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ABSTRACT Chagas disease, leishmaniasis, and malaria are major parasitic diseases 
disproportionately affecting the underprivileged population in developing nations. 
Finding new, alternative anti-parasitic compounds to treat these diseases is crucial 
because of the limited number of options currently available, the side effects they 
cause, the need for long treatment courses, and the emergence of drug-resistant 
parasites. Anti-microbial peptides (AMPs) derived from amphibian skin secretions are 
small bioactive molecules capable of lysing the cell membrane of pathogens while 
having low toxicity against human cells. Here, we report the anti-parasitic activity 
of five AMPs derived from skin secretions of three Ecuadorian frogs: cruzioseptin-1, 
cruzioseptin-4 (CZS-4), and cruzioseptin-16 from Cruziohyla calcarifer; dermaseptin-SP2 
from Agalychnis spurrelli; and pictuseptin-1 from Boana picturata. These five AMPs 
were chemically synthesized. Initially, the hemolytic activity of CZS-4 and its minimal 
inhibitory concentration against Escherichia coli, Staphylococcus aureus, and Candida 
albicans were determined. Subsequently, the cytotoxicity of the synthetic AMPs against 
mammalian cells and their anti-parasitic activity against Leishmania mexicana promasti
gotes, erythrocytic stages of Plasmodium falciparum and mammalian stages of Trypa
nosoma cruzi were evaluated in vitro. The five AMPs displayed activity against the 
pathogens studied, with different levels of cytotoxicity against mammalian cells. In silico 
molecular docking analysis suggests this bioactivity may occur via pore formation in the 
plasma membrane, resulting in microbial lysis. CZS-4 displayed anti-bacterial, anti-fun
gal, and anti-parasitic activities with low cytotoxicity against mammalian cells. Further 
studies about this promising AMP are required to gain a better understanding of its 
activity.

IMPORTANCE Chagas disease, malaria, and leishmaniasis are major tropical diseases 
that cause extensive morbidity and mortality, for which available treatment options 
are unsatisfactory because of limited efficacy and side effects. Frog skin secretions 
contain molecules with anti-microbial properties known as anti-microbial peptides. We 
synthesized five peptides derived from the skin secretions of different species of tropical 
frogs and tested them against cultures of the causative agents of these three diseases, 
parasites known as Trypanosoma cruzi, Plasmodium falciparum, and Leishmania mexicana. 
All the different synthetic peptides studied showed activity against one of more of the 
parasites. Peptide cruzioseptin-4 is of special interest since it displayed intense activ
ity against parasites while being innocuous against cultured mammalian cells, which 
indicates it does not simply hold general toxic properties; rather, its activity is specific 
against the parasites.
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C hagas disease, leishmaniasis, and malaria, caused by the protozoan parasites 
Trypanosoma cruzi, Leishmania spp., and Plasmodium spp., respectively, are among 

the most important parasitic infections in Latin America and globally (1–3). However, 
special challenges exist for the development of anti-microbials to treat these tropical 
infections. In the case of Chagas disease and leishmaniasis, the pharmaceutical industry 
has traditionally shown little interest (4, 5).

Chagas disease is the most important parasitic disease in Latin America (6), affecting 
an estimated 7–8 million people (7). In recent years, human migration has caused the 
disease to extend to non-endemic regions (7, 8). Chronic infection with T. cruzi causes 
irreversible heart or digestive damages, which may lead to disability and even death 
in ~30% of those infected (9). Only two drugs, benznidazole and nifurtimox, are currently 
approved for Chagas disease treatment (10), and neither of them is satisfactory because 
of lack of effectiveness, especially in chronic infections, in addition to their toxicity and 
side effects (11).

Leishmaniasis is a neglected tropical disease that mainly affects the economically 
disadvantaged population in different countries in Asia, Africa, the Caribbean, and Latin 
America (12–15). Current treatment is based on drugs such as miltefosine, amphotericin 
B, and pentavalent antimonials; the latter two require parenteral administration. These 
drugs cause significant side effects and must be administered under close medical 
supervision, which complicates adherence to treatment (12).

Malaria kills more people in the world than any other parasitic disease, and its 
control and elimination are greatly dependent on effective anti-parasitic drugs (16). 
Nevertheless, Plasmodium falciparum, the most aggressive among the species of the 
genus capable of infecting humans, has developed resistance to the majority of the 
anti-malarial drugs in use (16). The current treatment based on artemisinin derivatives is 
losing efficacy in Southeast Asia, making the search for new anti-malarial drugs urgent.

