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Abstract This paper focuses on the generalized arc routing problem. This problem
is stated on an undirected graph in which some clusters are defined as pairwise-
disjoint connected subgraphs, and a route is sought that traverses at least one edge of
each cluster. Broadly speaking, the generalized arc routing problem is the arc routing
counterpart of the generalized traveling salesman problem, where the set of vertices
of a given graph is partitioned into clusters and a route is sought that visits at least
one vertex of each cluster. A mathematical programming formulation that exploits the
structure of the problem and uses only binary variables is proposed. Facets and families
of valid inequalities are presented for the polyhedron associated with the formulation
and the corresponding separation problem studied. The numerical results of a series
of computational experiments with an exact branch and cut algorithm are presented
and analyzed.
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1 Introduction

The generalized arc routing problem is defined on an undirected graph with disjoint
clusters of demand edges. The problem itself is to find the minimum cost tour (closed
walk) that visits at least one edge out of each cluster. The problem might be seen as
the arc routing counterpart of the generalized traveling salesman problem, that is a
well-known node routing problem which extends the traveling salesman problem. In
the GTSP, the set of vertices of a given graph is partitioned into clusters and a route
is sought that visits at least one vertex of each cluster. The GTSP can also be used
to model several arc routing problems, like the rural postman problem (Orloff 1974).
However, arc routing problems have received an increasing interest in the last decades,
and highly specialized solution algorithms have been developed in the last years, able
to solve very efficiently different classes of arc routing problems, see Corberán and
Laporte (2014) and Corberán et al. (2011a).

Potential applications of the GARP arise in different contexts, which can be cast
within arc routing. For instance, in meter reading, one of the classical applications
of arc routing, current technologies make it possible to read the requested meters by
traversing just a few of the edges where meters have to be read instead of all of them.
Also, in quality control for networks maintenance only a small subset of the edges of a
network has to be traversed. Furthermore, the GARP is most appropriate for modeling
location/arc routing problems in which facilities have to be located at some given
areas (clusters) and connected among them by means of a route. Depending on their
characteristics, facilities cannot be located at the vertices of a network (warehouses,
pickup/delivery points, etc.), so they have to be located at different edges of the clusters,
and the design of the connecting route involves arc routing decisions. The overall
location/arc routing problem is thus a GARP.

Directed versions of a more general problem, in which the clusters do not necessar-
ily have to be disjoint have been studied by several authors under different names, as
discussed in Ávila et al. (2015). M. Drexl studied the generalized directed rural post-
man problem (GDRPP) in Drexl (2007, 2014), where no depot is assumed, established
its NP-hardness and proposed a branch and cut algorithm. Previously, in Shuttleworth
et al. (2008) the authors introduced the so-called close-enough traveling salesman
problem and proposed heuristics to solve large instances. The same problem has been
studied more recently under the name of close-enough arc routing problem in Hà et al.
(2014), Ávila et al. (2015), where formulations, valid inequalities, and branch and
cut algorithms have been proposed. A multi-vehicle version of the GDRPP has been
studied in Corberán et al. (2015).

Preliminary results of our work on the GARP have been presented in Aráoz et al.
(2011a, b), Fernández (2013a, b). To the best of our knowledge, however, the GARP
has not been addressed in the literature. In this work, we introduce the GARP as a
single vehicle arc routing problem on an undirected graph. This allows us to easily
derive optimality conditions which guarantee that in any optimal solution no edge will
be traversed more than twice. Based on this, we present a first linear integer formu-
lation for the GARP, which uses two sets of binary variables, in the spirit of current
formulations for this type of problems. After analyzing some dominance conditions,
a tighter formulation with only one set of binary variables is proposed. The polyhe-
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dron associated with the latter formulation is studied and some facets and families of
valid inequalities are given. In particular, we present two new families of inequalities
which are valid for the GARP and extend the well-known co-circuit (Barahona and
Grötschel 1986) and matching-type inequalities for odd subsets of vertices introduced
by Edmonds (1965), and we establish some relationship between them. We also study
the separation problem for the different families of valid inequalities, and propose a
solution algorithm which iteratively reinforces the current LP relaxation by incorpo-
rating separated inequalities. Finally, we report on the numerical results of a series of
computational experiments.

The paper is structured as follows. Section 2 defines the problem and presents the
first formulation with two sets of binary variables. Section 3 presents the dominance
relations, which allow to formulate the GARP using only one set of binary variables
and compares the two formulations. In Sect. 4 the polyhedron associated with the
second formulation is studied, stating its dimension, and presenting some families of
facets, whereas in Sect. 5 some families of valid inequalities are presented, including
extensions of classical co-circuit and matching inequalities, which are valid for the
GARP. The separation of the different families of inequalities is addressed in Sect.
6. The proposed solution algorithm is presented in Sect. 7 and the numerical results
obtained in the computational experiments are analyzed in Sect. 8.

2 The generalized arc routing problem

The GARP is defined on an undirected connected graph G = (V, E) with a dis-
tinguished vertex vd ∈ V , the depot. With each edge (u, v) ∈ E is associated a
non-negative cost, cuv . A set of subgraphs of G is given, Ck = (Vk, Dk), k ∈ K with
∅ �= Vk ⊂ V , ∅ �= Dk ⊂ E , k ∈ K , and Vk ∩ Vk′ = ∅, k, k′ ∈ K , k �= k′. Subgraphs
Ck are referred to as clusters and edges in D = ∪k∈K Dk as demand edges. Note that
clusters are not required to be connected. Throughout, we denote R = E\D.

