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RESUMEN 

 

El dengue es un importante problema de salud pública en los países tropicales, 
particularmente en América Latina, donde su incidencia es alta. La enfermedad es 
endémica en la Costa, la Amazonía y en las estribaciones andinas del Ecuador. La 
prevalencia del dengue está relacionada con varios factores, incluidos los patrones 
climáticos, las condiciones socioeconómicas, las medidas de control de vectores y la 
movilidad humana. Si bien se han empleado métodos estadísticos para analizar los 
patrones de incidencia en Ecuador, estos no consideran la conectividad entre ciudades. 
Para llenar este vacío, se desarrolló una red bipartita para comprender la concurrencia 
de casos de dengue entre las ciudades ecuatorianas e identificar los nodos críticos de 
la enfermedad. La técnica de proyección de Newman ponderada generó una red donde 
los nodos eran ciudades con casos de dengue notificados. Las métricas de centralidad 
de redes se aplicaron para identificar nodos focales en la propagación del dengue. Estos 
nodos claves fueron Guayaquil, Machala, Santo Domingo, Quevedo, Manta, Orellana y 
Lago Agrio, los cuales juegan un papel crucial como conectores y propagadores de la 
enfermedad. Los resultados de este estudio se pueden utilizar para centrarse en 
intervenciones médicas como la limpieza y la inmunización y cómo se puede evitar o 
controlar el virus del dengue en áreas contiguas. El análisis de red para este estudio se 
realizó con R y Gephi, pero podría automatizarse completamente en R. Este estudio 
destaca la importancia de utilizar un enfoque de red para comprender la propagación 
del dengue, particularmente en regiones con alta movilidad e incidencia. Los hallazgos 
de este estudio podrían ayudar a los funcionarios de salud pública y a los formuladores 
de políticas a desarrollar estrategias efectivas para controlar el dengue en Ecuador y 
otras regiones similares. 

Palabras clave: incidencia de dengue, redes bipartitas, nodos control, centralidad de 
redes, Ecuador. 
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ABSTRACT 
 

Dengue is a significant public health concern in tropical countries, particularly Latin 
America, where its incidence is high. The disease is endemic on the Coast, in Amazonia, 
and in the Andean foothills of Ecuador. Dengue prevalence is closely related to various 
factors, including climatic patterns, socioeconomic conditions, vector control measures, 
and human mobility. Although statistical methods have been employed to analyze 
incidence patterns in Ecuador, they do not consider the connectivity between cities. To 
fill this gap, we developed a bipartite network to understand the co-occurrence of dengue 
instances among Ecuadorian cities and pinpoint illness hotspots. The projection-
weighted Newman technique generated a network where nodes were cities with reported 
dengue cases. The centrality metrics of networks were applied to identify focal nodes in 
the spread of dengue. These key nodes were Guayaquil, Machala, Santo Domingo, 
Quevedo, Manta, Orellana, and Lago Agrio, which play a crucial role as connectors and 
propagators of the disease. The results of this study can be used to focus on medical 
interventions such as cleanliness and immunization and how the dengue virus can be 
avoided or controlled in contiguous areas. The network analysis for this study was 
performed using R and Gephi, but it could be fully automated in R. This study highlights 
the importance of using a network approach to understand the spread of dengue, 
particularly in regions with high mobility and incidence. The findings of this study could 
aid public health officials and policymakers in developing effective strategies for 
controlling dengue fever in Ecuador and other similar regions. 

Keywords: dengue incidence, bipartite networks, control nodes, network centrality, 
Ecuador. 
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Abstract

Background: Dengue fever is one of the predominant vector-borne diseases in
tropical and subtropical zones. In the Neotropics, Aedes aegypti is the primary
incriminated vector of this disease. Dengue is endemic to all urbanized
settlements in the Coast, Amazonia and the western and eastern foothills of the
Andes. The typical approach to analysing its incidence is the temporal and spatial
strategy. Another novel method for studying the transmission of infectious
diseases is network analysis, specifically a bipartite network. To understand how
synchronized cases are among cantons, we model and analyze the spread dynamic
of dengue in Ecuador during 2014-2021 using the social network analysis method.

Material and methods: The annual hospital discharges in Ecuador from
2014-2021 were used in this study. At first, the incidence rate and trend patterns
of dengue were analyzed. Then, the construction of the unipartite network
involved three steps: the structure of the bipartite network, transformation
through the weighted Newman method, and the illustration of the net in Gephi.
Then, we evaluated the nodes of networks by centrality metrics to determine
control nodes. At the same time, we assessed the robustness of regional networks
(Amazonia and Coast) in a targeted attack.

