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ABSTRACT
Monitoring long-term forest dynamics is essential for assessing human-induced land-cover
changes, and related studies are often based on the multi-decadal Landsat archive. However,
in areas such as the Tropical Andes, scarce data and the resulting poor signal-to-noise ratio in
time series data render the implementation of automated time-series analysis algorithms
difficult. The aim of this research was to investigate a novel approach that combines image
compositing, multi-sensor data fusion, and postclassification change detection that is applic-
able in data-scarce regions of the Tropical Andes, exemplified for a case study in Ecuador. We
derived biennial deforestation and reforestation patterns for the period from 1992 to 2014,
achieving accuracies of 82 ± 3% for deforestation and 71 ± 3% for reforestation mapping. Our
research demonstrated that an adapted methodology allowed us to derive the forest dynamics
from the Landsat time series, despite the abundant regional data gaps in the archive, namely
across the Tropical Andes. This study, therefore, presented a novel methodology in support of
monitoring long-term forest dynamics in areas with limited historical data availability.
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Introduction

The Amazon rainforest constitutes one of the biologically
most diverse, structurally complex, and carbon-rich bior-
egions of the world (Asner et al., 2014). It performs
essential global-scale functions and provides a multitude
of ecosystem services (Paula et al., 2014). Tropical defor-
estation is a major threat to the region and a driver of
climate change with potentially critical impacts on the
biosphere (Fearnside, 2005). Large-area deforestation
assessments indicate that the Amazon Basin lost 13.3%
of its forest from 2000 to 2013, where the headwater
basins suffered most of the pressure (RAISG, 2015).
This is also particularly alarming for the region itself, as
the highland Amazon (or Tropical Andes) is highly sus-
ceptible to global warming (Karmalkar, Bradley, & Diaz,
2008), while being under-researched in deforestation stu-
dies (Armenteras, Rodríguez, Retana, & Morales, 2011).
Moreover, only little is known about forest succession
(Barbosa, Broadbent, & Bitencourt, 2014) or land-cover
intensities (Kuemmerle et al., 2013) in this subregion,
which are also important components for understanding
the impacts on ecological services (e.g. on biodiversity,
carbon sequestration, or nutrient sinks; Brown & Lugo,
1990; Edwards, Massam, Haugaasen, & Gilroy, 2017;
Poorter et al., 2016). Monitoring forest dynamics in the

Tropical Andes, therefore, plays a key role for informing
policymakers and resource managers in their decision-
making processes over the next few years (Angelsen &
Wertz-Kanounnikoff, 2008; De Koning et al., 2011).
While lowland tropical forests have been well researched,
closing the remaining knowledge gaps on forest dynamics
in Andean tropical forests is of prime importance
(Armenteras, María, Rodríguez, & Retana, 2017; Da
Ponte et al., 2015; Oliveira, Eller, Bittencourt, &
Mulligan, 2014; Spracklen & Righelato, 2014).

Comprehensive forest dynamics monitoring has
traditionally implied decades of field observations
(Fragal, Silva, & Novo, 2016). Such observations are
costly, and it might even be impossible to collect the
necessary data in the field. Remote sensing offers a
unique alternative for supplying this information for
large areas and in different spectral, spatial, and tem-
poral resolutions. Terra and Aqua on board of the
Moderate Resolution Imager Spectroradiometer
(MODIS) have regularly been used for broad-scale
mapping of forest dynamics (Hansen et al., 2008).
However, the spatial resolution of MODIS data is
limited when fine-scale disturbance regimes prevail
such as from selective logging, skid trails, or distur-
bances related to landslides or local windthrow. The
Landsat sensor family with its 30-m spatial resolution
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and its 45-year observation record is better suited for
capturing long-term and fine-scale processes. It is the
most widely used observation system for land-cover
and land-use change (LCLUC) assessments and forest
dynamics monitoring programs (Camara, 2013;
Hansen & Loveland, 2012). Since the launch of
Landsat-1 in 1972, the Landsat Program has continu-
ously collected data across the globe and – since the
launch of the Landsat Thematic Mapper (TM) in
1982 – in six spectral bands covering the optical,
near-infrared, and shortwave infrared wavelength
regions. For these reasons, it is the most long-term
medium-resolution Earth observation satellite archive
available. Due to the open data policy since 2008,
Landsat data are available free of charge as a standard
high-level product for long-term LCLUC analysis
(Wulder et al., 2016). This development allowed
major improvements in automated time-series analy-
sis, leading to a range of novel algorithms such as
TIMESAT, LandTrendr, BFAST, and CCDC
(Eklundh & Jönsson, 2015; Kennedy, Yang, &
Cohen, 2010; Verbesselt, Hyndman, Newnham, &
Culvenor, 2010; Zhu & Woodcock, 2014) that allow
for extracting forest dynamics information. However,
in some regions around the globe, the archive data
density is considerably lower, mostly due to persistent
cloudiness (Arvidson, Gasch, & Goward, 2001;
Chance, Hermosilla, Coops, Wulder, & White, 2016)
reduce data quantity and quality. This results in time
series with poor signal-to-noise ratio, as useful infor-
mation about forest status is weak and not significant
to differentiate from random noise. This is a limita-
tion for transferring these novel algorithms to data-
scarce regions, such as the Tropical Andes (Santos,
Dubovyk, & Menz, 2017), as time series analyses
require rather dense data stacks over time.

