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Abstract

Aim: The high biodiversity of northern South America is unparalleled and includes

several centres of diversity such as Amazonia, the Andes and the Choc�o. Movement

of lineages amongst and within these bioregions is thought to be rare, and the

effect of those dispersals on the distribution, diversity, and community assembly

remains poorly understood. Here we address these effects by studying divergence

times, biogeographical history, and species diversification of the palm tribe Iriar-

teeae, an ecologically dominant forest component.

Location: Central and South America.

Methods: We developed a calibrated phylogeny and a spatially explicit diversifica-

tion model that incorporates molecular and fossil data. In these analyses, we

included a new fossil Iriartea species Gemmamonocolpites galeanoana, derived from

new samples of Miocene deposits in western Amazonia. We also estimated the geo-

graphical range evolution of lineages and tested whether speciation and extinction

rates were affected by dispersal events using a simulation approach in ClaSSE.

Results: Dispersal amongst bioregions was not evenly distributed across the topol-

ogy. We found that Amazonian communities are overdispersed across the phy-

logeny, whereas Andean taxa are clustered. Dispersal events were associated with

increases in species diversification and were concomitant with periods of Andean

uplift. Migration into montane areas occurred several times from lowland Amazonian

ancestors, and montane taxa subsequently recolonized the Amazonian bioregion.

Main conclusions: Our results suggest that the diversification of Iriarteeae palms

closely followed the west-to-east surface uplift history of the Northern Andes. From

an early, lowland Amazonian ancestor, the first diversification events took place in

the earliest emerging mountain chain, the Western Cordillera. From there multiple

range expansions followed eastwards and back into the lowlands. This study demon-

strates how geological events within a single mountain range can affect the geo-

graphical expansion and diversification of lineages.
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1 | INTRODUCTION

Northern South America is recognized for its extremely high biodi-

versity and heterogeneity of habitats (Hoorn et al., 2010). The area

spans some of the wettest forests in the world, as well as montane

forests along the Andean mountains, the savannas of Los Llanos, the

lowlands of the Amazon Basin and some of the oldest terrains on

earth, the Brazilian and Guianan Shields (Harrington, 1962). The

tropical Andes are a biodiversity hotspot, having the highest rates of

endemism and species richness of plants and vertebrates on Earth

(Myers, Mittermeier, Mittermeier, da Fonseca, & Kent, 2000). The

Andes constitute a prominent feature of the South American conti-

nent, and understanding its geological history is therefore key to

understanding its biodiversity.

The Andes have played a fundamental role in species diversifica-

tion as their uplift created opportunity for allopatric speciation,

increased habitat heterogeneity and profoundly changed the envi-

ronmental conditions of surrounding areas (Antonelli, Nylander, Pers-

son, & Sanmartin, 2009; Luebert & Weigend, 2014). Furthermore,

the rise of the Andes had great impact on the formation and retrac-

tion of the Miocene Pebas mega-wetland system (Wesselingh, Guer-

rero, Rasanen, Romero Pitmann, & Vonhif, 2006), which likely

covered large expanses of western Amazonia during some periods

(Hoorn et al., 2010; Jaramillo et al., 2017). Using species that are

restricted to particular biogeographical regions, or simply bioregions

(distinct geographical units defined by the evolutionary history and

taxonomic composition of their components; see Vilhena & Anto-

nelli, 2015) within northern South America, the temporal evolution

of geological formations and biological lineages can be linked to fur-

ther understand the interplay between landscape changes and biodi-

versity (Bacon, 2013; Bacon et al., 2015a,b; Hoorn, Mosbrugger,

Mulch, & Antonelli, 2013; Jahner et al., 2017; Lagomarsino, Con-

damine, Antonelli, Mulch, & Davis, 2016).