Results: The exploration of data showed that the years 2015, 2020 and 2021 had
higher incidence values. Both, for the Coast and the Amazon, the incidence has a
similar main pattern and year seasonality; but the peaks of cases are in April-May
for Coast and January-February in Amazonia. The network analysis model
revealed that the global measurement of annual networks indicated how dengue
proliferated between cantons. In addition, the Guayaquil, Machala, Santo
Domingo, Quevedo, and Manta control cantons were determined by betweenness
and closeness centralities. Finally, the network of Coastal provinces is more robust
than the Amazonia net.

Discussion: Dengue is sensitive to social features and changes in climate
conditions. On the one hand, the increase in the incidence of dengue in 2015 and
2020-2021 was possibly caused by ENSO, and the COVID-19 pandemic,
respectively. Some contributions affirm that dengue has a seasonal pattern, and
high level occurs during the rainy season. On the other hand, the global
attributes of the network allows the understanding of dengue transmission in past
years. Still, the centralities allows to identify connector and propagator nodes
that are important for deciding public health interventions. Finally, despite those
networks being scale-free, the Coast net is more robust than Amazonia due to
the difference in the number of nodes and edges.

Keywords: dengue incidence; bipartite networks; control nodes; network
centrality; Ecuador

mailto:michellsalcan@hotmail.com
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Introduction
Dengue fever is a viral infectious disease caused by dengue virus (DENV), which

belongs to the genus Flavivirus, family Flaviviridae, with four distinct serotypes

(DENV-1, DENV-2, DENV-3, DENV-4) [1]. The virus is transmitted to humans

mainly by the bite of Aedes aegypti female mosquitoes infected with DENV. The

mosquito has diurnal habits; it can feed on the blood of multiple hosts quickly

and overlaid its eggs in any containers that store water [2]. Climate change,

biodiversity reduction, and growing urbanization have been demonstrated to favour

the proliferation of DENV vector mosquitoes [3]. Although, it is not contagious;

nevertheless, the virus can be spread to uninfected mosquitoes through the ingestion

of blood when a virus carrier is bitten [4].

Network analysis diagrams are used in public health to understand the spread of

disease and make prevention and treatment decisions. In the networks, everything

is connected in various ways, and when we are connected to infected people or

areas, knowing how to describe these interconnections using graphs theory provides

an understanding of how diseases can spread [5]. During the last decade, many

complex systems have been modelled and analyzed using graphs theory and complex

networks; this has allowed the research about epidemic diseases, their interactions,

and their modelling [6].

According to the World Health Organization (WHO), the number of reported

dengue cases has increased eight times in the last 20 years. In 2000, there

were 505430 cases, while in 2019, there were 5.2 million cases. Furthermore, the

deaths notified between 2000 and 2015 went from 960 to 4032 [7, 8]. Thus,

dengue has become a public health problem affecting most of the countries of

Asia, Latin America and Africa and is one of the causes of hospitalization and

mortality in children and adults [9]. In Ecuador, the four dengue serotypes show an

endemic-epidemic behaviour, being a priority public health problem that threatens

the tropical and subtropical zones of the country. Due to the Ministerio de Salud

Pública (MSP) has proposed vector control in epidemiological zones, epidemiological

surveillance, and entomological studies, together with monitoring of the distribution

and Aedes aegypti density [10]. However, based on the Official Vector Gazettes,

in 2020, there were 16570 confirmed dengue cases with a fatality rate of 0.036%,

whereas, in 2021, there were reported 20592 and a fatality rate of 0.92%. While

during 2022 until epidemiological week 41, 14636 confirmed dengue cases were

reported [11]. This indicates that in the last three years, the number of dengue

cases has increased, despite the preventive measures of the MSP.

Several mathematical models have been formulated to describe the transmission

of the dengue virus in Baguio City, Philippines. [12, 13, 14]. In Ecuador, the previous

studies of dengue evaluate the prevalence, identify the serotype of the dengue virus,

or the influence of social and ecological factors on epidemic outbreaks in a specific

place and time [15, 16]. However, no study about the spatial or cantonal relation

shows dengue disease distribution analysis. Therefore, this study provides modelling

based on the graph theory and complex networks, which allows the identification

of nodes (cantons) with high centrality potentially of interest for epidemiological

control.

Nevertheless, although network analysis has focused on studying unipartite

networks (single node), the bipartite networks or two-mode/node network enables
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a deeper study of epidemiological variables by classifying individuals by gender,

location, infectious agent, or comorbidities. The bipartite networks can model

vector-borne diseases and the spread of diseases in which the primary set nodes

belong to geographic locations where the epidemic occurred, and the second set

consists of infected cases [17]. Two-mode networks are often transformed into

single-node networks by projection methods for analysis [18].

A bipartite network was applied to formalize the phenomenon of dengue

propagation in Gombak, Malaysia. The primary set nodes were localities of

Gombak; on the contrary, the secondary set nodes were epidemiological weeks,

and the number of dengue cases in that place and time gave the bond between

them. The bipartite network was projected using different methods (Sum, Binary,

Newman, and weighted Newman), so the locations connected through links that

were established by the co-occurrence of the week were obtained [18, 19, 20]. This

study showed that the weighted Newman projection method is more accurate and

allows us to determine the focus nodes which facilitate the spread of dengue and

have a more significant influence on the transfer of the virus. These focus nodes are

a crucial point for control and treatment since they reduce the interconnectivity of

the network [6].