Conceptual approaches including those based on
image compositing, multi-sensor fusion, and postclas-
sification change detection have demonstrated their
potential to overcome these limitations (Griffiths
et al., 2014; Hansen et al., 2013; Potapov et al., 2012).
Multi-date classification (Zhu, 2017) has the advantage
to cope with noise-prone observations, especially when
based on cloud-free composites that not only allow
identifying deforestation or reforestation processes
but also to characterize land-use intensities from post-
deforestation dynamics (Rufin, Müller, Pflugmacher, &
Hostert, 2015). For these reasons, multi-date classifica-
tion is the methodology of choice for monitoring long-
term forest dynamics in areas such as the Tropical
Andes. However, implementing a multi-date classifica-
tion scheme under specific regional conditions can still
be challenging, for example, due to poor data avail-
ability in the past depending on historical data receiv-
ing strategies or increased cloudiness due to
topography. Consequently, we applied this methodol-
ogy to a study case located in the Amazon region of

Ecuador, the Upper Napo Watershed (UNW), where
heavy rainfall regimes (Espinoza et al., 2015) and com-
plex landscapes (Asner et al., 2014) are major impedi-
ments. Our overarching objective was to monitor
long-term forest dynamics and identify deforestation/
reforestation for the period between 1992 and 2014.
We pose the following research questions related to
these objectives:

● Which processing steps and techniques are
needed to implement multi-date classification
in a data sparse region, as exemplified in the
UNW?

● How well does a multi-date classification
approach perform when monitoring long-term
forest dynamics in the environments of the
Tropical Andes?

Study area

The UNW is located between 78°25′W and 76°25′W
longitude and 0°10′N and 1°30′S latitude (Figure 1
(a)). It covers an area of about 12,500 km2 in the
Ecuadorian Amazon, spreading across the three pro-
vinces Napo (63% of the watershed), Orellana (26%),
and Pastaza (9%). The altitudinal gradient of the
Andes covers ~260–5600 m above sea level (a.s.l.).
Mean temperatures varying from −0°C to 26°C and
annual precipitation from 1100 to 5300 mm (MAE,
2013). The core rainy season extends from December
to May, but fog and clouds are abundant throughout
the year, especially at higher elevations (Ramírez,
Teuling, Ganzeveld, Hegger, & Leemans, 2017). The
complex geology creates diverse edaphic conditions
that in combination with topographic gradients and
climatological impacts results in a multitude of extre-
mely species-rich ecosystems (Hoorn et al., 2010).

The percentage of natural vegetation in the UNW
was estimated to be 79% in 2014, with 76% of forest,
2% of shrub-dominated landscapes, and 1 % of grass-
lands (MAE, 2017). Forests are generally evergreen,
but forest ecosystems vary substantially in tree com-
position, flood regimes, and topographic and biocli-
matic boundary conditions (MAE, 2013). According
to Guariguata and Ostertag (2001), reforestation
occurs as quickly as in 5 years after a disturbance in
the evergreen forest ecosystems of the Ecuadorian
Amazon, with variations depending on past land use
practices and abiotic site conditions. This was verified
during fieldwork in May 2017 at three reforestation
sites in the UNW, where 46 hemispherical photo-
graphs were acquired. We followed Pueschel,
Buddenbaum, and Hill (2012) to binarize these
photographs and derive the canopy closure index.
We found that canopy closure after 5 years can be
greater than of a 20-year-old forest (Figure 1(b)). We
accordingly used a time threshold of 5 years as a
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reference for mapping reforestation (compare
“Materials and methods” section). Four National
Protected Areas, mainly created during the 1990s,
are present in the UNW and cover 25% of the total
area. 78,300 ha of native forest were reported to be
converted to pastures and croplands between 2000
and 2014, resulting in an average annual deforesta-
tion rate of ~6300 ha or 0.5% of the forested land
(MAE, 2017). While these numbers vary, deforesta-
tion rates do not exceed 1.2–1.6% yr−1 (Sierra, 2000).

Materials and methods

We organized the processing in five main steps
(Figure 2) when implementing our multi-date classi-
fication. All procedures were developed in the R
language (R Development Core Team, 2017), and
different strategies were applied to improve the

processing (e.g. parallelization, vectorization, and
c-code libraries; Bengtsson, 2016; Clayden, 2016;
GDAL Development Team, 2017; Hijmans, 2016;
Weston, 2015) in complex computations.