Amphibian skin secretions have been identified as natural sources of bioactive 
peptides with anti-viral, anti-bacterial, anti-fungal, anti-parasitic, and anti-proliferative 
activity (17–21). Due to their activity at low concentration, reduced toxicity, and 
unique mechanisms of action, anti-microbial peptides (AMPs) have been highlighted 
as potential candidates for anti-microbial therapy (18). The anti-parasitic activity against 
Leishmania sp., Plasmodium sp., and Trypanosoma sp. has been evaluated in at least three 
AMP families known as dermaseptins, phylloseptins, and temporins (18, 20–27).

In this context, testing the activity of novel AMPs against pathogens may yield 
insights into novel avenues for drug development or reveal intrinsic parasite weak
nesses, which could be exploited for therapeutic goals. Cruzioseptins and pictusep
tins are recently described peptide families identified in two Ecuadorian amphibian 
species (C. calcarifer and B. picturata, respectively) (28, 29). We have previously reported 
the anti-microbial activity of cruzioseptin-1 (CZS-1) and cruzioseptin-16 (CZS-16) from 
Cruziohyla calcarifer (29, 30) and dermaseptin-SP2 (DRS-SP2) from Agalychnis spurrelli 
(31), and the anti-leishmanial activity of CZS-1 against Leishmania (L.) amazonensis and 
Leishmania (V.) braziliensis (32). Furthermore, we have characterized the anti-bacterial 
activity of pictuseptin-1 (PTS-1) from Boana picturata (28).

Here, we perform an in silico structural characterization of five peptides (CZS-1, 
CZS-4, CZS-16, DRS-SP2, and PTR-1), and we evaluate their activity against protozoan 
parasites. Additionally, we report the anti-microbial and hemolytic activities of CZS-4 
against Escherichia coli, Staphylococcus aureus, and Candida albicans.
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MATERIALS AND METHODS

Solid-phase peptide synthesis

The following amide peptides, CZS-1: GFLDIVKGVGKVALGAVSKLF-NH2, CZS4: 
GFLDVIKHVGKAALSVVSHLINE-NH2, CZS-16: GFLDVLKGVGKAALGAVTHLINQ-NH2, 
DRS-SP2: ASWKVFLKNIGKAAGKAVLNSVTDMVNQ-NH2, and PTS-1: GFLDTLKNIGKTV
GRIALNVLT-NH2, were synthetized by solid-phase strategy (solid-phase peptide 
synthesis) applying 9-fluorenylmethoxycarbonyl chemistry in a 0.1-mM scale as 
described previously (28). In short, rink amide 4-methylbenzhydrylamine resin (0.59 
meq/g) was employed for C-terminal amidated peptide synthesis using an automatic 
peptide synthesizer with microwave technology (Liberty Blue, CEM). The molecular mass 
of synthetic products was confirmed by MALDI TOF MS (Axima Confidence, Shimadzu) in 
positive reflectron mode using the matrix α-cyano-4-hidroxycinnamic acid (10 mg/mL).

Synthetic peptide purification

Synthetic peptide purity was determined by reverse-phase high-performance liquid 
chromatography (RP-HPLC) in Jupiter C18 column (5 µm, 300 Å, 250 × 4.6 mm). Fifty µL 
of peptide (1 mg/200 µL of 99.95% H2O/0.05% trifluoroacetic acid [TFA]) was injected in 
a Waters liquid chromatograph with 2489 detector and 1525 binary HPLC pump. A lineal 
gradient of 30%–100% solvent B [acetonitrile (ACN)/0.05% TFA] with 1-mL/min flow rate 
was applied for 65 min. The peak areas and the estimated percentage of purity of each 
peptide were detected using Empower (v.3) software at 214 and 280 nm.

Peptides were partially purified by Sepacore Flash chromatography system X50 
(BUCHI). Peptide aliquots (10 mg/mL) were injected several times using a Reveleris C18 
Flash Cartridge (4 g, 12.3 × 6 mm). The elution gradient was 5%–100% solvent B (ACN/
0.1% TFA) for 35 min. Detection was set at 214 and 280 nm, and manual collection was 
performed to obtain 100 mg of each purified peptide, at >95% purity. Due to the difficult 
separation of some peptides by Flash chromatography, further purification was achieved 
by RP-HPLC.