On the other hand, in the Philippines, two-node network modelling (bipartite

network) was used to analyze dengue incidence data from 2010 to 2018 in Baguio

City. The data set used for this research was the location, where the smallest

political unit was barangays, time in months, and patient age. As a result, generated

different bipartite networks, for example, time-location, time and location-age.

These networks were projected through Newman and weighted Newman method,

which preserves connectivity information of the net. Finally, both projection

methods were compared by applying network measurements to the one-mode

and two-mode networks. This allowed us to identify control points with more

concentrated dengue activity, the months corresponding to a peak dengue season,

and the most common dengue age group [21].

In this paper, we model and analyze the diffusion dynamic of dengue in Ecuador

during 2014-2021 using the social network analysis method. Using an actual data

set of dengue cases in Ecuador, we construct bipartite networks and project them

into unipartite networks using the Weighted Newman projection method. The social

network analysis finds the qualities of graphs and the centrality of each canton. The

results allow knowing how cantons interact and identify control cantons that may be

super-spreaders in a cluster. The approach analyzes dengue distribution in Ecuador

cantons, identifies areas that require special attention for medical intervention and

provides more details about the distributions of dengue infection than previous

studies.

Methodology
Information collection (Data)

In 2013, the Sistema de Información de Vigilancia Epidemiológica from MSP

implemented a standardized system for case records of diseases caused by vectors.

However, complete records have been available since 2014 [11]. A proportion of

infected people requires hospitalization; these data are reported by the MSP to
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the Instituto Nacional de Estad́ıstica y Censos (INEC) [22]. In this study, we

used publicly accessible data at INEC webpage for hospitalized dengue cases in

continental Ecuador during the period 2014 to 2021. That entity is responsible for

hospitalization records in Ecuador through annual hospital discharges. From now

on, the dengue instances that have required hospitalization will be described as

”cases”. For each dengue case, the date attributes incorporated the epidemiological

week, year, canton, province and region. This pre-treatment was performed using

R 4.2.2 [23].

Exploratory analysis and generalization of the bipartite network structure

Initially, the annual incidence of dengue cases for every 100000 people was

determined at the county level. The population data were obtained from INEC

population projections 2010-2025 [22]. The data on dengue cases was employed

to analyze the trend and seasonal patterns at the country and regional levels.

For the average dengue incidence used the total Ecuadorian cantons (223) as the

denominator, but for the average dengue instances only the number of cantons with

active cases was counted. Additionally, cantons level yearly maps were generated

to visualize temporal patterns. Both analyses were carried out in R 4.2.2 [23],

using libraries raster, sf, dplyr, tidyr, RColorBrewer, geodata, forecast, tseries, and

ggplot2.

A bipartite network was generated using cantons, epidemiological weeks, and the

number of cases. The bipartite network has two different sets of nodes; the primary

set corresponds to the ”location/canton” (source), and the secondary nodes to

the ”epidemiological weeks” (target). The links which connect both sets were the

number of reported cases, so the network is a weighted one Fig. 1, Bipartite Network.

Projection to a unipartite network

Bipartite network analysis is complex in its original form, so it is regularly converted

to unipartite networks by tnet package of R-project [23] and then analyzed. The

network transformation was performed using the Weighted Newman projection

method [19] given by Eq. 1, which has shown accurate results compared to the

Binary, and Sum methods [6, 21]. This method was proposed by Opsahl, where the

link weight is formalized as follows:

wij = Σp
wip

Np − 1
(1)

where wij is the weight between node i and j, wip is the link weight of node i with

the co-occurrence, and Np is the number of nodes linked to node p or co-occurrence.

In the projection, the connected locations/cantons were obtained through direct

links set by the number of reported cases and the epidemiological week. The cantons

were linked if they presented claims in the same epidemiological week; see Fig. 1,

Projection to a unipartite network for each year.

Network parameters to identify critical nodes

The projected networks were plotted in Gephi 0.9.5 [24]. For each network, the

global metrics (average degree, average strength, diameter, density, average path

http://aplicaciones3.ecuadorencifras.gob.ec/BIINEC-war/index.xhtml
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Figure 1: Projection of network. Projection of a bipartite network to a

unipartite network through the Weighted Newman projection method using

locations with dengue cases by epidemiological weeks. Colours represent

geographical regions within the country. Orange for Coast, blue for Amazonia,

and green for Interandean region

length and modularity) and local properties for each node (Degree, Closeness and

Betweenness centralities) were determined. Additionally, those centrality ratings

can reveal information about cantons that have a significant impact on establishing

a network in specific settings.