Few plant clades better characterize both the Andean mountain

as well as the lowland Amazonian flora than the palms (Arecaceae;

Gentry, 1982). The palm tribe Iriarteeae includes Amazonian species,

such as Iriartea deltoidea and Socratea exorrhiza, both of which are

recognized as keystone species because of their importance in

ecosystem functioning and the sheer number of biotic interactions

documented (Galeano & Bernal, 2010) and as some of the most

abundant species (hyperdominant; ter Steege et al., 2013). Iriarteeae

species are also distributed in the mega-diverse Choc�o forests of

Colombia, Ecuador and Panama, as well as in several of the Andean

Cordilleras (Bacon et al., 2016; Henderson, 1990; Restrepo Correa,

N�uñez Avellaneda, Gonz�alez-Caro, Vel�asquez-Puentes, & Bacon,

2016). In contrast to some range-restricted species, Iriartea deltoidea

has an extremely large distribution, predominantly at low and middle

elevations (with an upper limit of 1,300 m). It occurs in premontane

forests, on steep Andean slopes, down to lowland rainforests, often

along stream margins and in successional forest on floodplains (Hen-

derson, 1990; Losos, 1995). Based on a review of 13 Holocene pol-

len records, Bush and McMichael (2016) demonstrated that Iriartea

became hyperdominant in the late Holocene, following increased

moisture availability.

Palm fossil flowers have been reported from Iriarteeae (late Oligo-

cene to early Miocene; Socratea; Poinar, 2002), as well as leaves and

fossilized endocarps from Peruvian Miocene (Berry, 1916) and

Venezuelan Tertiary (Berry, 1921a,b) deposits, but generic affinities

remain elusive. In pre-Quaternary palynological records, Iriartea-type

pollen is known from Cretaceous to Palaeogene lowland deposits from

an area that is currently formed by the Eastern Cordillera (both Creta-

ceous–Palaeocene; e.g. Sarmiento, 1992; Van der Hammen & Garc�ıa,

1966) and also in Eocene deposits of the Colombian Llanos (Gonz�alez

Guzm�an, 1967; Henderson, 1990). New findings of Iriartea-type fossil

pollen from western Amazonia and reports from the Neogene record

of Panama (Jaramillo et al., 2014) together with a recent phylogeny of

the tribe (Bacon et al., 2016), form a robust framework for divergence

time estimation and biogeographical inferences. This data availability,

combined with the wide distribution across most of northern South

America, makes the clade an ideal model for investigating the occur-

rence and consequences of dispersal events through time and across

different Andean Cordilleras and bioregions.

Here, we reconstruct the biogeographical history of Iriarteeae

palms using both the fossil record and ancestral area analysis. We

then estimate the impact of dispersals across different bioregions on

species diversification. Overall, we expect (1) few dispersals that, in

turn, will cause higher phylogenetic overdispersal in bioregions that

have acted primarily as source rather than sink areas, and that (2)

these few dispersals will be associated with significant changes in

diversification rates. Further, we expect that (3) dispersals across

bioregions will correspond to geological time periods with significant

mountain uplift from at least 10 Ma and forest expansion after the

western Amazonian mega-wetland retreated in the late Miocene.

Due to these Cenozoic geological changes in South America, high

levels of niche conservatism in palms (Kissling et al., 2012), and the

previously documented rarity of biome shifts (Crisp et al., 2009), we

expect Iriarteeae palm distributions to be affected by geological

changes and species to co-vary with dispersals across bioregions.

2 | MATERIALS AND METHODS

2.1 | Study area

Iriarteeae palms are conspicuous and abundant across northern

South America and adjacent Central America (Henderson, Galeano, &

Bernal, 1995). The environmental and physical configuration of this

region was greatly affected by its geological history, including the

Andean orogeny and its impact on the surrounding landscape and

hydrology. The tropical Andes extend from Bolivia north to Colombia

and Venezuela. The central and northern ranges are divided by the

Amotape–Huancabamba depression in northern Peru that is formed

by the Mara~n�on River (Cediel, Shaw, & Caceres, 2003; Graham, Gre-

gory-Wodzicki, & Wright, 2001; Gregory-Wodzicki, 2000). The cen-

tral Andes rose to their current elevation earlier (10–8 Ma) than the

2 | BACON ET AL.



northern extent (6–4 Ma), and uplift still continues in regions of the

Eastern Cordillera of Colombia and the Coastal Cordillera of Vene-

zuela (Bermudez et al., 2015; Hoorn et al., 2010; Mora et al., 2008).