Anti-microbial activity and hemolytic assay of CZS-4

The minimum inhibitory concentration (MIC) of CZS-4 over Escherichia coli American 
Type Culture Collection (ATCC) 25922, Staphylococcus aureus ATCC 29213, and Candida 
albicans ATCC 10231 was determined, as previously described (28, 30, 31). In brief, 
overnight cultures of each microorganism were subcultured in Muller-Hinton Broth 
(MHB) until reaching 1 × 106 CFU/mL for bacteria and 1 × 105 CFU/mL for yeast. 
Peptide serial dilutions in dimethylsulfoxide (DMSO), ranging from 0.4 to 209.4 µM were 
prepared, and 2 µL of each peptide dilution was added to 198-µL diluted bacterial or 
yeast culture in a 96-well sterile plate (with five replicates). Sterile MHB and microbial 
culture with DMSO were negative controls. Plates were incubated for 16 h at 37°C. 
Microorganism growth was measured at 600 nm.

Hemolytic activity was determined using 200 µL of 4% red blood cell solution 
incubated with 200 µL of serial dilutions peptide (0.4–209.4 µM) in phosphate-buffered 
saline (PBS) 1× (five replicates). Negative controls contained PBS instead of peptide; 
positive controls contained 2% vol/vol Triton X-100 to yield complete hemolysis. Assays 
were incubated at 37°C for 2 h, and samples were centrifuged at 1,00 × g for 5 min. 
Two-hundred microliters of supernatant was transferred to a 96-well plate and absorb
ance was measured at 550 nm.

Mammalian cell culture

RAW 264.7 murine macrophages and Macaca mulatta kidney cells (LLC-MK2) were 
cultured in 75-cm2 flasks with 10-mL Dulbecco’s Modified Eagle’s Medium (DMEM) 
supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin (DMEM-10) 
medium. Culture conditions were 37°C, 5% CO2, and 95% relative humidity. RAW 264.7 
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cells were rinsed with PBS, detached with a cell scraper, and passaged every 96 h. 
LL-MCK2 were subcultured weekly, at 1:4 ratio, via trypsinization.

Parasites

Leishmania mexicana strain M379, P. falciparum reference clones NF54 (chloroquine-
sensitive, isolated from a patient at an airport in the Netherlands) and TM90C2B 
(C2B) (chloroquine, mefloquine, and atovaquone resistant, from Thailand) and T. cruzi, 
β-galactosidase-expressing, Tulahuen strain parasites (C4 clone; +lacZ, henceforth 
abbreviated as Tula β-gal) (33) were employed in the study.

Parasite culture

L. mexicana promastigote stock cultures were maintained in USHMARU biphasic medium 
[blood agar slant overlayed with 3 mL of Schneider’s Drosophila medium (SDM), 
containing 10% fetal bovine serum (FBS)] at 25°C. Promastigotes were collected by 
centrifugation and washed with PBS, and culture medium was replaced every 2 days. 
Every 4 days, the parasites were transferred to a new tube and to a 25-cm2 tissue culture 
flask containing 10 mL of monophasic medium (SDM + 10% FBS + 1% penicillin/strepto
mycin). If present, rosettes were disrupted by passing the culture through 10-mL syringes 
with 27G needles.

P. falciparum was cultured in human O + erythrocytes in Roswell Park Memorial 
Institute medium 1640, supplemented with 25-mM HEPES buffer, 10-mM glucose, 
2-mM glutamine, and O + human plasma. Parasites were cultured under low-oxygen 
atmosphere (5% O2, 5% CO2, and 90% N2) (34) and maintained in fresh human erythro
cytes suspended at 4% hematocrit in complete medium at 37°C. Stock cultures were 
subpassaged every 3–4 days by transfer of infected red cells to a flask containing 
complete medium and uninfected erythrocytes.

T. cruzi trypomastigote culture was performed as reported previously (35, 36). 
LLC-MK2 cell monolayers were infected with 5 × 105 trypomastigotes in 10-mL DMEM 
supplemented with 2% FBS and 1% penicillin/streptomycin (DMEM-2), for 48 h at 37°C, 
5% CO2 and 98% relative humidity. Parasites were subsequently removed by rinsing 
with PBS, and 10-mL fresh DMEM-2 was added. Five days post-infection, trypomastigotes 
were harvested from the culture for the trypanocidal activity assays.

In vitro anti-Leishmania activity assays

Parasite viability was measured colorimetrically via 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazole bromide tetrazolium salt (MTT) reduction. Promastigotes were placed 
in 96-well conical-bottom plates in SDM + 1% penicillin/streptomycin without FBS, at 
a density of 1 × 106/well. Untreated parasites (growth control), 1-µM amphotericin B 
diluted in DMSO (positive control), 0.25% DMSO (negative control), and each of the 
peptides at a final concentration of 0.1, 0.5, 1.0, 5.0, and 10.0 µM were included in 
triplicate wells. Plates were incubated at 25°C for 48 h. Subsequently, 20-µL 10% MTT 
was added per well. Plates were incubated for 2 h in the dark at the same temperature 
and centrifuged at 4,000 rpm for 10 min, and the supernatant was removed. Formazan 
crystals were diluted with 50-µL DMSO, and absorbances (A570–630) were read (37, 38). 
Three independent assays were performed for each peptide.