A ranking of the first twenty nodes with high closeness and Betweenness

centralities of each annual network was generated. All the top-ranked cantons were

considered highly connected, but those cantons that were all year were the primary

control nodes. In comparison, the robustness of Coast and Amazonia networks was

analyzed by percolation theory.

Results
Fig. 2 shows that during 2014-2021, 39 of 221 cantons of Ecuador presented an

incidence lower than 200 cases per 100000 inhabitants. The number of cantons

affected in each region was 35 from Coast, seven from Amazonia, and seven from

the Interandean, particularly those that have a tropical or subtropical climate or

are lowlands. Furthermore, there were 111 counties with no cases during 2014-2021.

Those are mainly from the Interandean region. Also, the high incidence levels in

Lago Agrio, Tena and Orellana are repetitive. But, 2015 had the highest incidence

values, with an average of 29.91 dengue cases for every 100000 Ecuadorians, where

Arenillas canton showed an incidence rate of 485.50. On the contrary, in 2018, the

average incidence rate was 3.58.

The dengue cases averages were 40.54, 69.70, 30.63, 15.86, 9.90, 43.34, 66.76, and

74.61 for 2014, 2015, 2016, 2017, 2018, 2019, 2020 and 2021, respectively. It showed

that in the years 2015, 2020, and 2021 there were more amount cases; 6691, 5808,

6193. For that reason, in Fig. 3 (A), the years 2015, 2020, and 2021 are the endemic
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Figure 2: Incidence of dengue cases in the cantons of Ecuador during

2014-2021.The colours yellow, orange and red show a low, medium, and high

dengue incidence. While cantons in white are those where not any dengue cases

were reported.

year that showed peaks in the data and trend section, whereas the low levels of

dengue occurred in the years 2017 and 2018.

The seasonal sections countrywide exhibited periodic annual patterns, which

indicates that there are specific weeks in which the number of dengue cases increases

and in others decreases. In the first semester of the year, there is growth in several

instances, while in the last semester, they decline; see Fig. 3 (A, B). The trend

and seasonality are more uniform on the Coast (B), and in the Amazonia (C), it is

random. Nevertheless, the seasonality peak in Amazonia starts a few weeks before

the end of the year, while on Coast, it begins weeks after the beginning of the year.

Figure 3: Time series of dengue cases in continental Ecuador and its

decomposition in trend, seasonal and remainder values for 2014-2021

data. A. Countrywide. B. Coastal cities. C. Amazonian cities.

According to Table 1, and Fig. 4, 2015 had the highest number of dengue cases.

This is demonstrated by the 93 existent nodes or cantons and the 6840 edges
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generated by projection. Based on the 73.548 average degree value in 2015, it is

estimated that a canton affected had a relationship with 73 other cantons. Moreover,

the strength is the relationship in the number of dengue cases, which is ≈ 71 cases

between two different nodes in the year 2015. The average path length, which

had a value of 1.201, represents the distance of the number of dengue cases and

counties, suggesting that the places affected are in close proximity. The network

diameter value was 2, which also supports this. This smaller value indicates that

the maximum distance between cantons in the year 2015 is shorter than the others

years. The density of the year 2015 was 0.799. This value is high because the graph

2015 in Fig. 4 is overly dense due to so many nodes and edges.

Table 1: Attributes of the annual graphs formed by dengue cases.
Year Nodes Edges Average Average Diameter Density Average

Degree Strength Path Length
2014 80 4622 57.8 41.2 2 0.731 1.269
2015 93 6840 73.5 70.8 2 0.799 1.201
2016 87 5028 57.8 30.9 2 0.672 1.328
2017 71 2958 41.7 16.0 2 0.595 1.405
2018 66 1888 28.6 10.1 2 0.440 1.560
2019 80 4222 52.8 43.8 2 0.668 1.332
2020 86 5408 62.9 66.8 2 0.740 1.260
2021 80 5230 65.4 76.6 2 0.828 1.172

Table 1 shows that the network diameter and average path length are reducing,

which indicates that the cantons are more united among them, which implies an

increase in the transmission rate.

The annual networks there were formed mainly by cantons of the Coast, which

showed the most significant number of cases. Guayaquil was on size top with 1527,

1758 and 2494 number dengue cases in 2015, 2020, and 2021 years. Nonetheless, the

size of the nodes that are part of the network of 2018 was small, indicating that the

number of dengue cases declined notably for this year in all cantons, see Fig. 4.