We assume no demand edge is incident with the depot. If necessary, a new depot
is defined, v′

d , connected to the original one with a zero cost non-demand edge, and
with every other vertex u ∈ V \{vd} with a non-demand edge (v′

d , u) of cost cvd u . We
further assume that G has been simplified so that V is the set of vertices incident with
edges in D plus the depot, and E contains all edges in D plus additional non-demand
edges, connecting every pair of vertices u, v not connected of D, and with cu,v equal
to that of the shortest path in the original graph.

Feasible solutions to the GARP are tours (closed walks) starting and ending at the
depot, which traverse at least one edge of each cluster. The GARP is to find aminimum
cost feasible tour.

Throughout, the following standard notation will be used: For a given subset of
vertices S ⊂ V , E(S) means the subset of edges of E with both end-vertices in S, and
for a given subset of edges F ⊂ E , V (F) ⊂ V is the subset of vertices incident with
some edge of F . Also, δ(S) = {e ∈ E | e = (u, v), u ∈ S, v ∈ V \S} denotes the
cut-set between S and V \S, although for a singleton we simply write δ(v) = δ({v}).
Additionally, for any F ⊂ E we write EF = E ∩ F and δF (S) = δ(S) ∩ F . If S1 and
S2 are two disjoint vertex sets, (S1 : S2) represents the set of edges with an end-vertex
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in S1 and another end-vertex in S2. Thus, δ(S) = (S : V \S). And finally, we use
the compact notation f (A) = ∑

e∈A fe where A ⊆ E , and f is a vector or function
defined on E .

Broadly speaking, the GARP can be reduced to the well-known rural postman
problem if each cluster contains only one edge and the number of clusters is less than
the number of edges in the graph. Therefore, we have the following result:

Proposition 2.1 The GARP is NP-hard.

Similarly to other single vehicle arc routing problems on undirected graphs with
non-negative costs, it is easy to see that for a given GARP instance, an optimal solution
exists inwhich no edge is traversedmore than twice. Otherwise, two copies of the same
edge can be removed without affecting neither the condition that at least one demand
edge of each cluster is traversed, nor the parity of the vertices or the connectivity with
the depot. It is easy to see that in contrast to the RPP on an undirected graph Ghiani
and Laporte (2000), the edges that can be traversed twice in an optimal GARP solution
are not limited to the edges of the minimum spanning tree induced by the clusters plus
the edges connecting two D-odd vertices in the same cluster.

It is possible to formulate the GARP using an integer program with two sets of
binary variables. For each e ∈ E , let xe and ye be binary variables associated with
the first and second traversals of edge e, respectively. Specifically, xe = 1 means that
edge e is traversed in the solution tour, while ye = 1 would imply that the solution
tour traversed twice the edge e. The formulation is as follows:

(Fxy) min
∑

e∈E

ce(xe + ye) (1)

x(Dk) ≥ 1 k ∈ K (2)

(x + y)(δ(S)) ≥ 2 S = ∪k∈KS Vk, KS ⊆ K (3)

(x − y)(δ(S)\F) + y(F)

≥ x(F) − |F | + 1 S ⊂ V, F ⊆ δ(S), |F | odd (4)

ye ≤ xe, e ∈ E (5)

xe, ye ∈ {0, 1}, e ∈ E (6)

Inequalities (2) guarantee that at least one edge of each cluster is traversed, whereas
connectivity with the depot is implied by constraints (3). Constraints (4) are an adap-
tation to the GARP of co-circuit inequalities (Barahona and Grötschel 1986), which
ensure even degree of the visited vertices with respect to the solution. Broadly speak-
ing, they impose that if a solution uses an odd number of edges incident with a set
of vertices S, the solution uses at least one additional edge of the cut-set of S. They
further exploit the precedence relationship of the x variables with respect to the y
variables, which is captured by inequalities (5). Constraints (4), which were proposed
by Corberán et al. (2011b) for the Maximum Benefit Chinese Postman Problem, are a
reinforcement of those used in Aráoz et al. (2009a, b) for the clustered prize-collecting
arc routing problem and the privatized rural postman problem, respectively. Formula-
tion (1)–(6) involves 2|E | variables and a number of constraints of types (3) and (4)
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which is exponential on |V |. Both families of inequalities can be separated in poly-
nomial time (Belenguer and Benavent 1998; Aráoz et al. 2009a, b; Letchford et al.
2008).

We next prove that in formulation (1)–(6) the integrality condition on the y variables
can be relaxed, and still obtain optimal solutions with binary values for the y variables.

Proposition 2.2 Let (x∗, y∗) be an optimal solution to formulation (1)–(5) where
constraints (6) have been relaxed to x∗

e ∈ {0, 1}, 0 ≤ y∗
e ≤ 1, ∀e ∈ E. Then,

y∗
e ∈ {0, 1}, ∀e ∈ E.

Proof Define G y = (Vy, Ey) where Ey = {e ∈ E : 0 < y∗
e < 1}, and suppose that it

is not empty. Then, it must contain no tours, since otherwise, let T ⊆ Ey denote such
a tour, and � = min{y∗

e : e ∈ T }. The solution xs = x∗, and ys
e = y∗

e − �, ∀e ∈ T
plus ys

e = y∗
e otherwise, is feasible for (2)–(5) with the integrality conditions on the x

variables, and its value is at least as good as that of (x∗, y∗).
Therefore, if Ey is non-empty there exists u ∈ Vy which is a leaf in G y . Let

f = (u, v) be the only edge of Ey incident with u, and consider the sets S = {u} and
F = {e ∈ δ(u) : x∗

e > y∗
e }.