In vitro anti-P. falciparum activity assays

In vitro sensitivity to peptides was tested using a previously described SYBR green I 
fluorescence-based method (39, 40). Assays were set up in 96-well plates with twofold 
peptide dilutions in 150-μL total volume and 1.5% (vol/vol) final red blood cell concentra
tion. Stock solutions of each peptide were prepared in DMSO. Experiments were started 
at an initial parasitemia of 0.5% (80% rings) synchronous parasite-infected red blood 
cells. Plates were incubated for 72 h at 37°C in an atmosphere of 5% CO2, 5% O2, and 90% 
N2. The SYBR green I dye-lysis mixture (l:100) was added to the parasites in black plates 
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that were incubated at room temperature for an hour in the dark. The plates were then 
read using a fluorescence plate reader at excitation and emission wavelengths of 480 and 
535 nm, respectively. Experiments were performed in duplicate wells. Three independent 
assays were performed for each peptide.

Activity against T. cruzi trypomastigotes

Trypomastigotes were rinsed, suspended in phenol red-free and FBS-free Dulbecco’s 
Modified Eagle’s Medium, placed in 96-well plates (1 × 106/well), and incubated with 
100-µM chlorophenol-β-D-galactopyranoside red (CPRG) (41) in the presence of serial 
dilutions of AMPs (100.0- to 0.195-µM concentration range). Wells containing parasites 
not exposed to peptides and treated with 0.1% Triton served as 100% lysis reference. 
Plates were incubated in the dark at 37°C and 5% CO2 for 4 h, and absorbance was read 
at 590 nm. Experiments were performed in duplicate wells. Three independent assays 
were performed for each peptide.

Activity against intracellular T. cruzi amastigotes

LLC-MK2 cells, 2 × 104/well, were seeded and allowed to attach overnight to 96-well 
plates. he medium was removed and cells were infected with 1 × 105 parasites in 
DMEM-2 for 24 h. Cell monolayers were washed four times with PBS, and serial dilu
tions of AMPs (100.0- to 0.195-µM range) in DMEM-2 without phenol red were added 
to duplicate wells. Wells containing infected cells not exposed to peptides served as 
parasite growth reference. The infection was allowed to proceed for 96 h. Subsequently, 
lysis solution was added to each well to a final concentration of 100-µM CPRG and 
0.1% Triton and incubated for 2 h. Absorbance was measured at 590 nm (41). Three 
independent assays were performed for each peptide.

Cytotoxicity over mammalian cells

The toxicity of the studied AMPs over LLC-MK2 and RAW 264 cells was determined via a 
resazurin (RZN) reduction assay (42). Briefly, 2 × 104 cells/well were seeded in DMEM-10 
in 96-well plates. Twenty-four hours later, culture medium was removed, and 10 twofold 
serial dilutions (100.0–0.195 µM) of each AMP in 200-µL volume were placed in duplicate 
wells. The plate was placed on the incubator in the dark at 37°C and 5% CO2. Ten 
microliters of 3-mM RZN sodium salt in PBS per well was added, and the plate was 
incubated for 24 h. Finally, the fluorescence was measured (530- to 560-nm excitation 
and 590-nm emission wavelengths). Three independent assays were performed for each 
peptide.

Statistical data analysis

Half-maximal inhibitory concentration (IC50) and half-maximal cytotoxic concentration 
(CC50) with 95% confidence intervals in GraphPad Prism software (v.9.2.0., non-linear 
regression with curve fitting [model: log (inhibitor) vs response (three parameters)]. The 
selectivity index (SI) was determined by dividing the CC50 value of RAW 264.7 cells by the 
IC50 of the parasites.

Peptide bioinformatics analysis

Sequence similarity between studied peptides and previous entries into the National 
Centre for Biotechnology Information database was explored with PSI-Blast (43, 44). 
Furthermore, studied peptide sequences were compared among each other using 
T-Coffee tool (45). Complete physicochemical and biochemical characterization for each 
peptide was performed using ExPasy (46), HeliQuest (47), and Peptide Mass Calculator 
(v.3.2). Peptide secondary structure was predicted using JPred (48), PSIPred (49), and 
SOPMA (50). With the information obtained from the prediction, the five peptides 
were modeled using Pymol and optimized using ChemBioDraw and Gaussian software. 
Optimized structures were employed for docking studies.
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Docking

Molecular docking simulations were performed using a phosphatidylcholine model 
containing 128 lipids and 2,460 water molecules simulated for 1.6 ns, which resemble 
eukaryotic cell membranes like those present in the studied parasites (51). Autodock 
tools were used to prepare the membrane model and peptide structures for calculations, 
which were performed using Autodock VINA (52), applying a 1-Å spacing, and a box size 
of 25 in X, 25 in Y, and 55 in Z. Exhaustiveness was set to 8 and full flexibility of the side 
chains was allowed.

