotek-
Synergy™ HT). Each sample was thawed only once, immediately prior
to assay.

Glutathione S-transferase (GST) activity was measured according to
Keen et al. (1976) with adaptations. The reaction mixture consisted of
1.5 mM glutathione (GSH) and 2.0mM 1-chloro-2,4-dinitrobenzene in
0.1 M potassium phosphate buffer (pH 6.5). Increases in absorbance
were measured at 340 nm at 50-second intervals, and enzyme activity
was calculated using a molar extinction coefficient of 9.6mM−1 cm−1.

Glutathione peroxidase (GPx) activity was measured using the
method developed by Sies et al. (1979) with adaptations. The reaction
medium consisted of 0.1M sodium phosphate buffer (pH 7.0), 3.08mM
sodium azide, 0.308mM NADPH, 3.08mM GSH and 1.54 UmL−1 glu-
tathione reductase to which a hydrogen peroxide solution was added
(5mM hydrogen peroxide in 0.1 M sodium phosphate buffer at pH 7.0).
Decreased absorbances were measured immediately at 340 nm for
2min, at 50-second intervals. GPx activity was estimated using the
molar extinction coefficient for NADPH (6.22 mM−1 cm−1).

Acetylcholinesterase (AChE) activity was measured employing the
colorimetric method of Ellman et al. (1961) with adaptations. A solu-
tion of 5,5′-dithiobis-2-nitro-benzoate (DTNB) followed by an acet-
ylthiocholine iodide solution were added to the samples to begin the
reaction. Absorbance at 415 nm was measured every 50 s for 3min. The
molar extinction coefficient for DTNB was 13.6 mM−1 cm−1.

The titers of metallothionein-like proteins were quantified ac-
cording to the method described by Viarengo et al. (1997). A fraction of
partially purified metallothionein was obtained by treating the homo-
genates with ethanol and chloroform followed by precipitation using
ethanol and hydrochloric acid. Subsequently, the low mass molecules
containing sulfhydryl radicals were extracted from the precipitate.
Quantitation of the metallothionein-like proteins was performed by
adding Ellman's reagent containing DTNB and measuring absorbance at

Table 1
Compilation of literature data available for overall contamination levels at the three study sites. Ilha Diana and Rio Itapanhaú are both metal contaminated
sites located within the Santos Estuarine System. Picinguaba is a pristine control area in the Serra do Mar State Park.

Site Contaminant Reference

Ilha Diana Zn, Ni, Cd > TEL; Pb, Hg and ΣPAHs > PEL Capparelli et al., 2016
Abessa et al., 2018
Lamparelli et al., 2001
Quináglia, 2006

Pb > TEL and SQG=high, acenaphthene and acenaphthylene > TEL Perina et al., 2018
Cr, Cu, Ni, Zn > EF 4 Kim et al., 2016
Hg > TEL Bordon et al., 2011
Hg > SQG1, SQV1; Cr > SQV1; Cu, Ni > SQV1; Zn > SQG2, SGV2 Buruaem et al., 2012
Zn > SQG2; PAH > TEL Buruaem et al., 2013

Quináglia, 2006
Rio Itapanhaú As, Cr, Ni > EF 4 Kim et al., 2016

Quináglia, 2006
Pb > TEL Tramonte et al., 2016

Capparelli et al., 2016
Picingaba No contamination Capparelli et al., 2016

CETESB, 2013

TEL, threshold effect level; PEL, probable effect level; SQG1, Brazilian sediment quality guideline level 1; SQG2, Brazilian sediment quality guideline level
2; SQV1, local sediment quality level 1; SQV2, local sediment quality level 2; EF, enrichment factor.
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412 nm. About 30% of the total sulfhydryls are estimated to be me-
tallothioneins.

All biomarker data were normalized against total protein content.
Total protein concentration in the homogenates was measured spec-
trophotometrically at 595 nm using Bradford's (1976) method, em-
ploying bovine serum albumin as a standard.

2.4. Statistical analyses

All data are expressed as the mean ± SEM (N). After satisfying
criteria for normality of distribution and homogeneity of variance, the
data sets were analyzed using a three-way analysis of variance
(ANOVA) (Season, Locality and Tissue) for the enzyme activities mea-
sured. Two-way analyses of variance (Locality and Tissue) were also
performed, independently of season as a factor for the same parameters.
Differences between means within a given parameter were established
using the Student–Newman–Keuls post-hoc multiple comparisons pro-
cedure. A minimum significance level of P=0.05 was employed for all
analyses.