By definition, f ∈ F ⊆ δ(S). By constraints (5), x∗
e = 1 for all e ∈ F , so

x∗(F) = |F |. Since f is the only edge of Ey incident with u, we have y∗
e = 0 for all

e ∈ F\{ f } and y∗(F) = y∗
f . Furthermore, (x∗ − y∗)(δ(S)\F) = 0, because x∗

e = y∗
e

for all e ∈ δ(S)\F .

Consider the following two cases:

(a) |F | odd. The left hand side of the constraint (4) associated with S and F takes
the value (x∗ − y∗)(δ(S)\F) + y∗(F) = y∗

f , whereas the right hand side of the
constraint takes the value x∗(F) − |F | + 1 = |F | − |F | + 1, so the constraint is
violated.

(b) |F | even. Now |F | ≥ 2, since f ∈ F . Thus, ∅ �= F ′ = F\{ f } ⊂ δ(S) and |F ′|
is odd. Hence, the constraint (4) associated with S and F ′ must hold. Its right
hand side takes the value x∗(F ′) − |F ′| + 1 = 1, whereas in the left hand we
have (x∗ − y∗)(δ(S)\F ′) = 1 − y∗

f < 1, and y∗(F ′) = 0. Thus, the constraint is
violated.

As a consequence, if (x∗, y∗) is optimal, Ey = ∅. Hence, y∗
e ∈ {0, 1}, ∀e ∈ E . ��

3 Dominance conditions and improved formulation for the GARP

Recall that E contains the edges in D plus additional non-demand edges connecting
every pair u, v of vertices not connected with an edge of D, with cost cuv equal to that
of the shortest path in the original graph. Therefore,

Lemma 3.1 For any non-demand edge (u, v) ∈ R, cuv ≤ cus + csv for all
(u, s), (v, s) ∈ E.
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Proof Since all costs for non-demand edges (u, v) are defined as equal to that of the
shortest path between u and v in the original graph, triangle inequality holds for the
costs of such edges by definition. ��

Lemma 3.2 For any demand edge, (u, v) ∈ D, traversed in an optimal GARP solution
it holds that cuv ≤ cus + csv for all (u, s), (v, s) ∈ D.

Proof No optimal GARP solution exists that traverses a demand edge (u, v) ∈ D with
cuv > cus +csv , for some (u, s), (v, s) ∈ D. Otherwise, substituting (u, v) by the pair
of edges (u, s), (v, s) would give a feasible solution with a better value. ��

Theorem 3.1 An optimal GARP solution exists satisfying the following properties:

(a) Exactly one demand edge of each cluster is traversed.
(b) No consecutive non-demand edges are traversed.
(c) No edge is traversed twice.

Proof This proof would consist of repeatedly applying the triangle inequality. ��

Note thatwithout the vertex-disjoint assumption on the clusters the abovefirst assertion
would not necessarily hold.

Therefore, we can eliminate from G all demand edges whose costs do not satisfy
the triangle inequality of Lemma 3.2. By property (b) we can further simplify G
by removing any non-demand edge within a cluster. Thus, non-demand edges either
connect vertices in different clusters or are incident with the depot. That is, E contains
the edges in D whose costs satisfy the property of Lemma 3.2, plus additional non-
demand edges representing shortest paths in the original graph, which connect the
depot with any other vertex and every pair of vertices in different clusters.

In the simplified graph, we denote n = |V |, m = |E |, and p = |K |. Let also
R = E\D, and Rd = δ(vd).

Assuming that simple tours are those in which no edge is traversed twice, we
call simple alternating tour to a simple tour through the depot with an odd number of
edges alternating between demand and non-demand, except for the two edges incident
with the depot, which are both non-demand. We call alternating tour to the union of
(possibly only one) simple alternating tours which are vertex disjoint for all vertices
but the depot. Any alternating tour which traverses a demand edge of each cluster is a
feasible solution to the GARP. A simple alternating tour traversing a demand edge of
each cluster is called alternating circuit. Note that alternating circuits exist since any
set of p demand edges from different clusters, can be completed into such a solution
as non-demand edges exist connecting any pair of vertices in different clusters.

Over the property (c) we can build an improved formulation for the GARP which
only uses one set of binary variables to indicate the edges that are traversed in the
alternating tours. This is, let us define variable xe meaning whether the solution tour
uses the edge e. Then, the formulation is as follows:
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(Fx ) min
∑

e∈E

cexe (7)

x(δD(v)) = x(δR(v)) v ∈ V \{vd} (8)

x(Dk) = 1 k ∈ K (9)

x(δ(S)) ≥ 2 S = ∪k∈KS Vk, KS ⊆ K , |KS| ≥ 2 (10)

xe ∈ {0, 1}, e ∈ E (11)

Constraints (8) play a double role. On one hand, they ensure that feasible tours
alternate between demand and non-demand edges. On the other hand, they guarantee
that in any solution all vertices have even degree: two in the case of visited vertices
and zero otherwise. The condition that exactly one demand edge of each cluster is
traversed, is enforced by equalities (9). Connectivity with the depot of solutions is
implied by constraints (10). These constraints are imposed for sets S consisting of at
least two clusters, since for each k ∈ K the equality (9) together with constraints (8)
already imply that x(δ(Vk)) = 2. Note that no constraint on the degree of the depot is
imposed. This is, feasible solutions to (7)–(11) are not necessarily alternating circuits
as they may also be alternating tours.

Formulation (7)–(11) involves m variables, n − 1 constraints (8) and p constraints
(9). The number of constraints of types (10) is exponential on n.

Remark 3.1 Inequalities (10) can be written as δR(S) ≥ 2, because δD(S) = ∅ for all
S = ∪k∈KS Vk, KS ⊆ K .