Andean orogeny in the Western Cordillera of Colombia and northern

Ecuador, together with the emergence of the Panama microplate

from under the Pacific Ocean, formed the Choc�o region c. 5 Ma

(Duque-Caro, 1990a,b). The age of the onset of uplift is largely

unknown for the Western Cordillera because it was formed by a

mixture of allochthonous terrain that collided with the South Ameri-

can plate, but has generally been attributed to the middle Miocene

(Montes et al., 2015). Few data exist for the Central Cordillera,

although positive topographic relief has likely been present since the

early Cretaceous (Villagomez & Spikings, 2013). Some segments have

had positive relief since the Palaeocene (Bayona et al., 2013), while

there are two significant pulses of exhumation at 41 and 25–22 Ma

for the northern Central Andes (Restrepo-Moreno, Foster, Stockli, &

Parra-Sanchez, 2009). Substantial surface uplift (>3 km) has been

reported since 15 Ma in the southern Western/Central Cordillera

(Pardo-Trujillo et al., 2015; Villagomez & Spikings, 2013). Most of

the Eastern Cordillera has had a positive relief since c. 22 Ma (Hor-

ton et al., 2010; Ochoa et al., 2012). The palynological record in the

Eastern Cordillera shows that most of the modern elevation was

reached by 4 Ma (Torres, Vandenberghe, & Hooghiemstra, 2005;

Van der Hammen, Werner, & Dommelen, 1973), but new data sug-

gest the high Andes vegetation to have been present between 9.5

and 5.4 Ma (Hoorn et al., 2017). Although many details of the timing

and sequence of Andean orogeny are lacking, the evidence pre-

sented thus far provides a suitable context for species diversification

in the region.

2.2 | Palynological sampling sites

A geological and palynological study was conducted in western Ama-

zonia along the Amazon River at Los Chorros, Puerto Nari~no (Colom-

bia) to better understand palaeoenvironmental conditions in

Amazonia (Figure 1; Hoorn, 1994). This study also helped to esti-

mate the middle Miocene age based on the presence of markers typ-

ical of biostratigraphic zone T15 (14.2–12.7 Ma; Jaramillo, Rueda, &

Torres, 2011), as well as led to the discovery of new fossil pollen

types. Here new collections were made from these organic-rich clay

layers in the Pebas formation and were compared with extant palm

taxa using Nomarski differential interference contrast (Bercovici,

Hadley, & Villaneuva-Amadoz, 2009).

2.3 | Divergence time estimation

We estimated divergence times based on data from Bacon et al.

(2016) but reduced the alignment to one randomly chosen individual

per species and including outgroup taxa representing major palm

clades to facilitate the dating (Aphandra natalia, Astrocaryum murumuru,

Chamaedorea tepejilote, Geonoma undata, Hyospathe macrorhachis,

Mauritia flexuosa, Nypa fruticans, Serenoa repens). The data were parti-

tioned by locus, except for the chloroplast genes that were treated as a

single partition due to inherent linkage, in BEAST 1.8.1 (Drummond, Ho,

Phillips, & Rambaut, 2006). The analysis used an uncorrelated lognor-

mal molecular clock model, a Yule pure birth speciation model with a

random tree, the GTR+Γ model of nucleotide substitution with four

rate categories, and other prior settings by default. Markov chains

were run for 100 million generations and repeated three times. Con-

vergence was verified with effective sample sizes exceeding 200. Half

of the trees generated were removed as burn-in and runs were com-

bined in LogCombiner 1.8.1. Mean node heights and 95% highest pos-

terior densities (HPD) were generated in TreeAnnotator 1.8.1.