3. Results

3.1. Salinity, precipitation and temperature at the study sites

Table 2 provides values for the salinities of pools near the burrows
where the crabs were collected, and for rainfall and temperature at the
collecting sites. Salinity was constant between seasons except for Pi-
cinguaba during the summer where the salt content was much lower
(< 0.5‰S) than at the other localities. Precipitation was far greater
during the summer months, the southern rainy season. In summer,
temperatures ranged from 27 to 28 °C, and in winter from 23 to 25 °C.

3.2. Biomarker enzyme activities

Metallothionein-like protein (MT) concentrations were dependent
on collection locality and tissue but there was no effect of season or any
interactive effect (3-way ANOVA, P < 0.05). Crabs from ID, RI and P
showed higher MT titers in the hepatopancreas than in the gills for both
seasons (P < 0.05) (Fig. 2).

When seasons were evaluated separately, MT concentrations in
crabs collected in winter or summer were affected only by tissue (2-way
ANOVA, P < 0.05). Crabs collected in winter from ID showed greater
MT titers in both tissues, while those from RI showed greater titers only
in the gills, compared to crabs from P (Fig. 2). In summer, crabs from RI
exhibited greater gill MT titers than crabs from P (2-way ANOVA,
P < 0.05).

Glutathione peroxidase (GPx) activity was affected by season and by
the interaction between season and collection site (3-way ANOVA,
P < 0.05) (Fig. 3).

Considering seasons separately, GPx activities in crabs collected in
winter were higher in crabs from RI and ID compared to P (2-way
ANOVA, P < 0.05). For crabs from RI, GPx activity was greater in the
gills than in the hepatopancreas. GPx activity in crabs collected in
summer was affected only by tissue (2-way ANOVA, P < 0.05), and
showed an inverse response to that found in winter, i. e., crabs from ID

and RI had lower GPx activities than those from P in most cases (Fig. 3).
Glutathione S-transferase activity (GST) was affected by season,

tissue and the interaction between season and collection site (3-way
ANOVA, P < 0.05) (Fig. 4).

When evaluating seasons separately, crabs collected in winter from
RI and ID showed greater GST activities compared to those from P (2-
way ANOVA, P < 0.05), and higher GST activities in the hepatopan-
creas than in the gills. GST activity in crabs collected in summer was
affected only by tissue (2-way ANOVA, P < 0.05), specimens from RI
showing lower activities for the gills, and those from ID exhibiting
lower GST activity in the hepatopancreas compared to crabs from P
(Fig. 4).

Hepatopancreas tissue did not respond to the AChE assay. In the
gills, AChE activity was affected by season and collection site (2-way
ANOVA, P < 0.05) (Fig. 5). In summer, crabs from RI and ID showed
higher gill AChE activities than crabs from P, while in winter, activity
levels were reversed: crabs from RI and ID showed lower AChE activ-
ities.

4. Discussion

Biochemical approaches have often been employed to examine the
effects of xenobiotics on the metabolism of aquatic crustaceans (Wang
and Rainbow, 2006; Martin-Diaz et al., 2008). However, very few stu-
dies have focused on fiddler crabs, and most of these concern laboratory
exposure to a specific contaminant (Zanders and Rojas, 1996; Bartolini
et al., 2009; Franco et al., 2018; Capparelli et al., 2017). Even fewer
studies have examined the effects of multiple contaminants in situ
(Bergey and Weis, 2007; Capparelli et al., 2016), particularly altera-
tions in the depuration (e. g. GST and MT) and antioxidant systems (e. g.
GPx), or neurotoxicity (e. g. AChE), as warning signs of chemical effects
in fiddler crabs.

Our findings, showing increased GST and GPx activities, and in-
hibition of AChE activity in M. rapax chronically exposed in situ from RI
and ID, particularly in winter, suggest the activation of detoxification
and antioxidant response systems, possibly due to environmental con-
tamination at these sites, or to environmental factors acting synergis-
tically and capable of triggering this type of defense. Activated GST and
GPx activities can be used as biomarkers indicative of defense against
oxidative damage and the peroxidation products of DNA and lipids
induced by pollutants (Tlili et al., 2010a, 2010b). Inhibition of AChE
activity is widely recognized as both a direct neurotoxic effect and as a
biomarker of exposure to neurotoxic compounds in invertebrates, in-
cluding crustaceans (Lionetto et al., 2003; Fulton and Key, 2001; Van
der Oost et al., 2003; Munari et al., 2014).