Data and preprocessing

For this study, we downloaded 1350 images for four
Landsat footprints (09–60, 09–61, 10–60, and 10–61)
and for the period 1989–2016. They were processed to
surface reflectance and acquired from the United
States Geological Survey (USGS) Global Archive,
sourced through the Earth Resources Observation
and Science (EROS) Center Science Processing
Architecture (ESPA; USGS, 2014). This data-set
included Landsat TM, Enhanced Thematic Mapper
plus (ETM+), and the Operational Imager (OLI)
data. This ready-to-use data-set is radiometrically

Figure 1. (a) The UNW study area, localization in the context of the Amazon Basin and the Tropical Andes. (b) Boxplot of the
canopy closure index and estimated forest age and hemispherical photographs with derived canopy closure index for different
forest development stages.
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calibrated by the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS; Masek et al.,
2012) and orthorectified using a digital elevation
model (DEM) and ground control points (NASA,
2011). The percentage of masked areas (or no-data
pixels) for each image was calculated using C code
based on the Function of Mask (Fmask) algorithm
(CFmask; Zhu & Woodcock, 2012) and LEDAPS by
merging cloud, cloud shadow, glacier, and water areas
into a unique class (Figure 3(a)). Images with percen-
tages above 90% of no-data pixels and images without
orthorectification according to their metadata were
omitted, reducing the time series of 27 years to effec-
tively 23 years since 1991 (Section “Postclassification
change detection”). In total, 288 images were used (i.e.
68, 79, 74, and 67 images per Landsat footprint,
respectively) to complete the multitemporal compo-
sites. Data were mostly available during the dry season

(67% of images, Figure 3(b)), while the fewer images
acquired during the rainy season avoid additional data
gaps in single years for our forest dynamics analyses
(Kimes, Nelson, Skole, & Salas, 1998; Lunetta,
Johnson, Lyon, & Crotwell, 2004). This is in contrast
to other studies, which selected images from specific
periods within a year (Müller, Griffiths, & Hostert,
2016). However, we preferred to maintain all images
as a strategy to reduce data loss in this data-sparse
environment. The average time interval between con-
secutive images for each footprint was 141, 122, 130,
and 154 days, respectively. Nevertheless, in all foot-
prints, a data gap from August 1992 to July 1996 in the
Landsat archive, introduced an interruption of
3.9 years in our time series. Finally, a set of vegetation
indices, band ratios, and Tasseled Cap transformation
derivatives were calculated from the Landsat images
(Table 1) following recommendations from similar

Figure 2. Methods and workflow for implementing the multi-date classification.
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forest dynamics studies (Kennedy et al., 2010; Müller
et al., 2016; Potapov et al., 2012). To overcome the
topographic effects, a c-correction algorithm (Riaño,
Chuvieco, Salas, & Aguado, 2003) was applied to
Landsat bands and its derivatives to evaluate whether
it contributes to improving classification results
(Section “Accuracy metrics results”).

We collected 872 image chips from different sources
acquired between April 2000 and August 2016 from
high- and very high-resolution data for validating our
medium-resolution remote sensing outputs (Olofsson
et al., 2014): aerial photography (1-m spatial resolu-
tion), pan-sharpened images from the Advanced Land
Imager (ALI, 10 m), Sentinel-2a (10 m), and Advanced
Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) imagery (15 m). The latter is
available for free (National Institute of Advanced
Industrial Science and Technology & Geological
Survey Japan, 2017), and we downloaded the whole
archive to densify our high-resolution validation data-
set. All images were preprocessed including manual co-
registration (using Landsat imagery as a reference) and
cloud masking including shadows (applying simple
thresholds and manual screening in some cases).
Finally, multispectral imagery were stacked, that is,
ASTER, ALI, and Sentinel, for display them as false-
color composites during the construction of validation
samples plots (Section “Accuracy assessment”).

To guide our implementation (Section
“Postclassification change detection”), the informat
ion used for the establishment of Ecuador’s Forest
Reference (EFR) Emission Level (MAE, 2017) was col-
lected. This data-set constitutes a series of land-cover and
vegetation maps based on Landsat, ASTER, and Rapid
Eye imagery that were visually interpreted with accuracies
around 70% for different periods between 1990 and 2014.

For the elevation source, we used the three arc-
second (90 m) DEM from the Shuttle Radar
Topography Mission (SRTM; CGIAR – CSI, 2008).
This data-set corrected for data gaps and its quality is,
especially for mountainous regions of Ecuador,
higher than the one arc-second (30 m) resolution
product. We derived elevation, slope, aspect, rough-
ness, the topographic position index (TPI), and the
terrain ruggedness index (TRI; Wilson, O’Connell,
Brown, Guinan, & Grehan, 2007) to evaluate their
contribution to classification performance.

Standardized biennial compositing

For compositing, we discarded Landsat bands 1 and 2
as they are known to be more sensitive to atmo-
spheric effects (Zhang, Carder, Muller-Karger, Lee,
& Goldgof, 1999), while Landsat bands 3, 4, 5, and
7 and the calculated derivatives described in Table 1

Figure 3. (a) Spatial distribution of no-data pixel frequencies and (b) no-data percentage of selected images. Gray areas in the
plots refer to the 1992–1996 data gap and dashed lines to effective 23 years’ time series.