Fig. 5 shows the cantons with the twenty higher values of the Betweenness and

Closeness centralities; those were not the same yearly. However, 12 of them were

presented for only one year. Others like Portoviejo, Lago Agrio and Orellana in

the Betweenness centrality; Portoviejo, Milagro and Lago Agrio in the Closeness

centrality were manifested up to seven times, and control nodes may be possible,

see Fig. 6. In comparison, five cantons were in the rankings during all years, such

as Guayaquil, Machala, Santo Domingo, Quevedo, and Manta, considered primary

control nodes for spreading the dengue virus and had a considerable influence on

the transmission of the virus, possibly due to human mobility. Further, these nodes

are focused on the treatment of the dengue disease due to they can reduce the

interconnectivity of the dengue network, see Fig. 7. This suggests that the rate of

disease transmission in these six areas continues for eight years, in comparison to

other cantons, where their Betweennees and Closeness centralities are intermittent,

such Flavio Alfaro, Morona, Yantzaza, Loja, Muisne, Naranjto, El Guabo, San

Lorenzo, Ventanas, Salinas, and others. This could be information for the MSP

about the highest priority needs for preventive, therapeutic, or eradication efforts.

Based on this, Fig. 6 shows the frequency of the cantons like central control nodes.

The blue colour intensifies when the nodes have been at the top of the ranking for

years, for example, Guayaquil, Machala, Santo Domingo, Quevedo, and Manta in the
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Figure 4: Projected Networks of dengue in cantons of Ecuador during

2014-2021. The purple, orange and green nodes belong to the geographical

regions of Coast, Andes and Amazonia, respectively; node size is proportional to

the number of dengue cases, and edge thickness is proportional to the number

of related cases between the two nodes

Coast, and Orellana and Lago Agrio in the Amazonia. Furthermore, the intensity

of the colour decreases for the cantons that were in the ranking only one time,

that are those that had dengue cases but are not considered as control nodes with

significant influence for the diffusion of the dengue virus. While the counties that

do not present dengue cases are white.

The critical points to affect the integrity of the Amazonia network were

approximately ≈ 0.75 and Coast was ≈ 1, so the Coast networks have greater

robustness. The robustness quality depends on the number of nodes, edges and

type of network. Generally, a scale-free network does not fall apart after removing

a finite fraction of nodes, and it is necessary to remove almost all nodes (f≈ 1) to

fragment these networks. For example, the size of the Coast net decrease gradually,

only when the fraction of nodes removed f≈ 1 it is completely broken. However,

the difference is in the shape of the two curves. Indeed, the removal of an f fraction

of nodes in the Amazonia network leaves us with a network with less number of

nodes than the removal of the same fraction of nodes in the Coast network. Hence,

removing an equal f fraction of nodes as 0.50, in both networks causes more damage

in the Amazonia than in the Coast network. For this reason, the Coast network had

greater robustness than the Amazonia network, see Fig. 7.

Discussion and conclusion
This paper presents the incidences and patterns of dengue cases during 2014-2021

and an approach for identifying the crucial nodes in the dengue spread in Ecuador by

network analysis method. Calculation of incidence rate using a constant population

can consider a solution when the incidences are small (<100/100,000 people), or
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Figure 5: Ranking of betweenness and closeness centralities network

parameters along 2014-2021. Thicker lines are cantons which were in the top

20 continuously.

Figure 6: Spatial frequency of top 20 cantons based on their

betweenness and closeness centralities. Cantons in light blue had active

cases but were never top 20, and cantons in white never had active reported

cases.

when the population size change is small compared to the estimated effects [25].

In this study, there are medium and high incidences (>100/100,000 people). For

that reason, the incidence was calculated with a variable population obtained from

INEC population projections [22].



Salcan Page 10 of 17

Figure 7: Comparison of the Robustness between Coast and Amazonia

networks. Continuous lines are the average for 2014-2015, and dashed lines are

from each year.

The cantons with high dengue incidences are in the Coast and Amazonia regions.

It is consistent whit [26] that showed the morbidity rates by the vector-borne

disease are minor in the Interandean region than in the Coast and Amazonia. The

difference in dengue incidence in each canton can be a result of socioeconomic and

population features, along with vector presence and its relation with climate and

El Niño-Southern Oscillation (ENSO) [27].

Ae. aegypti prefers to imbibe on human blood multiple times as an energy source

for egg development, thus generating great proximity with humans [28]. Despite, it

feeding on the blood of multiple host species, it prefers human blood; because of

low-isoleucine and high-triglycerides (lipids) concentrations in human blood, which

help the mosquito accumulate more energy reserves, for that reason included at

least one human host in its diet [29]. In addition, the nearness between infected and

susceptible individuals is more frequent in densely populated urban areas than in

smaller communities in rural areas [30]. For that reason, the mosquito population

and diffusion rate of dengue increase in densely populated places [31]. The populated

places are crowded areas that experience higher human movement fluxes than less

dense settlements [32]. According to the road connectivity analysis in Ecuador

report , there are seven clusters connected to various populated centres, five of which

could be related to dengue dispersion. In a minimum travel time of two hours, the

vital clusters connect central-Occident, north-Occident, and south-Occident zones

on the Coast, and north-Orient and south-Orient in the Amazonia [29, 33]. It

indicate that in Ecuador the main areas of agglomeration by population density

and human mobility are Guayaquil, Santo Domingo, Portoviejo, Manta, Machala,

Lago Agrio, Coca, and zones from Morona Santiago y Zamora Chinchipe [22]. The

great connectivity of these areas can result in that dengue cases being related in each

cluster, due to there being a higher probability of their inhabitants commuting to

infected areas or receiving infected visitors. The infected person can travel between

active areas and disease-free areas driven by the geographical spread of infectious

pathogens [30].