RESULTS

Peptide synthesis and purity

Crude synthetic peptides presented a purity of 56% for CZS-1, 41% for CZS-4, 85% 
for CZS-16, 33% for DRS-SP2, and 42% for PTS-1. After purification, the five peptides 
were obtained in high purity (96%–98%), and their identities were confirmed via mass 
spectrum and corroborated with the theoretical mass (Table 1).

Peptide bioinformatic characterization

A comparison of the amino acid sequences of the five peptides is shown in Fig. 1. 
CZS-1, CZS-4, and CZS-16 belong to the same peptide family and display high similarity 
(>61.90%). DRS-SP2 yielded high identity with other dermaseptins, including DRS-SP1, 
DRS-TR1, DRS-PS2, and DRS-DI2 (identity percentage 84.62%–92.31%). The highest 
identity percentage found between the cruzioseptin family and DRS-SP2 was with 
CZS-16 (43.48%). Regarding PTS-1, this peptide showed >50% similarity with cruziosep
tin members, the highest with CZS-4 and CZS-16 (55.56%).

Anti-microbial and hemolytic activity of CZS-4

Except for CZS-4, we have previously reported on the activity of all peptides included 
in this study against bacteria and Candida albicans, as well as their hemolytic activity (28–
31). Here, we show that CZS-4 displayed anti-microbial activity against bacteria (E. coli 
and S. aureus) and yeast (Candida albicans). The lowest MIC value obtained was against 
E. coli (13.09 µM) followed by S. aureus (26.18 µM). The highest MIC corresponded to the 
yeast C. albicans with a value of 52.36 µM (Fig. 2A). On the other hand, CZS-4 induced 
hemolysis of 13% at 128 µM. While in anti-bacterial concentration, this peptide showed 
hemolysis of less than 9.1% (Fig. 2B).

Cytotoxicity of peptides over mammalian cells

All studied AMPs displayed some degree of cytotoxicity against mammalian cells (Table 
3; Fig. 3A and B). CZS-1 displayed IC50 values of 3.17 and 2.38 µM against LL-MCK2 and 
RAW macrophages, respectively. Interestingly, CZS-4 caused very low cytotoxicity, with 
IC50 values of 70.6 µM for LL-MCK-2 cells and 47.96 µM for RAW macrophages. Mean
while, CZS-16 and DRS-2 displayed cytotoxic activity against both types of mammalian 
cells, ranging from 3.14 to 5.59 µM. In a case where mammalian cell types were affected 

TABLE 1 Amino acid sequences and purity of the studied peptides

Peptide Sequence Theoretical mass 
(Da)

Monoisotopic mass 
MALDI-TOF MSa (m/z)

Crude peptide 
(%)

Purified 
peptide (%)

CZS-1 GFLDIVKGVGKVALGAVSKLF-NH2 2,116.27 2,117.8 0.56 0.98
CZS-4 GFLDVIKHVGKAALSVVSHLINE-NH2 2,444.39 2,444.8 0.41 0.96
CZS-16 GFLDVLKGVGKAALGAVTHLINQ-NH2 2,319.34 2,320.6 0.85 0.98
DRS-SP2 ASWKVFLKNIGKAAGKAVLNSVTDMVNQ-NH2 2,987.63 2,988.3 0.33 0.98
PTS-1 GFLDTLKNIGKTVGRIALNVLT-NH2 2,341.38 2,342.2 42 0.98
aMALDI-TOF MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
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very differently, PST-1 displayed an IC50 of 80.07 µM against LL-MCK-2 cells and a much 
lower level against RAW macrophages (IC50 = 2.52 µM).

Anti-parasitic activity of studied AMPs

L. mexicana

Promastigotes displayed the greatest AMP sensitivity among the studied parasites. 
Promastigotes were incubated with AMPs for 48 h at different concentrations. L. 
mexicana was susceptible to all studied peptides, with IC50 values ranging from 0.09 
to 10.0 µM (Table 3). CZS-4 appeared to be the most effective of all the tested AMPs, 
while CZS-16 showed a reduced effect.