Table 1. Landsat bands and derivatives.
Name Abbreviation Wavelength region References

Normalized Difference Vegetation Index NDVI VIS, NIR Rouse, Haas, Scheel, and Deering (1974)
Aerosol Free Vegetation Index 1.6-µm band AFRI16 NIR Karnieli, Kaufman, Remer, and Wald (2001)
Normalized burn ratio NBR NIR Key and Benson (2006)
Landsat bands 1–7 Bands 1–7 VIS, NIR, SWIR –
Band ratios: TM4/TM3, TM5/TM4, TM5/TM7 R43, R54, R57 VIS, NIR, SWIR Krishna Bahadur (2009)
Tasseled cap: brightness, greenness, and wetness TCB, TCG, TCW VIS,NIR, SWIR Crist and Cicone (1984)
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were grouped in biennials according to the acquisi-
tion date of the image used in their calculation. The
biannual time step was chosen as it resulted in 5 ± 2
images being available for most composite cases. This
arrangement resulted in a no-data percentage average
of 34 ± 13% (Figure 4(a)).

All biannual input pixels were z-transformed for
the compositing:

Zij ¼ ρij � μj=σj (1)

with ρij being the pixel vector at position i and for
date j, and μ and σ being the pixel’s mean and
standard deviation at date j. We then calculated the
median �Zi value for each vector Zi as this metric is
known to be less affected by atmospheric contamina-
tion or phenological variation in image compositing
(Potapov et al., 2012). Other metrics (e.g. quantiles,
maximum, minimum, and variance) that are regu-
larly applied in similar studies (De Fries, Hansen,
Townshend, & Sohlberg, 1998) were also tested.
However, the data-scarce situation required a conser-
vative approach using the median. Finally, we nor-
malized �Zi and stored it as the output value β for a
given biennial composite according to

β ¼
�Zi �min �Zi:nð Þ

max �Zi:nð Þ � min �Zi:nð Þ (2)

As residual radiometric offsets occur in the overlap
areas between footprints, we required a pixel-level
radiometric alignment (Pflugmacher, Cohen, &
Kennedy, 2012). We selected the 2002 composite
from path-row 09–60 and 09–61 as reference compo-
sites, as they had few no-data values and a low atmo-
spheric aerosol load. Values in the overlapping
footprints (10–60 and 10–61) were aligned based on
histogram matching across the overlap areas to
neighboring footprints. The same procedure was

then applied across the time series within each foot-
print. In total, 52 biennial composites where aligned
with references footprints, reducing, for example, the
variance of the tasseled cap brightness (TCB) from
0.1 to 0.01 after histogram matching (Figure 4(b)).

Model training

We defined four classes to map permanent forest
cover and deforested/reforested areas. Permanent for-
ests included, on one hand, evergreen forests (encom-
passing montane, foothill, lowland, and flooded
forests) and, on the other hand, Guadua spp. forests
with their spectrally distinct patterns due to their
different species composition, canopy height, and
overall lower biomass (Silman, Ancaya, & Brinson,
2003). Other nonforest”” vegetation above 3300 m a.
s.l. such as grasslands or shrubs were not considered
in this research. Conversely, change classes included
human land use for agricultural production, that is,
pastures and croplands (including early revegetation,
commercial, and subsistence plantations), and non-
vegetated areas, that is, bare soils and urban areas.
We gained initial knowledge of the approximate class
distribution by running a first and nonvalidated
image classification with a few training samples,
which built the basis for distributing the training
samples for training in a guided fashion (Table 2).

We then interpreted the almost 1000 training
samples on-screen based on a mosaicked, biennial
color composite from 2002 and on a recent vegeta-
tion map (MAE, 2017). Since the four classes repre-
sented a complex spectral feature space and their
visual separation was challenging (Figure 5(a)), we
tested different classifiers using the caret package
(Kuhn, 2016). This software applies a parameter
tuning of classifiers and bootstraps training samples

Figure 4. (a) Number of images used for compositing and no-data percentage in resulting composites and (b) tasseled cap
wetness (TCW) mean value of composites with (matched) and without histogram matching (raw). Gray areas in the plots refer to
the 1992–1996 data gap and dashed lines to effective 23 years’ time series.
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to determine their effect on performance and
decided on an optimal model. As most classifiers
provided similar out-of-bag error (Figure 5(b)), we
decided to use a least squares support vector
machine (SVM) with polynomial kernel (svmPoly;
Karatzoglou, Smola, Hornik, & Zeileis, 2004), as it
achieved the highest overall correlation (0.697) with
the land-cover reference maps (MAE, 2017). Other
classifiers including Random Forest (rf, 0.684),
Stochastic Gradient Boosting (gbm, 0.682) or
Neural Networks (pcaNNet, 0.680) showed good
correlations, but they were not higher than svmPoly.