In the Coast region, the elevations do not exceed 800 m.a.s.l; and the ideal altitude

for mosquitoes in the tropics is below 1200 m.a.s.l [34]. Therefore the lowlands

https://www.pastudillo.com/andeanregion
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from Coast can be the most suitable habitat for the mosquito, and areas with

high elevation can act as biogeographic barriers [31]. Nevertheless, a mosquito was

found at 2302 m.a.s.l in Colombia’s Andean area with characteristics similar to

the Interandean zone in Ecuador [35]. In the Interandean region of Ecuador, 1680

m.a.s.l was the maximum altitude where Aedes aedypti was reported [28].

The temperature affected the different phases of the vector development cycle,

including maturation, survival, and population density [36, 37]. The ideal temperature

for the development of dengue mosquitoes is between 22°C and 26°C [38] like in the

Coastal or Amazonian cantons. However, Ae. aegypti can survive in a temperature

range of 21.6- 32.9°C [39] while Ae. albopictus between 16.2- 31.6°C [40]. Part of the

territories of some Andean cantons are located in the eastern or western foothills

and have troipical or subtropical climate. Is why cantons (parishes) like Tulcán

(Tobar Donoso, El Chical, and Maldonado), Ibarra (Lita and La Carolina), Pedro

Vicente Maldonado, Quito (Nanegal, Nanegalito, Pacto, and Gualea), La Maná,

Pangua, Colta (San Miguel, Chaumala, Gatazo Grande, La Alegria), La Troncal,

Cuenca (Molleturo, Chaucha), Santa Isabel (Santa Isabel, Abdón Calderón), Paute

(Paute), Puyango, Paltas, Macará, Loja, Calvas (Sanguillin, El Lucero), Espindola

(El Ingenio, 27 de Abril) reported dengue cases, because they have an average

annual temperature of 22°C, therefore an optimal climate for vector development

and disease spread [41]. This information was verified in the Plan de Desarrollo y

Ordenamiento Territorial newsletters of each canton.

In Amazonia, the forest area and natural ecosystem can be favourable to the

mosquito population and dengue fever [42, 36, 3]. But, the zones continuously

affected are in the north of the region, in cantons such as Tena, Orellana, Lago

Agrio, and Shushufindi that belong to the Sucumbios, Napo and Orellana provinces.

The differences between the zones can be a result of spatial differences, lack of health

services, disease vector abundance, and household population.

Therefore, the dengue risk is associated with environmental and societal features.

For example, population growth and high population density, human mobilization,

rural to urban migration, and growing and disorganized urbanization driver the

outbreaks, proliferation and rising dengue incidence [37, 43, 44, 36, 3]. The climatic

conditions have a direct and indirect in the mosquito population [45, 37, 46, 47]. The

elevation, temperature, humidity, precipitation, and sunlight are linked to mosquito

density and dengue transmission [45, 48, 49, 50], can affect larval growth, adult

biting rates, gonotrophic development, and extrinsic incubation period of the virus

in the mosquito [27].

The increase of cases in 2015 had been implicated to ENSO, a global climate

phenomenon which affects human infectious diseases and the misreporting of

chikungunya cases like dengue, while in 2020 and 2021 years as a result of the

pandemic caused by COVID-19. The inter annual dynamics of ENSO are related

to climate anomalies and dengue incidence in South American countries [51, 27].

The study assessed ENSO development during 2015, their findings showed a high

possibility that there were drought conditions in northeast Ecuador and high rainfall

and flooding in coastal Ecuador. This event possibly can be associated with high

dengue transmission in 2015. Because the dry conditions can increase the habitat for

juvenile mosquitoes and reduce the incubation period, and wet conditions promote
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Aedes spp. breeding, both conditions favour mosquito breeding [52, 27, 53, 54].

The annual climatological bulletin 2015 by Instituto Nacional de Meteoroloǵıa e

Hidrológica [55] displayed that the yearly rainfall presented increases/decreases in

the Coast region and exceeded annual climatology values in Amazonia [56]. This

year was warm for Ecuador, with positive anomalies up to 2.4°C. It indicates that in
2015 there were climatic changes that could affect the dengue occurrences. However,

there were cases that were clinically diagnosed as dengue, but were chikungunya

infections, and these individuals were registered as dengue in the MSP [57].