It is clear that if x is feasible for formulation Fx then (x, y) with ye = 0 for all
e ∈ E is also feasible for Fxy . That is, the feasible domain for Fx is contained in
the projection of the feasible domain for Fxy onto the subspace defined by equations
{ye = 0, e ∈ E}. The same applies to their linear programming (LP) relaxations.
Therefore, we have,

Proposition 3.3 Let XY = {(x, y) ∈ {0, 1}m × {0, 1}m | (x, y) satisfy (2)–(5)} and
X = {x ∈ {0, 1}m | x satisfies (8)–(10)} denote the domains of formulations of Fxy

and Fx . Let also XY and X denote the domains of their respective LP relaxations,
and zxy and zx the optimal LP values for Fxy and Fx . Then,

• X ⊆ XY ∩ {ye = 0, e ∈ E}.
• X ⊆ XY ∩ {ye = 0, e ∈ E}.
• zxy = zx .

4 The polyhedron associated with Fx

Let P be the convex hull of feasible solutions to formulation Fx :

P = conv{x ∈ {0, 1}m | x satisfies (8−10)}.

Theorem 4.1 dim(P) = m − (n − 1) − p, where m = |E |, n = |V | and p = |K |.
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vd

uk−1

vk−1 uk vk

uk+1

vk+1

xC

vd

uk−1

vk−1

ūk v̄ke uk+1

vk+1

xe = x∗ + x′

ūk v̄ke

uk vk

Fig. 1 Case (a) in proof of Theorem 4.1

Proof The (n −1)+ p equality constraints (8) and (9) are linearly independent. Thus,
dim(P) ≤ m − (n − 1) − p. To see that dim(P) = m − (n − 1) − p we will find
m − (n − 1) − p + 1 affinely independent points of P .

Let xC be the incidence vector of an alternating circuit C . For ease of notation, we
suppose that in C the clusters are visited in the natural order 1, . . . , p. Thus, C can be
expressed as vd − u1 − v1 − · · · − uk − vk − · · · − u p − vp − vd with (uk, vk) ∈ Dk ,
k ∈ K and (vk−1, uk) ∈ R. We will find a point associated with each edge in E\Rd ,
except for the demand edges of C .

Consider the following cases:

Case (a): e ∈ D0 = {e ∈ D | xC
e = 0}.

Let us denote such an edge e = (ūk, v̄k) ∈ Dk , for some k ∈ K .
Define x∗ as the incidence vector of the alternating tour which differs from
C in that the chain vk−1 − uk − vk − uk+1 is substituted by the chain
vk−1 − vd − uk+1. Define also x ′ as the incidence vector of the simple
alternating tour vd − ūk − v̄k − vd . Then, x∗ + x ′ ∈ P , as shown in Fig. 1.
In Figs. 1, 2 and 3, edges traversed by C are in black, non-traversed edges
in light gray, dashed lines mean paths with possibly more than one edge,
and clusters are represented by thick lines.
To construct the final matrix, we will denote by xe = x∗ + x ′ the solutions
built this way.
Note that there are d0 = |D0| = |D| − p such points.

Case (b): e ∈ R0 = {e ∈ R\Rd | xC
e = 0}.

Then, e = (v̄r , ūs) with v̄r ∈ Vr and ūs ∈ Vs for some r, s ∈ K , r < s.
Define x∗ as the incidence vector of the alternating tour which differs from
C in:

(i) The chain vr−1 − ur − vr − ur+1 is replaced by the chain vr−1 − vd − ur+1;
(ii) The chain vs−1 − us − vs − us+1 is replaced by the chain vs−1 − vd − us+1.

In addition, select ūr ∈ δD(v̄r ), and v̄s ∈ δD(ūs). Define x ′ as the incidence
vector of the simple alternating tour vd − ūr − v̄r − ūs − v̄s − vd .
We will refer to these solutions by ye = x∗ + x ′ ∈ P . A generic point of
this type might be seen in Fig. 2.
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Fig. 2 Case (b) in proof of Theorem 4.1

vd

uk−1

vk−1 uk vk

e

xC

vd

uk−1

vk−1 uk vk

e

ze = x∗ + x′

Fig. 3 Case (c) in proof of Theorem 4.1

Note that possibly v̄r is ur or vr , and also that ūs might coincide with us

or vs .
The quantity of points in this case is r0 = |R0|.

Case (c): e ∈ R1 = {e ∈ R\Rd | xC
e = 1}.

In the case of e = (vk−1, uk) for some k ∈ K\{1}, define x∗ as the incidence
vector of the alternating tour that results from C when edge (vk−1, uk) is
substituted by the chain vk−1 − vd − uk .
Let us denote by ze = x∗ ∈ P the solutions built this way. In Fig. 3 an
example of one of this points is illustrated.
The number of points provided by Case (c) is r1 = |R1| = p − 1.

There are in total |R\Rd | = (m − |D|) − (n − 1) points of types (b) plus (c). And
thus, the total number of points is m − (n − 1) − p.

All points considered so far are affinely independent. To build the corresponding
matrix, we first partition the set of edges in E by the sets E = D0∪ D1∪ R0∪ R1∪ Rd

with D1 = {e ∈ D | xC
e = 1} and d1 = |D1|. The first two column blocks correspond

to demand edges in D1 and D0. The next two, to edges in R0 and R1. And the last,
to those of Rd . The first row is associated with xC , whereas the remaining rows are
associated with points xe, ye and ze. In the following matrices, the blocks denoted
by A have 0–1 entries but no particular structure. Their dimensions are indicated in
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the subindex while the superindex denotes the kind of points that compose them. O
and 1 denote matrices of appropriate dimensions with all-zero and all-one entries,
respectively, and I the identity matrix.