Postclassification change detection

By classifying biennial composites, 13 land-cover maps
were obtained for each footprint, covering the period
1989–2016. A 3 × 3 median filter was applied to
eliminate spurious pixels within a land-cover map,
but for data gaps, values were input calculating the
per-pixel time-series mode from all land-cover maps.
While random noise and discontinuities were elimi-
nated, artifacts from clouds and cloud shadow rem-
nants, sensor noise, or simply misclassified pixels were
still present in the data. Therefore, we further applied a
temporal filter with transition rules (Clark, Aide, Grau,

Table 2. Classes considered and training sample size.
Type Classes Approximate area (km2) Samples (no.) Example photograph

Permanent classes Evergreen forest 8053 307

Guadua spp. forest 181 122

Change classes Pastures/croplands 2047 279

Bare soil/urban areas 653 221

A class-wise standard deviation of 0.9 and a confidence interval of 0.9 were considered to obtain a reasonable class-wise sample size.

Figure 5. (a) The feature space of the training samples using the first and second principal components (PC1 and PC2) obtained
from Landsat bands, derivatives, and terrain parameters. (b) Boxplots of classifiers’ out-of-bag error using training samples.
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& Riner, 2010) to identify illogical land cover and
land-cover change patterns and reclassified errors
according to a set of rules based on contextual knowl-
edge. For example, it is impossible that bare soil
becomes an evergreen forest in 1 year and returns to
the bare soil class the next year again. Instead, this may
represent either cropped land (bare soil or cropped
land in 1 year) in the case of agricultural land, or it
simply may be a misclassification. In any case, it will
not represent land change associated with forest cover.
We accordingly implemented a temporal filter based
on a moving window of three consecutive observations
and a set of allowed transition rules (Table 3).

Since the first and the last land-cover maps could
not be temporally filtered according to this scheme,
we omitted those years (i.e. 1989–1991 and
2015–2016 periods), thereby reducing our time series
to the period 1992–2014, that is, 11 observations for
each footprint.

We then derived deforestation and reforestation dates
from the series of land-cover maps. We flagged the first
year of a forest pixel being mapped as one of the non-
forest classes as the deforestation year. Reforestation,
though, is a continuous process that can only be mapped
from satellite data once a certain threshold of “forest-
edness” has transgressed, that is, a previously nonfor-
ested pixel spectrally resembles a forest class for a
minimum period of time (defined in this article in 5
years as described in Section “Study area”).

Finally, the outputs of the postclassification change
detection were mosaicked and the UNW area extracted,
considering the treeline (3300 m a.s.l.) to exclude non-
forested areas. As our aim was to evaluate different
algorithms for multi-date forest change classification,
we iterated all these steps for each preprocessing
approach (i.e. surface reflectance or topographic correc-
tion) and omitted/applied temporal filtering to evaluate
their individual contribution to the overall accuracies of
these maps.

Accuracy assessment

We calculated confusion error matrices for deforesta-
tion and reforestation maps (Cohen et al., 2017;
Olofsson et al., 2014; Thomas et al., 2011). We
employed a stratified random sampling based on the
deforestation and reforestation classes, arranging
samples of 5–3 pixels in a cross shape (Figure 6(a)).
We sampled a minimum of 50 samples per class and

100 for the larger classes of stable forest and stable
nonforest. Since reforestation stable classes could be
affected during postclassification change detection
due to its assigned regrowth-time threshold, we
sampled these classes independently to ensure their
performance. Finally, as spatial autocorrelation can
bias the accuracy assessment (Congalton, 1991), a
minimum threshold distance between samples of the
same class was applied (Table 4).

Each sample was interpreted on-screen based on
high-resolution imagery (Figure 6(b)) and Landsat
color composites (Figure 6(c,d)). We calculated the
overall accuracy, the kappa index, and class-wise
commission and omission errors.

Results

Variable importance and svmPoly optimization
report

We decomposed the svmPoly model to observe
which variables contributed to the respective results.
Figure 7(a) reveals that Landsat bands 4–7 and TCB,
TCW, and tasseled cap greenness (TCG) yielded an
importance above 90% in all classes. Conversely,
vegetation indices and band ratios as well as terrain
parameters were overall less significant but contrib-
uted to separating pastures/croplands from the
Guadua spp. forests. These overlapped spectrally,
but separability improved when integrating terrain
derivatives in the classification process. Regarding
optimization, the caret software explored three para-
meters of the svmPoly classifier (degree, scale, and
cost) to maximize its classification accuracy
(Figure 7(b)). Its final calibration yielded 274 sup-
port vectors with a cost of constraints (C) of 1, and
the hyperparameter values were set to a degree of 3,
scale of 0.001, and a default offset of 1.

Accuracy metrics results

Deforestation and reforestation maps based on differ-
ent filtering techniques varied substantially (Table 5).