The analysis was dated based on three fossils, each described by

an exponential age prior. Sabalites carolinensis (Berry, 1914) is the

oldest palm fossil identified to modern affinity, and we placed it as a

constraint at the root of the tree. The offset value of the exponen-

tial prior was set at 85.8 Ma and the mean at 1.00 to fully represent

the fossil age range (Harley, 2006). The amber-preserved flowers of

Socratea brownii (Poinar, 2002) have open, sessile, staminate flowers

with 20 and 100 stamens, all diagnostic characters of the genus

Socratea. We placed this constraint on the crown node of Socratea

with an offset value of the exponential prior set to 22.5 Ma and the

standard deviation at 1.17 Ma. The third calibration was placed on

the crown node of Iriartea, based on the here-reported fossil pollen

and the age of the deposit, with an offset of 11.6 Ma and a standard

deviation of 1.4. Subsequently, all macroevolutionary analyses used

the maximum clade credibility tree with outgroups pruned.

2.4 | Geographical evolution of Iriarteeae

We estimated range evolution in BioGeoBEARS (Matzke, 2013),

under the dispersal–extinction–cladogenesis model (DEC; Ree &

Smith, 2008). This and all subsequent analyses were conducted in R

(R Core Team, 2014). We implemented an unconstrained analysis

defining bioregions as follows: A—Lowland Amazonia (<500 m in

elevation; comprising parts of Brazil, Colombia, Ecuador, Peru), B—

Western Andean Cordillera (above 500 m; Ecuador and Colombia), C

—Central Andean Cordillera Andes (above 500 m; Colombia), D—

Eastern Andean Cordillera (above 500 m; Colombia and Venezuela),

E—Choc�o (below 500 m, Colombia, Ecuador, Panama). The use of

the threshold of 500-m elevation was chosen based on the classifi-

cation of palm diversity by Galeano and Bernal (2010), who demon-

strated this to represent a natural elevational divide for many taxa.

2.5 | Phylogenetic community structure

To understand community assembly across bioregions, and its rela-

tion to the biogeographicsl history of clades, we measured the

degree of phylogenetic structure within and among the three major

bioregions of the current distribution of Iriarteeae (Amazonia, Andes,

and Choc�o; Figure S1 in Appendix S1). We used the standardized

effects of the mean pairwise distance (MPD) and mean nearest

taxon distance (MNTD) indexes that are related to the net related-

ness index and nearest taxon index (Webb, Ackerley, McPeek, &

Donoghue, 2002). These metrics compare the observed value of the

BACON ET AL. | 3



MPD and MNTD with values generated under a null model, formu-

lated by reshuffling taxa on the topology over 1,000,000 iterations,

using PICANTE 1.5-2 (Kembel et al., 2010). Resulting values near zero

indicate phylogenetically random assemblages and values greater

than zero indicate phylogenetic clustering, while values below zero

indicate overdispersion (Webb et al., 2002).

Additionally, we measured the degree of phylogenetic turnover

among bioregions using the PIST index implemented in SPACODIR

0.13.0115 (Eastman, Paine, & Hardy, 2011). The PIST index compares

the degree of relatedness among communities containing different

species. We established the significance of our estimations by gener-

ating a null distribution of PIST values by reshuffling taxa across the

topology 100,000 times and comparing the observed values with the

null distribution.

2.6 | Bioregion-specific diversification rates

To estimate speciation, extinction and dispersal rates associated with

the three major bioregions we extended the GeoSSE model to three

states (Goldberg, Lancaster, & Ree, 2011) in ClaSSE, implemented in

diversitree 0.9–3 (Fitzjohn, 2012). ClaSSE allows for models with

more than two geographical areas or traits by applying constraints to

a full model allowing for all possible dispersal, speciation and extinc-

tion parameters for a given number of states.