P. falciparum

The studied peptides had anti-plasmodial activity against the drug-sensitive NF54 and 
the multiple drug-resistant C2B strains of P. falciparum. IC50 values ranged from 4.87 to 
52.56 µM, where DRS-SP2 and CZS-4 showed higher activity in both strains (Table 3).

T. cruzi

CZS-1, CZS-4 and PTS-1 displayed potent activity against T. cruzi trypomastigotes, with 
IC50 values between 1.42–2.87 µM (Table 3). CZS-16 had a noticeably larger IC50 value 
(18.70 µM). Conversely, much higher IC50 values (16.72–38.33 µM) were recorded against 
intracellular amastigotes.

FIG 1 Multiple sequence alignment (A) and identity matrix (B) of the studied peptides. Three conserved residues (glycine, leucine, and lysine) are present 

in all studied peptides. Glycine and leucine are hydrophobic amino acids, while lysine is basic and contributes to the positive charge of the peptides. The 

physicochemical characterization of the peptides is depicted in Table 2. Peptides are composed of 300–400 atoms and 21–28 amino acids, corresponding to 

molecular weights between 2,118 and 2,990 Da. All of them are basic and positively charged at physiological pH. Their isoelectric point is higher than 7, and the 

number of their basic residues doubles that of negative ones. Hydrophobic amino acids constitute around 50% of the structure of each peptide.
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SI

As depicted in Table 4, CZS-4 showed the highest SI against L. mexicana and T. 
cruzi trypomastigotes at 532.89 and 30.94, respectively. On the other hand, CZS-16 is 
selectively active against mammalian cells. PST-1 also displayed low selectivity against 
T. cruzi and P. falciparum, with SI values from 0.05 and 1.775. PST-1’s selectivity for L. 
mexicana was much greater, with an SI of 25.20.

Structural model prediction

Secondary structure analysis predicts an alpha-helical conformation for all peptides 
(Fig. 4), in agreement with the secondary structures reported in the literature for other 
members of their families and for other anti-microbial peptides found in different species 
of frogs. The five peptides were modeled in an alpha-helical secondary structure and 
optimized. Optimized three-dimensional peptide structures are shown in Fig. 5.

FIG 2 Anti-microbial and hemolytic activities of the CZS-4 peptide. (A) Inhibitory effect of CZS-4 against E. coli, S. aureus, and C. albicans. (B) Hemolysis caused by 

CZS-4. One hundred percent of hemolysis was determined using Triton X-100.

TABLE 2 Physicochemical characterization of the five studied peptides

Parameter CZS-1 CZS-4 CZS-16 DRS-SP2 PTS-1

No. of amino acids (aa) 21 23 23 28 25
Molecular weight 2,118.59 2,429.89 2,321.75 2,990.51 2,581.10
pI 9.70 8.61 8.60 10.80 9.83
Formula C101H168N24O25 C112H185N31O29 C106H177N29O29 C134H221N37O38S1 C118H202N32O32

Atom number 318 357 341 431 384
Neg. aa 1 1 1 1 2
Pos. aa 3 2 2 4 5
C-terminal -NH2 -NH2 -NH2 -NH2 -NH2

Net charge pH 7 4.00 3.22 3.11 4.00 3.00
Hydrophobicity (H) 0.581 0.530 0.449 0.358 0.489
% neutral aa 23.81 26.09 30.43 32.14 20.00
% basic aa 14.29 18.39 13.04 14.29 20.00
% acid aa 4.76 4.35 4.35 3.57 8.00
% hydrophobic aa 57.14 52.17 52.17 50.00 52.00
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Molecular docking

A membrane model containing 128 phosphatidylcholine molecules and 2,460 water 
molecules was chosen because it adequately represents eukaryotic pathogen cell 
membranes. Our analysis predicts favorable interaction between this membrane model 
and optimized peptide structures, as indicated by the negative docking scores obtained, 
which ranged from −5.4 kcal/mol in CZS-16 to −7.6 kcal/mol in CZS-1. Additionally, the 
most favorable interaction conformation for all studied peptides would be to locate 
along the lipid bilayer (Fig. 6), which would in turn be predicted to cause membrane 
destabilization, ultimately resulting in parasite lysis.

DISCUSSION

Amphibian skin AMPs have been extensively studied and proposed as therapeu
tic alternatives for the treatment of infectious diseases, including those caused by 
multidrug-resistant microorganisms. To date, more than 1,000 amphibian AMPs with 
broad structural and biological diversity have been reported (53). Anti-parasitic activity 
has been described in the dermaseptin peptide family, but the recently described 
cruzioseptin and pictuseptin peptide families are anti-bacterial and anti-fungal peptides 
with unexplored anti-parasitic activity (28, 30, 31).