Overall accuracies were significantly better when
applying surface reflectance and temporal filtering to
land-cover classifications, achieving 82 ± 3% and
71 ± 3% (calculated with a 95% confidence interval)
for deforestation and reforestation maps, respectively.
Topographic correction led to poorer overall accura-
cies by 13 ± 2% in both maps when compared to the

Table 3. Transition rules.
Year n + 1

Classes Evergreen forest Guadua spp. forest Pastures/croplands Bare soil/urban areas

Years nandn + 2 Evergreen forest Yes No No No
Guadua spp. forest No Yes No No
Pastures/croplands No No Yes Yes
Bare soil/urban areas No No Yes Yes
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Figure 7. (a) Variable importance by class during classification with svmPoly. (b) Optimization of the svmPoly classifier during
the model-training phase.

Figure 6. Example of a forest-loss sample (3 pixels). (a) Location of the sample in the map. (b) High-resolution image chips from
ASTER (2001–2008 and 2012) and aerial color photography (2010). (c) Landsat color composites image chips (1992–2014, with a
data gap in 1996) and (d) overview of them, showing the sample area and analysis period.

Table 4. Classes, minimum distances, and sample sizes.
Map Class name Distance threshold (m) Sample size (pixel)

Deforestation map Stable forest 2500 100
Stable nonforest 2500 100
Deforestation year 2500 50/year

Reforestation map Stable forest 2500 100
Stable nonforest 2000 100
Reforestation year 1500–2000 50/year

Table 5. Overall accuracy of deforestation and reforestation maps by processing approaches.
Processing approaches

Map
Accuracy
metrics

Surface reflectance – not filtered
(%)

Topographic correction – filtered
(%)

Surface reflectance – filtered
(%)

Deforestation Overall 62 70 82
Kappa 58 65 80

Reforestation Overall 48 56 71
Kappa 39 47 67
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best result. Temporal filtering improved accuracies
substantially by 21 ± 1% for both deforestation and
reforestation maps. Commission and omission errors
for stable and change classes are shown for the fil-
tered product (Table 6).

The overall commission and omission errors were
lower for the deforestation map (mean of 19% and
5%, respectively) than reforestation map (mean 32%
and 11%, respectively). Moreover, stable classes were
less prone to commission and omission errors (mean
1–11%) compared to change classes (mean 0–46%).

Deforestation and reforestation maps

Maps of deforestation and reforestation years are
shown in Figures 8(a) and 9(a). In general, the patterns
follow the description of Wasserstrom and Southgate
(2013) for the Ecuadorian Amazon during its oil-
related colonization (1964–1994). For instance, defor-
ested areas along the E45 highway (built in 1975) and

the banks of the Napo River relate to settlements that
already existed before the period we analyzed. The age
of the deforestation patches along the E20 highway
(built in 1983) decreased with increasing distance
from the highway (Figure 8(b-1)). In the mountainous
areas, the detection of landslide scars (Figure 8(b-2))
was accurate, and topographic shadows did not appar-
ently inhibit the change detection. However, false-
positive errors were observed not only in areas with
many mixed pixels where mostly evergreen forests and
pasture/cropland occurred (Figure 8(b-3)) but also in
areas with no-data values due to the occurrence of
sparse observations or an inaccurate water mask.

Areas of reforestation seemed to be more promi-
nent along the E45 highway, where deforestation was
less intense. Known areas of reforestation since the
1990s were well represented (Figure 9(b-1)), as was
forest succession after landslides in mountainous
areas (Figure 9(b-2)). Overall, the reforestation year
map was more affected by mixed pixel problems and

Table 6. Commission and omission errors for the surface reflectance – filtered approach.
Deforestation Reforestation

Class name Commission (%) Omission (%) Commission (%) Omission (%)

Stable forest 1 8 5 7
Stable nonforest 11 1 7 5
Change year 1992–1996 14 4 44 7

1996–1998 20 13 44 3
1998–2000 20 17 34 20
2000–2002 16 2 42 19
2002–2004 30 5 28 22
2004–2006 26 3 28 10
2006–2008 28 5 44 12
2008–2010 20 0 36 9
2010–2012 24 5 46 10
2012–2014 24 0 – –

Overall mean 19.5 5.25 32.54 11.27

Figure 8. (a) Deforestation year map for the UNW. (b) Magnified areas show: (1) linear deforestation along the E45 highway,
(2) landslide scars, and (3) false-positive errors in the mixed forest and pasture areas.
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mask errors than the map of deforestation year
(Figure 9(b-3)).

Following Rudel, Bates, and Machinguiashi (2002),
we calculated overall deforestation and reforestation
by applying a buffer distance of 3 km along the two
main highways E45 and E20 in the UNW to corro-
borate our observations. Accumulated deforestation
along highway E45 summed up to an area of 3320 ha
and 11,403 ha along highway E20. In contrast, refor-
estation along highway E45 accumulated to 7458 ha
and 5415 ha along highway E20.

Comparison with other sources

We compared our implementation with two different
sources: Forest Loss Year (FLY) according to Hansen
et al. (2013) and EFR Emission Level information

(MAE, 2017). Both sources were cropped with the
UNW and relabeled to match our classes (Figure 10).