D1 D0 R0 R1 Rd

xC 11×p O1×d0 O1×r0 11×r1 1 0 · · · 0 1

xe Ax
d0×p Id0×d0 Od0×r0 Ax

d0×r1
Ax

d0×(n−1)

ye Ay
r0×p Ay

r0×d0
Ir0×r0 Ay

r0×r1 Ay
r0×(n−1)

ze 1(p−1)×p O(p−1)×d0 O(p−1)×r0 (1- I)(p−1)×r1 Az
(p−1)×(n−1)

Matrix 1

By subtracting the first row to each of the rows in the last block associated with ze,
we obtain

D1 D0 R0 R1 Rd

xC 11×p O1×d0 O1×r0 11×r1 1 0 · · · 0 1

xe Ax
d0×p Id0×d0 Od0×r0 Ax

d0×r1
Ax

d0×(n−1)

ye Ay
r0×p Ay

r0×d0
Ir0×r0 Ay

r0×r1 Ay
r0×(n−1)

ze O(p−1)×p O(p−1)×d0 O(p−1)×r0 −I(p−1)×r1 Âz
(p−1)×(n−1)

Matrix 2

Now we can use the rows in the block associated with ze to cancel out the elements
in Ax

d0×r1
and Ay

r0×r1 and obtain Matrix 3 which clearly is of full rank.

D1 D0 R0 R1 Rd

xC 11×p O1×d0 O1×r0 11×r1 1 0 · · · 0 1

xe Ax
d0×p Id0×d0 Od0×r0 Od0×r1 Âx

d0×(n−1)

ye Ay
r0×p Ay

r0×d0
Ir0×r0 Or0×r1 Ây

r0×(n−1)

ze O(p−1)×p O(p−1)×d0 O(p−1)×r0 −I(p−1)×r1 Âz
(p−1)×(n−1)

Matrix 3

��
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Theorem 4.2 • For all e ∈ R xe ≥ 0, is a facet of P.
• For all e ∈ Dk, k ∈ K with |Dk | ≥ 2, xe ≥ 0, is a facet of P.
• For all e = (vd , u) ∈ Rd, with u ∈ Vk, k ∈ K , |Dk | ≥ 2, xe ≥ 0, is a facet of P.

Proof Aslightmodification of the above proof can be used to prove that non-negativity
inequalities are facets of P .

To see that xe ≥ 0 is a facet for e ∈ R\Rd , the initial solution xC must be chosen
in such a way that xC

e = 0, i.e., e is one of the edges of Case (b). Then, the additional
points are defined as above with the only exception of the point associated with edge e,
which is not used, thus obtaining in total m − (n − 1) − p affinely independent points
satisfying xe = 0. When e ∈ Dk for some k ∈ K , we need the additional assumption
that Dk contains at least one more edge, since otherwise all feasible solutions satisfy
xe = 1. Then, to prove that when |Dk | ≥ 2, xe ≥ 0 with e ∈ Dk is a facet of P we
again chose an initial solution with xC

e = 0, so e is one of the edges of Case (a). Now,
the additional m − n − p affinely independent points are also defined as in the proof
of Theorem 4.1 with the only exception of the point associated with edge e, which is
not used. When e ∈ Rd , with e = (vd , u1) ∈ Rd ∩ δR(V1) and |D1| ≥ 2, the above
initial solution and affinely independent points for any edge e′ = (u1, v1) ∈ D1 can
also be used. Note that any initial solution with xC

e′ = 0 also satisfies that xC
e = 0, and

any set of m − (n − 1) − p affinely independent points satisfying xe′ = 0, also satisfy
xe = 0. When e = (vd , u) ∈ δR(Vk) for some k > 1 with |Dk | ≥ 2, we proceed
similarly with the only difference that the initial solution xC must be chosen in such a
way that cluster k is visited in the first place. Therefore, we have the following result:

Theorem 4.3 Connectivity inequalities x(δ(S)) ≥ 2, with S = ∪k∈KS Vk, KS ⊆ K ,
|KS| ≥ 2 are facets of P.

Proof The proof of this theorem would be similar to that of Theorem 4.2 but we avoid
it here for the sake of brevity. ��

5 Valid inequalities

In this section, we present several families of valid inequalities that can be used to
reinforce the LP relaxation of formulation (7)–(11). These families can be classified
in three different types: connectivity, parity and matching. For each type of inequal-
ities, we first present an adaptation to the GARP of some well-known family, and
then we introduce a new family, which reinforces and extends the original one. In
particular, we introduce stronger connectivity inequalities, parity inequalities which
generalize co-circuit inequalities (Barahona andGrötschel 1986), as well as matching-
type inequalities which generalize classical inequalities for odd subsets of vertices
(Edmonds 1965). The section closes by relating the generalized co-circuit inequalities
to the generalized matching-type inequalities.

5.1 Connectivity inequalities

In formulation Fx connectivity of each clusterwith the depot is implied by equalities (9)
together with constraints (8), whereas connectivity with the depot of vertex subsets
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consisting of at least two clusters is implied by constraints (10). When integrality
conditions are relaxed, additional connectivity inequalities can be used to reinforce
the LP relaxation of Fx .

Observe first that constraints (10) are valid for a larger family of sets S than that
defined by the union of vertex sets of several clusters. In particular, we know that in
any feasible solution any set containing all the vertices of some cluster will be visited.
Therefore, its cut-set must be at least 2. That is, when V \{vd} ⊇ S ⊇ Vk for some
k ∈ K the associated constraint (10) is valid for Fx even if S is not necessarily the
union of the vertex sets of several clusters. We call cluster-connectivity constraints to
this extended family of inequalities (10).