In this study, we report findings on the bioactivity of CZS-4 against bacteria and yeast, 
and CZS-1, CZS-4, CZS-16, DRS-SP2, and PTS-1 against mammalian cells and protozoan 
parasites. CZS-4 exhibited anti-microbial activity against S. aureus, C. albicans, and E. 
coli, similar to what was previously reported for other cruzioseptin family members (29, 
30). Interestingly, C. albicans is much less sensitive to the peptide compared to the 
bacteria, likely because of the resistance conferred by the fungal cell wall structure. 
MICs differ among cruzioseptins, with CZS-1 being the most potent one. It has been 
proposed that the biological activity of AMPs is correlated with certain physicochemical 
characteristics, such as hydrophobicity, high net charge, and helicity (20). Therefore, 
an exhaustive study must be performed to determine the physicochemical properties 
and structural determinants required to induce a potent effect against Gram-negative 
bacteria, Gram-positive bacteria, and yeasts.

The five studied peptides (CZS-1, CZS-4, CZS-16, DRS-SP2, and PTS-1) display 
anti-microbial properties, as shown here for CZS-4 and in previous reports for the other 
peptides (28–31). Additionally, we show here that these peptides also possess varying 
degrees of activity against the protozoan parasites L. mexicana, P. falciparum, and T. cruzi.

As expected, when the studied AMPs were tested against the mammalian-specific 
life cycle stages of T. cruzi, they displayed greater activity against trypomastigotes 
than intracellular amastigotes. These findings were similar to those from other AMPs 
with trypanocidal activity, including melittin (54), NK-lysin (55), and several dermasep
tins (24, 56). Conversely, the effect on intracellular amastigotes is probably reduced 
because peptides must first cross the host cell’s plasma membrane in order to reach 
the cytoplasm, where amastigotes multiply (55). Persistence of intracellular amastigote 
nests in different host tissues, including cardiac tissue, is crucial for long-term parasite 
survival during chronic Chagas disease (57). In this sense, the elimination of amastigotes 

TABLE 3 Anti-parasitic activity and cytotoxicity of AMPsa

Peptide Llc-mk2 Raw 264.7 T. cruzi P. falciparum L. mexicana

Trypomastigotes Amastigotes NF54 TM90C2B

CZS-1 3.17 (2.70–3.75) 2.38 (2.13–2.65) 2.87 (2.35–3.53) 16.72 (15.56–18.00) 31.16 (23.21–57.99) 16.76 (12.88–24.45) 0.54 (0.43–0.68)

CZS-4 70.66 (NA-90.46) 47.96 (44.93–51.12) 1.55 (0.65–2.22) 30.65 (26.88–35.57) 13.86 (10.26–22.52) 4.87 (3.87–5.85) 0.09 (0.04–0.25)

CZS-16 5.59 (4.64–6.86) 4.40 (3.90–4.95) 18.7 (16.56–20.98) 38.33 (35.44–41.97) 36.82 (27.69–61.83) 34.41 (29.16–42.70) 6.46 (4.87–8,83)

DRS-SP2 ND 3.14 (2.45–4.10) ND ND 12.06 (7.57–32.84) 15.34 (13.24–18.00) 0.61 (0.37–0.98)

PTS-1 80.07 (30.49-NA) 2.52 (1.57–3.79) 1.42 (1.25–1.58) 30.16 (22.93–47.83) 52.56 (41.46–96.79) 24.87 (20.43–32.89) 0.10 (0.07–0.14)

aData are reported as IC50 values (µM) and 95% confidence intervals. ND, not done.
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is crucial, and therefore, peptide intracellular delivery and associated cytotoxicity are 
important challenges to be overcome for a peptide-based treatment.

While there was anti-malarial activity against the erythrocytic stages of both resistant 
and sensitive strains of P. falciparum, this activity was generally modest for most peptides 
and lower than some previously related peptides such as dermaseptin S4 derivatives 

FIG 3 Dose-response curves for the activity of the studied synthetic peptides against mammalian cells (A and B) and 

protozoan parasites (C–G). Data are shown as mean values of independent assays ± standard deviation.
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(23). DRS-SP2 and CZS-4 had the highest activity against P. falciparum, which was 
comparable to derivatives of DRS S3 and DRS S4 (22), suggesting that further research of 
these peptides can result in more promising activities. To reach the intracellular malaria 
parasite membrane, the peptides have to cross the erythrocytic membrane and enter 
the parasitophorous membrane, which may explain the lower activity when compared to 
other parasites (55).