The incidences before the first reported case of COVID-19 were low compared

to 2015. However, dengue cases increased during the COVID-19 pandemic [58].

It is consistent with studies in other countries such as Peru [58], Brazil [59],

the Southwest Indian Ocean Islands [60], and Asia [61]. The impediment to

leaving home during quarantine probably promotes the reproduction of mosquitoes

around the houses [62, 63]. The lockdowns can avoid community participation in

mosquito control, and rise the dengue transmission in and around homes [64]. Also,

the accumulation of people in one place rises the probability that the mosquito

bites everyone, and human blood promotes reproduction. In addition, during the

pandemic the vector control measure, preventive campaigns and fumigation were

suspended may increase the number of dengue cases [60]. However, some people

believe that fumigation can favour COVID-19, so they do not allow to application

of this vector control measure, which rises the risk of dengue [65].

The presence of peaks caused by the number of dengue instances perhaps is related

to the climatic season. According to, [50], and [38], affirm that the amount of dengue

fever patients is higher during the dry season [50, 38]. Since the rainy season can be

more suitable for mosquito reproduction, so the spread rate grows [50, 49]. However,

these findings contrast with what [58] affirms, in his study area, the number of

instances coincides with the rainy season in the Amazonia and the summer on the

Coast. A study in Ecuador indicates that the Coast region shows an annual peak

of illness during mid-March of each year [66]. Otherwise, from November to April

(rainy season), the dengue incidence increases in Peruvian Amazonia [67].

The networks can represent a dengue arbovirus epidemic [68]. The authors

have observed scale-free network characteristics in the Singapore dengue epidemic

network [69]. In addition, according to the Barabási-Albert model, the growth and

preferential attachment are scale-free features [70]. The principal characteristic of

the scale-free system is that a few critical links have colossal weight. So a scale-free

network is necessary for solving the epidemic issue. Because this type of network

topology can control epidemic diseases by focusing on essential nodes [68].

We calculated some graph attributes, such as amount nodes and edges, average

degree, average strength, diameter and density network and average path length.

The value of nodes is the number of counties affected by active dengue cases. On the

contrary, the edges result from the projection bipartite, which indicates the number

of times the pair of nodes had active instances in the same week. The average degree

is the number of node-to-node links [38]. The greater the average degree value, the

stronger the connection between the nodes, and consequently, the network is more

robust, i.e., many bonds unite the nodes. The average strength is the sum of the

weights of all edges connected to each node [6].
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The density corresponds to the proportion of possible ties in the graph; the

nodes are more cohesive if the value is closer to 1. The average path length is

the distance between one node to another. The lower value shows that there is

dengue cases-related so that the distance between the nodes becomes shorter [6]. It

is supported by a diameter network with the longest distance between two nodes,

so the low values indicate that the nodes are closer [24, 38]. These properties reflect

the spread of the virus in an epidemiological network.

Some prominent features include degree centrality, closeness centrality, eigenvector

centrality, and betweenness centrality [5, 71, 38]. However, in the Weighted Newman

projection, the closeness and betweenness centralities serve for identifying important

nodes [6].

On the one hand, the betweenness centrality shows the nodes that connect

numerous communities to build a giant net. So the cantons with higher values

are network connectors and probably the most influential nodes [38, 5]. Because

those facilitate the spread of the dengue virus and significant influence the transfer

of the virus [21, 6]. On the other hand, the closeness centrality is a measurement

of counties’ proximity to all different, so it allows identifying the cantons with the

most access to others[38]. Generally, those nodes with higher values have the most

connections, but the bonds are weakest [21]. The cantons with higher closeness are

spreaders of viruses and are essential nodes in the diffusion of infectious disease.

Those nodes are considered to control nodes due to their role as bridges between

different clusters and their proximity to other nodes [68]. In the approach of public

health and epidemiology, identifying the connector and propagator nodes is essential

for understanding disease transmission and take decisions on medical interventions

[5]. Since if the treatment of the dengue disease is focused on control nodes, it could

reduce the interconnectivity of the network [6]. Hence, those are significant to trace

or prevent the illness propagation [72].

To evaluate the robustness of networks used, the inverse percolation theory is

a sub-field of statistical physic and mathematics. The integrity of a network in

front of the impact of node failures directly relates to robustness. In the case of

a scale-free network under targeted attack, we must remove almost all the nodes

to fragment the web. Because, despite dropping the central control nodes, there is

still a unique, more considerable giant component. On the contrary, in the regular

and random networks, removed nodes generated a division of giant component in

clusters [73, 70].

Nevertheless, the kinds of centrality that describe earlier might be a convenient

concept to describe the dynamic of disease transmission, and maybe there are other

ways to understand and depict disease transmission that has yet to be discovered

by social network analysis theorists [5].