Other families of connectivity constraints are also valid for any vertex set, even if
it does not fully contain the set of vertices of any cluster. In particular,

x(δ(S)) ≥ 2xe S ⊆ V \{vd}, e ∈ E(S) (12)

are valid for Fx since they impose that the cut-set of any visited set of vertices is
traversed at least twice. Similar inequalities are well-known for other arc routing
problems in which the set of vertices to be visited by a certain route is not known in
advance (see, for instance, Belenguer and Benavent 1998; Aráoz et al. 2009a). We call
set-connectivity to the family of inequalities (12). For sets S that do not fully contain
any cluster vertex set, these inequalities are not implied by the cluster-connectivity
constraints. Thus, we will consider set-connectivity constraints associated with sets
S ⊆ V \{vd} such that Vk\S �= ∅ for all k ∈ K .

Observe that the set-connectivity constraint associated with e ∈ E(S) for any set
S ⊆ V \{vd} can be reinforced because of the alternating condition of optimal tours:

• When e ∈ Dk for some k and xe = 1, no other edge in Dk can be at value one.
This has a double effect. First, we can reinforce its right hand side and obtain the
strengthened constraint

x(δ(S)) ≥ 2
∑

e∈E(S)∩Dk

xe. (13)

Now, for a given S and k with Vk\S �= ∅, all the edges in E(S) ∩ Dk yield the
same constraint (13). Constraints (13) are called D-set-connectivity inequalities.
We can further reinforce constraint (13) by eliminating some terms in the left
hand side. When some edge in E(S) ∩ Dk is at value one, then the only edges in
δ(Vk ∩ S) that can take value one are non-demand ones. Thus, inequalities (13)
can be reinforced to:

x(δD(S\Vk)) + x(δR(S)) ≥ 2
∑

e∈E(S)∩Dk

xe. (14)

Constraints (14), the reinforced family of inequalities (13), are called D+-set-
connectivity constraints.

• When e ∈ R, i.e. e ∈ δ(Vk : Vl) for some k, l ∈ K , and xe = 1, we can proceed
similarly. First, no other non-demand edge in (Vk : Vl)∩ E(S) can be used, so the
right hand side of (12) can be reinforced to
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x(δ(S)) ≥ 2
∑

e∈ER(S)∩(Vk :Vl )

xe. (15)

Constraints (15) are called R-set-connectivity inequalities. Now, when some non-
demand edge in (Vk : Vl)∩ ER(S) is used, no other non-demand edge in (Vk : Vl)

can be used. That is, for S ⊆ V \{vd} and k, l ∈ K , with Vk\S �= ∅, Vl\S �= ∅ and
ER(S) ∩ (Vl : Vl) �= ∅ the inequality (15) can be reinforced to:

x(δD(S) + x(δR(S)\(Vk : Vl)) ≥ 2
∑

e∈ER(S)∩(Vk :Vl )

xe. (16)

Constraints (16), the reinforced family of inequalities (15), are called R+-set-
connectivity constraints.

5.2 Parity inequalities: generalized co-circuit inequalities

For binary solutions, constraints (8) guarantee the parity of each vertex as well as of
each vertex set. However, when integrality is relaxed, even if the parity of each vertex
is still guaranteed, the parity of subsets of vertices may no longer hold. Therefore,
co-circuit inequalities,

x(δ(S)\F) ≥ 1 − |F | + x(F) S ⊂ V, F ⊆ δ(S), |F | odd (17)

can be used to cut-off such solutions. Inequalities (17) can be extended to stronger
valid inequalities for the GARP, as we next see.

Theorem 5.1 Let S ⊂ V be a given set of vertices and F ⊆ δ(S), F = F1 ∪ · · · ∪ Fr ,
with Fi ∩Fj = ∅, i �= j , and r odd and such that every feasible GARP solution satisfies
x(Fi ) ≤ 1, i = 1, . . . , r . Then, the following Generalized Co-circuit Inequality (GCI)
is valid for Fx :

x(δ(S)\F) ≥ 1 − r + x(F). (18)

Proof Let x denote the incidence vector of a feasible solution to Fx . If 1−r+x(F) ≤ 0
the inequality trivially holds. Otherwise, 1 − r + x(F) > 0 or, taking into account
the integrality of the solution, 1 − r + x(F) ≥ 1, so x(F) ≥ r . On the other hand,
by hypothesis, x(Fi ) ≤ 1, i = 1, . . . , r , so we have x(F) = ∑r

i=1 x(Fi ) ≤ r , where
the first equality follows since Fi ∩ Fj = ∅, i �= j . Thus, x(F) = r (i.e. x(Fi ) = 1,
i = 1, . . . , r ) and the right hand side of the inequality takes the value 1. Since r is odd,
the tour must traverse at least one additional edge in the cut-set of S. Given that the
solution already traverses one edge of each Fi and the edges in each Fi are mutually
incompatible, the additional traversed edge must belong to δ(S)\F , and the inequality
holds. ��
Remark 5.1 • Observe that the hypotheses of Theorem 5.1 are natural in the context

of the GARP. For instance, for a given S ⊂ V if we define Fi = δD(S ∩ Vi ),
i ∈ K , it holds that Fi ∩ Fj = ∅, for all i �= j and x(Fi ) ≤ 1 in every feasible
GARP solution.
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• It is clear that when |Fi | = 1, i = 1, . . . , r , GCIs reduce to co-circuit inequalities
(17). However, for the general case when |Fi | > 1 for some i , the GCI dominates
the classical co-circuit inequality. Note that, in fact, when |Fi | > 1 for some i
the classical co-circuit inequality will never be violated, since 1 − |F | + x(F) ≤
1 − |F | + r ≤ 0, because r < |F |.