As for L. mexicana, CZS-1, CZS-4, CZS-16, DRS-SP2, and PTS-1 demonstrated 
great leishmanicidal activity against promastigotes. These peptides were more active 
compared to other anti-microbial peptides isolated from amphibians (58) and marine 
sources (59). Although L. mexicana promastigotes were more sensitive to these AMPs 
than T. cruzi trypomastigotes, a limitation of our study is the lack of data for intracellular 
Leishmania amastigotes. Testing the studied peptides against both intracellular and 
extracellular forms of T. cruzi was possible because of the availability of the recombinant, 
beta-galactosidase expressing strain (Tula-beta gal). However, the colorimetric method 
employed to quantify the viability of L. mexicana parasites (MTT reduction) is not useful 
with intracellular parasites because the signal produced by the parasites is indistinguish
able from that caused by the host cell, confounding the results. Therefore, a direct 
comparison of the sensitivity of the (clinically relevant) intracellular amastigotes of both 
parasite species is not possible from our data. Likely, intracellular amastigotes of L. 
mexicana will be less sensitive to the peptides, as is the case for T. cruzi.

Most AMPs interact with the plasma membrane of microorganisms as an initial 
mechanism of action. Several members of the cruzioseptin and dermaseptin families 
have shown a membranolytic effect on S. aureus, T. cruzi, and Leishmania spp. (32, 56, 
60). Based on this observation and on our research, we believe that CZS-1, CZS-4, CZS-16, 

FIG 4 Secondary structure prediction for the five studied peptides obtained with JPred, PSIPred, and SOPMA bioinformatic tools.

TABLE 4 SI of studied AMPsa,b

Peptide T. cruzi P. falciparum L. mexicana

Trypomastigotes Amastigotes NF54 C2B

CZS-1 0.83 0.14 0.08 0.14 4.41
CZS-4 30.94 1.56 3.46 9.85 532.89
CZS-16 0.24 0.11 0.12 0.13 0.44
DRS-SP2 ND ND 0.26 0.20 5.15
PTS-1 1.775 0.08 0.05 0.10 25.20
aSI denotes RAW 264.7 CC50/parasite IC50.
bLarger values indicate greater peptide specificity for parasites over host cells.
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DRS-SP2, and PTS-1 act on parasites via membrane destabilization. Our hypothesis is 
supported by the results of molecular docking, which indicate a peptide-membrane 
interaction as evidenced by negative docking values. Previous computational studies 
have also shown that there is a favorable interaction between anti-microbial peptides 
and phospholipid bilayers (61, 62).

Toxicity is an important concern when studying peptides for drug development 
(63). In our study, this challenge was evaluated exposing murine macrophages and 
LLC-MK2 cells to the peptides. All studied peptides displayed activity against RAW 
264.7 macrophages; however, the activity was quite low for CZS-4. These data are 
relevant for anti-parasitic drugs, given that macrophages are one of the cells that 
parasites invade in the vertebrate host. Indeed, CZS-4 has great specificity for target
ing L. mexicana promastigotes (SI = 532.89) and T. cruzi trypomastigotes (SI = 30.94). 
Conversely, CZS-4 and PTS-1 induced low cytotoxicity toward LL-MCK2 cells. (CC50 = 
70.66 and 80.07 µM, respectively), while CZS-1 and CZS-16 were highly cytotoxic (CC50 = 
3.17 and 5,59 µM, respectively). Currently, several strategies have been used with the aim 
of reducing bioactive peptide toxicity, including cyclization, incorporation of D-amino 
acids, peptides, and computational techniques (63).

Although in vitro studies are a useful starting point for characterization of AMP 
biological properties, their anti-microbial and anti-parasitic activities as well as cytotoxic
ity may differ greatly in vivo. Therefore, additional studies are warranted to clarify the 
therapeutic potential of the studied peptides.

In conclusion, we have shown that five amphibian AMPs, with anti-bacterial and 
anti-fungal properties previously reported, also display differing degrees of activity 
against the protozoan parasites L. mexicana, P. falciparum, and T. cruzi at micromolar 

FIG 5 Optimized three-dimensional structure of the studied peptides obtained using ChemBioDraw and Gaussian software.
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concentrations. As expected, peptides were more active against extracellular parasite 
forms. Among the studied peptides, CZS-4 is the most promising due to its low toxicity 
and high efficacy in eliminating parasites in in vitro assays. In addition, bioinformatic 
analysis suggest that these peptides act through a membranolytic effect.
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