Results are similar across the three classifications.
However, differences specifically exist with FLY for
specific time periods such as 2000–2002 and
2010–2012 (Figure 10(a)) or EFR reforestation
between 2008 and 2014 (Figure 10(b)). On average,
deforestation was 2757 ha year−1 for the period from
2000 to 2014, in FLY data and 4394 ha year−1 in EFR.
Our estimates are comparably conservative with
2319 ha year−1. According to FAO (Puyravaud,
2003), these values represented annual deforestation
rates of −0.35%, −0.57%, and −0.31%, respectively.

Furthermore, reforestation summed up to 574 ha
year−1 for the 2000–2014 period in FLY, indicated
2277 ha year−1 in EFR, and 1504 ha year−1 in our
analysis, representing annual reforestation rates of

Figure 9. (a) Reforestation year map for the UNW. (b) Magnified areas show: (1) Jatun-Sacha Biological Reserve, which is known
for reforestation since the 1990s; (2) forest succession after landslides; and (3) false-positive errors in a stable-forest area.

Figure 10. (a) Comparison with FLY by biennials for the period 2000–2014. (b) Comparison with EFR deforestation and
reforestation areas for the periods 2000–2008 and 2008–2014, (c) along with unchanged classes.
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0.07%, 0.28%, and 0.19%, respectively, in EFR,
796,982 ha stayed unchanged, while our analysis
yielded 748,688 ha of stable forests.

Discussion

Biennial image compositing and preprocessing
effects on results

Our image compositing technique was based on the
standardization and median calculation, which is an
effective strategy to maximize information extraction
when the number of observations is limited. We
chose a biennial classification scheme (Griffiths
et al., in review). We thereby improved the signal-
to-noise ratio, as 1-year composites may be inferior
in data-scarce conditions (Potapov, Turubanova, &
Hansen, 2011). Composites from longer time periods,
though, may not be adequate to monitor subtle pro-
cesses such as reforestation (Bustamante et al., 2016).

The histogram matching algorithm that we used
for radiometrically aligning the composites enabled a
regional-scale classification and at the same time cre-
ated consistency across the time series. This was
supported by the high consistency between the
land-cover classifications from different years and
the results after applying our postclassification
change detection algorithm. However, cloud-free
composites as references and sufficient spatial overlap
between the target and reference footprints are man-
datory for the proper functioning of the histogram
matching (Benjamin & Leutner, 2017).

We also accommodated for correcting the radio-
metric distortions due to topography. In our case, the
c-correction algorithm principally improved the
homogeneity of the imagery across sunlit and shaded
slopes. However, commission errors increased after
applying the topography correction. This is in line
with the findings in Chance et al. (2016), which
reported negative effects of a topographic correction
on change detection analysis. Others found that the
application of topography correction generally had a
smaller influence on the overall accuracy of a classi-
fication when compared to the selection of a classifier
(Vanonckelen, Lhermitte, & Rompaey, 2015). Future
work should further improve the results from topo-
graphic correction by employing the best DEMs
available (Chance et al., 2016; Pimple et al., 2017).

Postclassification change detection performance

Our postclassification change detection strategy was
based on land-cover maps (MAE, 2017) as reference
to validate model training and classifier outputs. This
allowed the selection of the most precise classifier
based on the correlation between the classification
and the land-cover maps. While the limited size of

our sampling set may not be representative for some
classifiers (Zhu et al., 2016), SVMs apparently per-
formed well, as SVMs support small training samples
(Wieland, Torres, Pittore, & Benito, 2016).

The original Landsat bands and derived tasseled
cap components had a considerable predictive power
(Figure 7). This was specifically true for bands 3–7,
which are known to be important predictor variables
not only in forest/nonforest classifications in the tro-
pics (Potapov et al., 2012) but also in dry regions of
the world (Mellor, Haywood, Stone, & Jones, 2013).
Spectral mixtures and spectral similarity of land-
cover types (see Figure 5(a)) limit the separability at
30-m Landsat spatial resolution. In this regard, eleva-
tion and terrain derivatives from the DEM (slope,
aspect) contributed to class separation, despite their
predictive power not being as high as that of the
Landsat bands or tasseled cap components.

While some gaps related to cloud and cloud sha-
dow remnants remained after the classification, we
were able to demonstrate that temporal filtering is a
powerful technique for removing these artifacts and
considerably improving the results (comparison in
Table 5). The set of transition rules allowed us to
filter most of the illogical class transitions; however,
some highly dynamic events were still missed due to
the data-scarce setting and accordingly introduced
omission errors.

Performance of multi-date classification in the
UNW

Despite the remaining limitations of our multi-date
classification implementation, the spatially explicit
forest dynamics patterns at the UNW allow for
novel insights beyond what was already known from
previous satellite data analyses relying on only two or
just a few points in time (Sierra, 2000) or only spec-
tral information (Walsh, Shao, Mena, & McCleary,
2008) ideally in the Tropical Andes. Dynamics along
the E45 highway after 1992 mostly related to refor-
estation on peripheral lands, while deforestation rates
were comparably low in that region (Figure 11(a)).