• The GCI (18) is valid even if the Fi ’s are not pairwise disjoint. In this case, if
xe = 1 for some e ∈ Fi ∩ Fj , i �= j , then x(F) < r , so the GCI is not tight.

5.3 Matching-type inequalities: generalized matching inequalities

Another family of valid inequalities can be derived from the fact that in alternating
circuits, non-demand edges non-incident with the depot define matchings on the graph
induced by the visited vertices excluding the depot.

Theorem 5.2 Let S = {v1, . . . vr } ⊂ V \{vd}, and r odd. Then the following inequal-
ity is valid for P:

x(ER(S)) ≤ |S| − 1

2
. (19)

Proof Since any feasible solution alternates between demand and non-demand edges,
the set of non-demand edges is a matching on the subgraph induced by the set of
visited vertices but the depot. Therefore, (19) is valid. ��

In the following, inequalities (19) will be referred to as Matching Inequalities
The set of demand edges traversed in a feasible tour also defines a perfect matching

in the graph induced by visited vertices but the depot. Thus, even though similar
inequalities applied to S ⊆ Vk would be also valid for the GARP, they have not been
introduced because inequalities 9 are stronger.

When several vertices of S belong to the same cluster, inequality (19) may be very
loose. Thus, one may wonder if valid inequalities of this type can be obtained, in
which the right hand side depends on the number of clusters involved in set S, say r .
Note that when several vertices of S belong to the same cluster, the tighter inequality
x(ER(S)) ≤ ⌊ r

2

⌋
need not be valid, as illustrated in Fig. 4 for S = {u1, u2, u3, u4}.

In particular, two non-demand edges may connect clusters C1, C2 an C3. This is
possible, because the depicted solution traverses demand edge (u3, u4) connecting
two vertices of S.

Therefore, if S contains a subset of vertices Si , all of them belonging to the same
cluster and no demand edge connecting two vertices of Si is used, then the cut-set
x(δ(Si )) may contain at most one non-demand edge. However, if a demand edge
connecting two vertices of Si is used, then the cut-set x(δ(Si )) may contain up to two
non-demand edges. This idea is formalized below.

Theorem 5.3 Let S ⊂ V \{vd} be a set such that S = S1 ∪ · · · ∪ Sr with Si ⊆ Vi , and
r < p odd. Then, the following Generalized Matching Inequality (GMI) is valid for
the GARP:

x(ER(S)) ≤ r − 1

2
+ x(ED(S)). (20)
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C3 u3

u4

C2

u2

u1

C1

Fig. 4 Rationale for generalized matching inequalities

Proof Let x denote the incidence vector of a feasible solution to Fx .
When x(ED(S)) = 0 inequality (20) is valid since it must hold that x(δR(Si )) ≤ 1,

i = 1, . . . , r .
Let us then assume that x(ED(S)) > 0, and rewrite inequality (20) as

2x(ER(S)) ≤ r − 1 + 2x(ED(S)).

We have

∑

u∈S

x(δR(u)) = 2x(ER(S)) + x(δR(S)),

and
∑

u∈S

x(δD(u)) = 2x(ED(S)) + x(δD(S)).

Therefore, by constraints (8), 2x(ER(S)) + x(δR(S)) = 2x(ED(S)) + x(δD(S)), so

2x(ER(S)) = 2x(ED(S)) + x(δD(S)) − x(δR(S))

≤ 2x(ED(S)) + x(δD(S)). (21)

On the other hand, since Si ⊆ Vi , we have

• x(ED(Si )) + x(δD(Si )) ≤ x(Di ) = 1, and
• x(δD(Si : S j )) = 0, i �= j .

Therefore, x(ED(S)) + x(δD(S)) ≤ ∑r
i=1[x(ED(Si )) + x(δD(Si ))] ≤ r .

As a consequence, x(δD(S)) ≤ r − 1 because we are assuming that x(ED(S)) > 0.
Finally, from (21) we have

2x(ER(S)) ≤ 2x(ED(S)) + x(δD(S)) ≤ 2x(ED(S)) + r − 1,

and the result follows. ��
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Fig. 5 Violated generalized
matching inequality. S1 = {u1},
S2 = {u2}, S3 = {u3, u4}
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Figure 5 gives an example of a GMI violated by a (fractional) solution to the linear
programming relaxation of Fx .

As a particular case of GMIs, when |S| = r we obtain the matching inequalities
(19), since in this case |Si | = 1, i = 1, . . . , r so ED(S) = ∅, and thus x(ED(S)) = 0.

The following result relates GCIs and GMIs. We see that they are equivalent with
respect to the domain of feasible solutions to the LP relaxation of Fx .

Theorem 5.4 Let S = S1∪· · ·∪ Sr ⊂ V \{vd} be a given set of vertices with Si ⊆ Vi ,
i = 1, . . . , r , and r < p odd. Define the set F = F1∪· · ·∪Fr with Fi = δD(Si ). Then,
any feasible solution to the relaxed problem, x, violates the generalized matching
inequality if and only if the generalized co-circuit inequality associated with F is
violated by x.

Proof By definition of Fi , x(Fi ) ≤ x(Di ) ≤ 1.
In addition,

x(F) =
r∑

i=1

x(Fi ) =
r∑

i=1

x(δD(Si )) = x(δD(S)) thus x(δ(S)\F) = x(δR(S)).