The increase in tissue MT titers in M. rapax exposed to contamina-
tion in situ corroborates the presence of certain metals, or their complex
mixture, in environmental compartments, including sediments, water
and organic matter (Bebianno and Serafim, 2003; Hamza-Chaffai et al.,
2000). The induction of MT in M. rapax from ID and RI indicates ex-
posure to and incorporation of metals in the tissues, which corroborates
findings on metal contamination at these sites (Table 1).

Metals absorbed by the gills and/or epidermis of aquatic organisms
can only be transferred proportionally to other tissues such as muscle if
in excess, and depending on the accumulation pattern for each species

Table 2
Salinity (‰S) measured in pools located close to each collection site, and air temperature (°C) and total mean precipitation (mm) at each site for the austral winter
(June–July) of 2012 and summer (January–February) of 2013, for each of the three study sites located along the southern Atlantic coast of the State of São Paulo,
Brazil. Precipitation data are from the Instituto Nacional de Meterologia, MAPA, Brazil (http://www.inmet.gov.br/portal)/.

Ilha Diana Rio Itapanhaú Picinguaba

Salinity Rainfall Temperature Salinity Rainfall Temperature Salinity Rainfall Temperature

Winter 12 100 23 12 85 25 12 84 23
Summer 13 317 27 12 278 28 <0.5 343 29
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and the chemical properties of the element considered (Rainbow, 1987;
Bordon et al., 2018). For bivalves, polychaetes and fish, the bioavail-
able, stored and detoxified fractions of metals are well described
(Wallace et al., 2003; Campana et al., 2013). Crustaceans assimilate
non-essential metals mostly in the detoxified form bound to MT with
little excretion; however, they can excrete metals in a dynamic equili-
brium, since excretion rate is similar to total uptake rate (Rainbow and
Black, 2002).

These strategies may be different for semi-terrestrial crabs that
maintain constant contact with the sediment through which they ac-
quire contaminants, considering uptake not only from solution but also
from the sediment and diet. Food is an important source of metal up-
take. In Callinectes danae exposed to lead via water and diet (Bordon
et al., 2018), increased induction of metallothionein-like protein ex-
pression is seen in the gills, particularly in crabs exposed to waterborne
contamination. However, C. danae is a fully aquatic swimming crab and
may employ a different depuration strategy from M. rapax. In M. rapax,
the highest MT titers were seen in the hepatopancreas. When this
species is exposed to waterborne copper, titers are higher in the he-
molymph and hepatopancreas compared to the gills (Capparelli et al.,
2017), which also corroborates the higher hepatopancreas MT titers
seen in the present study. These findings suggest that in semi-terrestrial
crabs, the hepatopancreas is an important organ for both the metal
accumulation and depuration processes which appear to differ from the
gill-based mechanisms seen in aquatic crabs.

In addition to chronic exposure to contaminants, fiddler crabs also
must confront ample variations in environmental parameters. Metal
uptake likely takes place across the posterior gill epithelia, the most
probable targets of metal toxicity (Péqueux, 1995). Salinity can affect
metal uptake indirectly via osmoregulatory mechanisms. The accumu-
lation and toxic effects of metals appear to increase at low ambient
salinity (Bjerregaard and Depledge, 1994). Gill Na+/K+-ATPase and
carbonic anhydrase activities are inhibited in copper-exposed M. rapax,
showing that while overall osmoregulatory ability is unaltered, effects
are manifested at the biochemical enzymatic level (Capparelli et al.,

2017). Although fiddler crabs are remarkably tolerant of variation in
salinity and temperature (Baldwin and Kirschner, 1976a, 1976b;
Graszynski and Bigalke, 1986; Zanders and Rojas, 1996), biochemical
biomarkers are sensitive to pollution-induced stresses (Zanders and
Rojas, 1996; Capparelli et al., 2016).