We defined the same parameters as in the GeoSSe model

extended to include the three bioregions: Amazonia, Andes and

Choc�o (Figure S1 in Appendix S1). As some species are currently

present in two areas, but never three, we reduced model complexity

by prohibiting three area states. Our ClaSSE model had 6 states and

13 parameters that were subjected to further constraints (Table 1):

(1) the speciation within bioregion parameter was constrained to

speciation events occurring within the range from a single or wide-

spread parental lineage, as in the GeoSSe model; (2) the speciation-

between-bioregion parameters were constrained into single parame-

ter representing an overall speciation-by-bioregion divergence rate;

(3) the range transition parameters were constrained to occur in sin-

gle steps. To require range expansion and/or contraction events to

be effective we imposed three constraints: first, that state changes

between two single-ranged states were not allowed; second, that

state transitions between widespread and single ranges were

restricted when common areas between the involved states were

absent; third, that transitions between two widespread ranges could

not occur directly, nor could a two-ranged lineage go extinct without

reducing its distribution first to a single range, as in the GeoSSE

model.

We used a maximum likelihood approach to simulate diversifica-

tion and dispersal parameters associated with bioregions using 1,000

dated phylogenies from the posterior Bayesian sample. In order to

test the reliability of our method, trees were simulated under known

parameter values and analysed under our three-geographic area

model using a maximum likelihood approach. A total of 2,500 simu-

lated birth–death trees were generated using the function “trees” in

diversitree. We used this function to define a ClaSSe-type model

with the 13 parameters defined by our model, resulting in trees with

30 terminals, each with a given state (A, B, C, AB, BC or AC). We

then selected 1,000 trees and checked that those had all six states

present, as some simulated trees recovered fewer less six states.

Finally, we used those 1,000 trees and fit our ClaSSe model using

each simulated tree to obtain parameter estimates (Table 2).

3 | RESULTS

3.1 | Fossil pollen of Iriartea and extant affinity in
Amazonia

Pollen and spores are abundant in the Pebas formation, and com-

posed of taxa typical of a wetland environment, including the extinct

palm Grimsdalea as well as Iriartea. The sediments are identified as

containing fossils from the local vegetation combined with pollen

that eroded from the montane Andean forest (Hoorn, 1993). We dis-

covered three grains that have affinity to Iriartea, two of which are

described here and are assigned to the new species Gemmamonocol-

pites galeanoana Hoorn and Bacon (Appendix S2). The third grain is

not informative enough to allow a precise identification, but given

its overall similarity to other species in the genus we treat it as Gem-

mamonocolpites sp. All the pollen morphological features and mea-

surements together with the comparison with extinct and modern

Iriartea, are listed in Table S1 in Appendix S1.

F IGURE 1 Pollen microphotography and plate composition for Gemmamonocolpites galeanoana (1 and 2) and Iriartea deltoidea (3a and b).
Fossil pollen of G. galeanoana was discovered in Miocene deposits along the Amazon River at Los Chorros, Puerto Nari~no (Colombia)
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3.2 | Divergence times and range evolution

The phylogeny resolved inter-generic and interspecific relationships

with overall high posterior probabilities (Figure 2) and were consis-

tent with previous work (Bacon et al., 2016). The crown node of the

tribe was inferred during the Eocene (mean age 43 Ma; 56.9–31.4

Ma) and the ancestral range was largely ambiguous. The ancestral

range of Iriartea+Dictyocaryum was probably widespread across

northern South America during the Miocene, whereas the ancestor

of the remainder of the tribe was much older (Eocene; mean age of

39 Ma) and most likely distributed in Amazonia (area A; Figure 2).

Ancestral lineages of Wettinia+Socratea were primarily distributed in

Amazonia and the Western Cordillera of the Colombian Andes (areas

A and B) in the late Eocene (mean age of 35 Ma), and although the

ancestral distribution of Socratea is largely ambiguous, the Western

Cordillera continued to be fundamental for the diversification of

Wettinia, particularly in the Miocene as shown by the area

reconstructions (Figure 2). Only more recently did the Central and

Eastern Cordilleras of Colombia become colonized, in the late Mio-

cene and late Pliocene respectively. This pattern is particularly evi-

dent and strongly supported in Wettinia, where a vicariance event is

inferred in the Central and Eastern Cordilleras and W. anomala was

distributed in the Central Cordillera and the ancestor of W. micro-

carpa and W. praemorsa dispersed into the Eastern Cordillera <3 Ma.