This may be explained by the population census,
where the population in the urban centers of Tena and
Archidona increased by 233% between 1990 and 2010
(INEC, 2010), suggesting a rearrangement in the
population distribution between the rural and the
urban areas. This assumption is supported by similar
findings by Rudel et al. (2002) in the Southern
Ecuadorian Amazon. In contrast, deforestation was
principally identified along the E20 highway. Since
this highway was constructed more recently, new set-
tlements and commercial activities linked to oil extrac-
tion have triggered deforestation (Wasserstrom &
Southgate, 2013; Figure 11(b)).
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A comparison with other sources revealed further
details. For instance, deforestation showed to be more
similar to FLY than to EFR, most likely because the FLY
data-set is also based on a multi-date classification,
while the EFR was based on an object-based classifica-
tion that generalized deforestation patches. In the case
of reforestation, all results differed markedly. Different
conceptualizations of reforestation (Hansen et al., 2013;
MAE, 2017) and confusion with secondary forests are
likely to be the main reasons. According to Cohen et al.
(2017), it is not surprising that forest disturbance maps
differ due to semantic and methods differences.
Different accuracies and results accordingly relate to
multiple factors such as differences in the change detec-
tion algorithm, in the quality of specific satellite imagery
used, metrics and training information, the time-series
density, or the thresholds applied to identify change.

Overall, our multi-date classification implementa-
tion was demonstrated to be far less sensitive to data
scarcity and atmospheric contamination than other
approaches using automated time-series analysis
algorithms (Santos et al., 2017).

Conclusions and outlook

Forest dynamics in the complex and vulnerable
regions of the Tropical Andes are still under-
researched considering remote sensing data analyses
(Da Ponte et al., 2015; Oliveras, Anderson, & Malhi,
2014). To the best of our knowledge, this was the first
study of its kind that specifically focused on the
challenges related to scarce data and the poor sig-
nal-to-noise ratio in a long time series for automated
forest change analyses in the Tropical Andes. We
demonstrated that an adapted implementation of
multi-date classification based on image compositing,
multi-sensor fusion, and postclassification change
detection could mitigate most of these limitations.
Our findings add to the expanding body of literature

on such approaches with a focus on data-scarce situa-
tions and highlight the importance of the Landsat
archive for monitoring decadal land-cover change
even in cloudy regions of the world.

Future research should focus on diversifying data
sources and predictors as our findings provide further
evidence that classification results, specifically when
usingmachine learners, will improve in data-rich envir-
onments. Moreover, the increasing web-based availabil-
ity of high- and very high-resolution data will in the
future allow to further improve sample quantity and
quality, while semi-automatic approaches (Huang,
Weng, Lu, Feng, & Zhang, 2015) and temporal-spectral
profiles sampling (Senf, Pflugmacher, Wulder, &
Hostert, 2015) are also promising alternatives.
Furthermore, since our methodology requires a refor-
estation time threshold, it would be beneficial consider-
ing specific thresholds for different forest communities.
This should ideally be based on forest growth models
such as FORMIND (Paulick, Dislich, Homeier, Fischer,
& Huth, 2017) that support specifying distributions for
reforestation time threshold. Additionally, improve-
ments may well be possible with further refined transi-
tioning rules in postclassification filtering or automated
solutions with more complex transition rules with an
increasing number of land-cover classes (Ahlqvist,
2008; Abercrombie & Friedl, 2016).

As other areas may experience similar or even more
severe data scarcity than the UNW, image compositing
might be limited to lower observation frequencies. In this
regard, regions such as north-central Africa and northern
Russia, which have the sparsest Landsat coverage com-
pared to Ecuador (Wulder et al., 2016), may constrain
multi-date classification usability to frequencies greater
than biennials. Such limitations may, for example, con-
strain its usability in the frame of reducing emissions
from deforestation and forest degradation (REDD+),
which requires biennial updates reports for Forest
Reference Level Information especially in develop-
ing countries (UN-REDD Programme, 2015). Finally,

Figure 11. Deforestation/reforestation area for the period 1992–2014 (a) along the highway E45 and (b) along the highway E20.
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implementing such a multi-date classification for larger
study areas requires cloud-based or high-performance
computing (HPC) environments, as the processing is
demanding, and it is more effective to “bring the algo-
rithm to the data” than to download massive data-sets.
Currently, some alternatives are available (e.g. EODC,
2018; Gorelick et al., 2017; Open Foris, 2015), which
allow implementing similar methodologies for large
areas. Cloud-based or HPC environments also provide
novel opportunities to developmonitoring systems based
on sensor constellations, such as Landsat and Sentinel-2
(Wulder et al., 2015).

As optical remote sensing of the core tropics reg-
ularly suffers from high cloud cover, integrating
newly available imagery will increase change map
reliabilities. Linking the vast Landsat archive with
the quickly expanding Sentinel-2 archive is, therefore,
one of the cornerstones for future improvements
(Drusch et al., 2012; Wulder et al., 2016). Such a
strategy will also allow to extend the applicability of
our approach to larger regions such as the entire
Tropical Andes and to ecosystems with more diverse
land cover.
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