Both salinity and temperature in the study area fluctuate due to the
annual rainfall regime and to the austral summer/winter seasons. These
challenges are intensified in the intertidal zone and can alter the
bioavailability and consequently, the toxicity of pollutants, which can
trigger antioxidant responses (Chapman, 2007). Activation of GPx in
the gills, and GST and MT in the gills and hepatopancreas of M. rapax
from Picinguaba during the summer also may have been induced or
potentialized by such environmental factors, including intrinsic phy-
siological alterations, subsequent to intense reproductive activity
during the summer. Altered biomarker activities in M. rapax during the
summer may reflect the low salinity (< 0.5‰S) encountered in the
estuary during that particular collection (Table 1) as a consequence of
heavy rains. In C. danae during the austral summer (low salinity/ele-
vated temperature), physiological and biochemical processes are also
considerably altered, hampering detection of effects caused by en-
vironmental contaminants, especially metals (Araújo, 2014). However,
when salinities are normalized against winter values, clear metal-re-
lated responses are discernible. Thus, environmental factors like sali-
nity and temperature appear to affect biochemical and physiological
processes in aquatic crabs (Araújo, 2014).

Alterations in salinity and temperature owing to the tidal cycle can
induce fluctuations in metabolism and may affect antioxidant responses
in estuarine organisms. High GST and GPx activities also are related to
biochemical adjustments resulting from seasonal changes in salinity in
the copepod Eurytemora affinis (Cailleaud et al., 2007) and in the crabs
Callinectes ornatus (Freire et al., 2011), Paralomis granulosa (Sáenz et al.,
2010) and Neohelice granulata (de Oliveira et al., 2005). Thus, seasonal
patterns may overlap with pollution effects on biomarkers indicative of
induction of oxidative stress (Niyogi et al., 2001). Some studies suggest
increased AChE activity related to temperature and salinity variation

Fig. 2. Metallothionein-like protein concentrations in
crude homogenates of gills (black bars) and hepatopan-
creas (gray bars) of Minuca rapax collected from the
Picinguaba (P), Rio Itapanhaú (RI) and Ilha Diana (ID)
sites during the austral winter (June–July) of 2012 (left
panel) and summer (January–February) of 2013 (right
panel). Data are the mean ± standard error of the mean
(N=7–10). *Significantly different from gills for the
same collection site (P < 0.05). aSignificantly different
from crabs from Picinguaba (pristine site) for the same
tissue.

Fig. 3. Glutathione peroxidase (GPx) activity in crude
homogenates of gills (black bars) and hepatopancreas
(gray bars) of Minuca rapax collected from the Picinguaba
(P), Rio Itapanhaú (RI) and Ilha Diana (ID) sites during
the austral winter of 2012 (June–July) (left panel) and
summer (January–February) of 2013 (right panel). Data
are the mean ± standard error of the mean (N=7–10).
*Significantly different from gills for the same collection
site (P < 0.05). aSignificantly different from crabs from
Picinguaba (pristine site) for the same tissue.
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and metal contamination (Araújo, 2014; Huynh Thi Tu et al., 2012;
Cailleaud et al., 2007). The induction of MT under different salinity
regimes rather than as a consequence of elevated metal concentrations
is well known (Legras et al., 2000; Monserrat et al., 2008). Thus, abiotic
factors should be considered as modulators of antioxidant responses to
oxidative stress caused by the presence of xenobiotics.

The set of biochemical biomarker responses evaluated here in M.
rapax should be interpreted as a warning sign regarding exposure to
xenobiotics in situ. Metallothionein induction may be related to ex-
posure to a complex mixture of metals, with greater relevance in ID
crabs and less in RI crabs, but also may be modulated by environmental
factors. However, the altered GST, GPx and AChE activities all suggest a
defense response against stress in crabs from all collection sites.
Apparently, during the winter, crabs from ID and RI, chronically con-
taminated sites, exhibited greater disturbances in these biomarkers.
Indeed, these areas showed greater metal contamination during winter
than in summer (Capparelli et al., 2016). In summer, crabs from all
three localities showed changes in these biochemical biomarkers. Be-
cause crabs from the pristine site adopted as a control area show high
enzyme activities, alterations also may result from elevated tempera-
tures or significant decreases in salinity, typical of summer rains, and/
or their combination with exposure to contaminants.

Our findings reveal that there is a strong seasonal influence on
biochemical biomarker responses in Minuca rapax. Fluctuations in en-
vironmental parameters like precipitation and salinity can influence
biomarker responses in addition to those caused by pollutants, and
should be taken into account when monitoring impacted estuarine re-
gions using sentinel species.
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