From an ancestral Amazonian range, the genus Wettinia underwent

diversification in the Andes during the Miocene, then recolonized

Amazonia c. 5 Ma, resulting in two species endemic to the biore-

gion.

3.3 | Community assembly and diversification in
Iriarteeae

Phylogenetic structure and general patterns of phylogenetic diver-

sity, as inferred from the MPD metric, showed two statistically sig-

nificant results (Table S2 in Appendix S1) where Amazonian species

are phylogenetically overdispersed and the Andean lineages are clus-

tered. When considering phylogenetic turnover, the beta diversity

between the Amazonian and Andean communities differed signifi-

cantly (PIST ~0.06; Figure S2 in Appendix S1).

In the ClaSSE analysis we found that our model based on the 13

parameters is highly recoverable from simulated data, showing that

species diversification was strongly determined by bioregion occur-

rence (Figure S3 in Appendix S1). Although posterior distributions of

dispersal, extinction and speciation as inferred from our model in Iri-

arteeae were largely overlapping, median values suggest that specia-

tion and extinction are higher in the Andean bioregion compared to

the two others (Figure S4 in Appendix S1). Further, dispersal from

Choc�o to Amazonia and from Amazonia to the Andes had the high-

est rates of all combinations of dispersal.

4 | DISCUSSION

We inferred the evolutionary history of Iriarteeae palms and exam-

ined bioregion-driven diversification, combining ancestral range esti-

mation on a dated phylogenetic tree integrated with the fossil

TABLE 1 Parameters and constraints used in our three-area model. Numbers indicate the states (bioregions) used: AB (1), AC (2), A (3), B
(4), C (5), BC (6), where A is Amazonia, B is the Andes and C is the Choc�o. k refers to speciation events (followed by three numbers, the first
one indicating the parental species state followed by two other numbers indicating the states of the resulting daughter lineages), q refers to
range expansion or range contraction events (followed by two numbers indicating state change—i.e. expansion or contraction—from one state
to another) and Mu refers to extinction events (followed by the number of states subject to extinction)

Speciation within bioregions Speciation between bioregions Extinction/Range contraction Range expansion

s A = k333 = k113 = k223 s Bet = k134 = k235 = k645 x A = Mu3 = q14 = q25 d (A-AB) = q31

s B = k444 = k114 = k646 x B = Mu4 = q13 = q65 d (B-AB) = q41

s C = k555 = k225 = k656 x C = Mu5 = q23 = q64 d (C-AC) = q52

d (A-AC) = q32

d (B-BC) = q46

d (C-BC) = q56

TABLE 2 Comparison of the estimated (median values across
trees) and the simulated data under the three-bioregion model (A is
Amazonia, B is the Andes, and C is the Choc�o), where speciation,
extinction and dispersal are abbreviated s, x and d respectively.
Speciation between bioregions is shown by s Bet

Parameter Real value Median % Difference 5%–95% Quantiles

s A 1.2 1.07 10.83 0, 2.98

s B 1.8 1.69 6.11 0.62, 3.63

s C 0.9 0.81 10 0, 2.69

s Bet 0.6 0.44 26.66 0, 2.98

x A 0.7 0 100 0, 4.62

x B 0.8 0.49 26.25 0, 4.58

x C 0.5 0 100 0, 5.37

d (A-AB) 1.2 0.95 20.83 0, 7.5

d (B-BC) 0.8 0.8 0 0, 3.58

d (C-AC) 1.8 1.37 23.88 0, 11.03

d (B-AB) 0.5 0.47 6 0, 3.45

d (C-BC) 1.5 1.12 25.33 0, 11.44

d (A-AC) 1 1.2 20 0, 8.49
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F IGURE 2 Dated molecular phylogeny of the palm tribe Iriarteeae based on 11 genes and node calibrated with three fossils. Ancestral
range reconstruction using five areas (inset) and extant distributions (coloured squares at tips) is shown as pie charts at nodes. White sections
of the pie charts represent all combined distributions with a probability of <.05 inferred for that node. Branch support values lower than 1.0
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wetland (Hoorn et al., 2010; Jaramillo et al., 2017), positive relief in the Eastern cordillera (Horton et al., 2010; Ochoa et al., 2012), and mid-
Miocene Western Cordillera (Montes et al., 2015)
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record. The temporal framework of this study is consistent with pre-