One of the main limitations of the study was the available sources of information,

the database of the Sistema de Vigilancia Epidemiologica is not freely accessible and

the data requirement takes at least three months and although the MSP provides

modified information (hospitalization), the reports differ greatly. The incidence is

an important marker of risk, but dengue is a multi-factorial disease, for which

it is necessary to include the analysis of other variables that influence dengue

transmission or the ecology of the vector. In Ecuador there is no system that
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unifies information from surveillance systems, entomological information, and vector

control and prevention activities; this is despite the fact that the MSP in 2019

claimed to have an integrated system of epidemiological, virological, entomological

and environmental surveillance systems.

The dengue propagation has been modelled and analyzed as bipartite networks.

This study combines information from health, computer science, and network

science. The data set used was the hospitalized dengue cases in continental

Ecuador from 2014 to 2021 to understand the diffusion dengue from the perspective

of the unipartite network projected through Weighted Newman projection. The

exploratory analysis showed that 2015, and 2020-2021 were endemic years caused

by ENSO and COVID-19 pandemic. In addition, centralities measure such as

betweenness and closeness were used to identify control cantons that are connectors

and propagators of the net. The findings allow the focus on medical interventions like

cleanliness, immunization, and how the dengue virus can be avoided or controlled

in control cantons. Hence, this study has the potential to accomplish the healthcare

system goals of the government. The network analysis for this study was performed

using R and Gephi but could be fully automated in R. To make this tool available

and open source the next step is to develop an R package.
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Boĺıvar, Sede Ecuador (2020)

17. Pavlopoulos, G.A., Kontou, P.I., Pavlopoulou, A., Bouyioukos, C., Markou, E., Bagos, P.G.: Bipartite graphs in

systems biology and medicine: a survey of methods and applications. GigaScience 7(4), 014 (2018)

18. Opsahl, T.: Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. Social

networks 35(2), 159–167 (2013)

19. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: Generalizing degree and

shortest paths. Social networks 32(3), 245–251 (2010)

20. Padrón, B., Nogales, M., Traveset, A.: Alternative approaches of transforming bimodal into unimodal

mutualistic networks. the usefulness of preserving weighted information. Basic and Applied Ecology 12(8),
713–721 (2011)

21. Oryan, R.R., Addawe, J.M., Tubera-Panes, D.: Modeling and analysis of the dengue activity in baguio city

using two-mode and one-mode networks. In: Springer Proceedings in Mathematics &amp Statistics vol. 359,

pp. 253–271. Springer, Singapore (2021). doi:10.1007/978-981-16-2629-613

22. Instituto Nacional de Estad́ıstica Y Censos: Proyecciones Poblacionales.

https://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/

23. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria (2022). R Foundation for Statistical Computing. https://www.R-project.org/

24. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for exploring and manipulating

networks (2009)

25. Amodio, E., Zarcone, M., Casuccio, A., Vitale, F.: Trends in epidemiology: the role of denominator fluctuation

in population based estimates. AIMS Public Health 8(3), 500 (2021)

26. Pan, W.K.-Y., Erlien, C., Bilsborrow, R.E.: Morbidity and mortality disparities among colonist and indigenous

populations in the ecuadorian amazon. Social science & medicine 70(3), 401–411 (2010)

27. Stewart-Ibarra, A.M., Lowe, R.: Climate and non-climate drivers of dengue epidemics in southern coastal

ecuador. The American journal of tropical medicine and hygiene 88(5), 971–981 (2013)

28. Cagua Ordoñez, J.C., Torres Martinez, L.E.: Estratificación de riesgo de transmisión de enfermedades

arbovirales para la optimización del manejo integrado de aedes aegypti en ecuador 2015-2019. Master’s thesis,

PUCE-Quito (2022)

29. Clark, B., Chatterjee, K., Martin, A., Davis, A.: How commuting affects subjective wellbeing. Transportation

47, 2777–2805 (2020)

30. Kraemer, M.U., Golding, N., Bisanzio, D., Bhatt, S., Pigott, D.M., Ray, S., Brady, O., Brownstein, J., Faria,

N., Cummings, D., et al.: Utilizing general human movement models to predict the spread of emerging

infectious diseases in resource poor settings. Scientific reports 9(1), 5151 (2019)
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syndemic between covid-19 and dengue fever in southern mexico. Gac. Med. Mex 156, 460–464 (2020)

66. Sippy, R., Herrera, D., Gaus, D., Gangnon, R.E., Patz, J.A., Osorio, J.E.: Seasonal patterns of dengue fever in

rural ecuador: 2009-2016. PLoS neglected tropical diseases 13(5), 0007360 (2019)

67. Charette, M., Berrang-Ford, L., Coomes, O., Llanos-Cuentas, E.A., Cárcamo, C., Kulkarni, M., Harper, S.L.:
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Figure 8: Degree centrality ranking in networks during 2014-2021. The

cities of Guayaquil, Machala, Quevedo, Santo Domingo, Manta and Lago Agrio

were within the top 20 each year.
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