vious studies (Baker & Couvreur, 2013; Couvreur, Forest, & Baker,

2011), where our results fall within previous credibility intervals. We

expected and found evidence for relatively few dispersals between

Amazonia, Andes and Choc�o bioregion. Dispersals were associated

with uplift of the Andes and the presence of the Miocene Pebas

mega-wetland affecting lowland sites, where dispersal events were

associated with changes in diversification rates.

4.1 | Range evolution

The study of our new fossil discoveries shows that Gemmamonocol-

pites barbatus (Eocene) strongly resembles Iriartea and G. galeanoana

(Miocene). This affinity suggests that Iriartea ancestors have a long

history, deeply rooted in the Cenozoic (63 Ma mean stem age of the

tribe). Both the Eocene and Miocene deposits in which G. barbatus

and G. galeanoana were formed are indicative of lowland, estuarine

conditions. The deposition scenario of these pollen grains further

suggests that ancestral lowland lineages were affected by the Mio-

cene mega-wetland in western Amazonia. Iriartea is a monotypic

genus today but it could have lost diversity during climatic and habi-

tat changes as a result of marine incursions in Amazonia (Jaramillo

et al., 2017). Diversification and population structure have also been

shown to be influenced by these wetlands in Astrocaryum palms

(Roncal, Kahn, Millan, Couvreur, & Pintaud, 2013; Roncal et al.,

2015). Furthermore, the results from the ancestral area analysis

show that vicariance was an important factor affecting distributions

(Figure 2). As the Andes mountains rose, they split former large dis-

tributions, such as Iriartea deltoidea and Socratea exorrhiza, which are

abundant in the lowlands of both Amazonia and Choc�o.

From the Palaeogene onwards, lowland Iriarteeae lineages diver-

sified concomitantly with the Andean uplift, with the Western Cor-

dillera of Colombia playing a key role for diversification (Figure 2).

Few studies have included fine-scale sampling across the northern

Andean cordilleras, but a recent study showed the Western Cordil-

lera as being the ancestral distribution for butterflies (De-Silva, Elias,

Willmott, Mallet, & Day, 2016), although at more recent time-scales

than for Iriarteeae. Furthermore, reduced differentiation between

montane species inhabiting the Central and Western Cordilleras of

Colombia suggest connectivity and/or recent divergence (Chaves &

Smith, 2011). The geological evolution of the Western Cordillera is

still debated, but its ancient origins and increased exhumation rates

from 15 Ma (Pardo-Trujillo et al., 2015; Villagomez & Spikings,

2013) are both corroborated by the results of the calibrated phy-

logeny, where the Western Cordillera is colonized in the early Ceno-

zoic and reconstructed as the ancestral distribution for many

lineages in the Miocene (Figure 2). The Central and Eastern Cordil-

leras are subsequently colonized in the middle to late Miocene (Fig-

ure 2). Geological evidence for the timing of these terrains is an

active area of research, yet a late Miocene elevation gain has been

proposed (Anderson, Saylor, Shanahan, & Horton, 2015; Torres et al.,

2005; Van der Hammen et al., 1973) and is consistent with our bio-

geographical results. The inference of ancestral ranges in the Choc�o

(ca. 15–7 Ma; Figure 2) are also consistent with geological informa-

tion that eludes to the formation of Choc�o-like conditions (e.g. oro-

graphic precipitations, hyperpluvial system, major fluvial networks,

high biodiversity, reduction in sea surface salinity) starting c. 16 Ma

with sustained activity until c. 5 Ma (Pardo-Trujillo et al., 2015). We

find corroboration of distributions and diversification in palm clades

in relation to the geological history of the Andes (Aiphanes, Eiser-

hardt et al., 2011; Iriarteeae, here; Ceroxylon, Sanin et al., 2016;

Cryosophila, Cano et al., 2018), showing palms tracked these highly

dynamic geological systems.

4.2 | Bioregion evolution

When the geographical distribution of Iriarteeae is split into three

major bioregions (Amazonia, the Andes and the Choc�o), we find spe-

cies turnover to be significant between the Andes and Amazonia,

complemented by significant phylogenetic structure of these biore-

gions (Table S2 in Appendix S1). The ClaSSE analysis showed that

both speciation and extinction rates are higher in the Andes than in

the other bioregions. Furthermore, the dispersal rate from Amazonia

to the Andes was the highest of all possible combinations. The

Choc�o did not recover significant results for either species turnover

or phylogenetic community structure, although the bioregion recov-

ered one of the highest rates of overall dispersal from the bioregion-

driven diversification rate tests. Taken together, these results on the

Choc�o may be explained by the fact that the bioregion harbours a

lower number of species that are concentrated in two clades of Wet-

tinia, and any biogeographical pattern may be masked by its poten-

tially shared history with the lowlands of Amazonia and strong

connections with Central America that were not accounted for in

this study. Although issues with small phylogenies and the perfor-

mance of SSE suite of methods have been identified (Davis, Midford,

& Maddison, 2013; Gamisch, 2016), we show with simulations that

the parameter values of the model of empirical range evolution in Iri-

arteeae are highly recoverable in our ClaSSE analysis (Figure S4).

Recent studies increasingly show that phylogenetic conservatism

is not a general rule, such as in the Neotropics (Antonelli & San-

mart�ın, 2011), or at finer spatial scales (Donoghue & Edwards, 2014).

For example, the Cerrado bioregion has been shown to be a sink for

various lineages in both neighbouring and distant bioregions, such as

rainforests, seasonally dry forests, subtropical grasslands and wet-

lands, where shifts drove morphological adaptations to fire resis-

tance (Bacon, Moraes, Jaramillo, & Antonelli, 2017; Simon et al.,

2009). At finer scales, Souza-Neto, Cianciaruso, and Collevatti (2016)

show that habitat shifts and dispersal are an important part of Cer-

rado legume diversity. Our results also show multiple migration

events amongst bioregions, in particular between Amazonia and the

Andes.

It has been suggested that habitat heterogeneity and complex

topography have created Andean diversity, rather than orogeny

(Mutke, Jacobs, Meyers, Henning, & Weigend, 2014), but this is an

incorrect dichotomy when considering that habitat diversification

and changes in topography are a direct result of mountain building
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and associated climate changes. Most published results in verte-

brates point to lowland origins for a majority of clades (e.g. Brum-

field & Edwards, 2007), which is consistent with the Amazonian

origin for Iriarteeae palms. In contrast, a study of dendrobatid frogs

(Santos et al., 2009) showed that a majority of dispersals occurred

from the Andes into Amazonia. As pointed out by Brumfield and

Edwards (2007), pinpointing vicariant events that played a role in

the isolation of colonizing Andean populations from source lowlands

populations is difficult because of the long and dynamic history of

the bioregion in combination with climatic fluctuations (e.g., Gosling

& Bush, 2005). This is also a general concern in biogeographic stud-

ies, where geological and climatic events are often inter-linked and it

may be difficult to propose causation rather than correlation (Linder,

Rabosky, Antonelli, W€uest, & Ohlem€uller, 2014). Many idiosyncrasies

of Andean radiations remain to be fully understood, including the

role of biogeographical history. Even after over 200 years of work

dedicated to the understanding of the intimate relationships

between the Andes and their fantastic diversity (von Humboldt &

Bonpland, 1807), we continue to make interesting discoveries.
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