By constraints (8),
∑

u∈S x(δR(u)) = ∑
u∈S x(δD(u)).

We also have
∑

u∈S

x(δR(u)) = 2x(ER(S)) + x(δR(S)),

and
∑

u∈S

x(δD(u)) = 2x(ED(S)) + x(δD(S)).

Therefore, 2x(ER(S)) + x(δR(S)) = 2x(ED(S)) + x(δD(S)), so

x(δR(S)) = 2x(ED(S)) + x(δD(S)) − 2x(ER(S)).
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Thus,

x(δ(S)\F) = x(δR(S)) = 2x(ED(S)) + x(δD(S)) − 2x(ER(S)). (22)

On the other hand, 1−r +x(F) = 1−r +x(δD(S)), which by adding and subtracting
2x(ED(S)) can be rewritten as

1 − r + x(F) = 2x(ED(S)) + x(δD(S)) − 2

(
r − 1

2
+ x(ED(S))

)

. (23)

By (22) and (23) we have that the GMI associated with S is violated by x , if and only
if x(ER(S)) > r−1

2 + x(ED(S)), and the result follows. ��

In the simpler case when all vertices in S belong to different clusters, ED(S) = ∅.
So, if we define Fi = δD(vi ), i = 1, . . . , r , we have the following:

Corollary 5.1 The matching inequality associated with S is violated by a feasible
solution x if and only if the generalized co-circuit inequality associated with F is also
violated by x.

6 Separation of inequalities

Next, we describe separation algorithms for the different families of inequalities pre-
sented above. Throughout this section x ∈ [0, 1]m denotes the vector we want to
separate. And from now on, let G = (V, E) denote the support graph of x . This
means that in the following, E are the subset of edges from the original graph with
xe > 0, and V = V (E) the subset of vertices incident with some of those edges.

6.1 Connectivity inequalities

The following separation procedure is exact and similar to the one used by other
authors to separate constraints (12) for other arc routing problems (Benavent et al.
2000; Ahr 2004; Aráoz et al. 2009a; Corberán et al. 2011a). It all starts by computing
a graph Gk(Vk, Ek) with the depot, and a vertex for each cluster in the original graph.
Weighted edges Ek are definedwith the sumof all x corresponding to edges connecting
each couple of clusters in the original graph, and doing so with the depot.

Each connected component of Gk but the one with the depot defines a violated
inequality (10).

When Gk is connected, the process follows by computing a min-cut tree to check
whether the value of the min-cut is smaller than two minus an ε = 0.05. If found, the
set of vertices not containing the depot reveals a new violated inequality (10).

Once no violated inequality is found with the heuristic procedure tried so far, the
process starts again with G instead of Gk . This leads to find out if some inequality of
type (13) or (15) is violated by the current x .
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6.2 D-set-connectivity and R-set-connectivity constraints

The same procedure above can be used to separate D-set-connectivity and R-set-
connectivity constraints (13) and (15) and their reinforced versions (14) and (16). For
each edge e ∈ E , in the solution graph, we identify the minimum cut between the
depot and edge e, δ(S), and we consider two different cases.

First, for each cluster with some edge in E(S) we check if the associated D-set-
connectivity inequality (13) is violated. That is, whether

x(δ(S)) < 2
∑

e∈Dk∩E(S)

xe.

If so, the reinforced D+-set-connectivity inequality (14) is also violated. Otherwise,
an additional check is done to see whether it is the reinforced D+-set-connectivity
inequality (14) which is violated,

x(δD(S\Vk)) + x(δR(S)) < 2
∑

e∈Dk∩E(S)

xe.

After that when none inequality is found so far, for each pair of clusters having
vertices in S, say Dk and Dl , we check if the associated R-set-connectivity constraint
is violated,

x(δ(S)) < 2
∑

e∈ER(S)∩(Vk :Vl )

xe.

If it certainly is, the reinforced R+-set-connectivity inequality (16) is also violated.
Otherwise, again an additional check is performed to see whether the reinforced D+-
set-connectivity inequality (16) is violated,

x(δD(S)) + x(δR(S)\(Vk : Vl)) < 2
∑

e∈ER(S)∩(Vk :Vl )

xe.

The procedure presented is exact for D-set-connectivity and R-set-connectivity
constraints (13) and (15), but it is only heuristic for their reinforced versions (14) and
(16).

6.3 Parity inequalities

Next, the separation methods for valid inequalities enforcing the parity of all vertices
in the solution tour for the problem are shown. This involves the co-circuit and the
matching constraints seen above.
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6.3.1 Co-circuit inequalities

The exact method for separating co-circuit inequalities (17) in polynomial time fol-
lows the spirit of other exact separation procedures proposed for separating blossom
inequalities (Letchford et al. 2008).

For separating these inequalities some set S has to be found. As in the previous
cases, it can be separated heuristically by finding the connected components in the
solution graph G induced by edges with values xe > ε, where ε is a given parameter.
This leads to define candidate sets S, that once obtained, we need to find the odd subset
of its cut, F . To achieve so, see that for a given set S ⊂ V and a F ⊆ δ(S) with |F |
odd, the associated co-circuit inequality

x(δ(S)\F) − x(F) + |F | ≥ 1,

might be rewritten as ∑

e∈δ(S)\F

xe +
∑

e∈F

(1 − xe) ≥ 1. (24)

Thus, to solve the separation problem having a possible S, we must find some F in
its cut that minimize the left hand side of (24) relative to a given vector x .

Note that the contribution of an edge e ∈ δ(S) to the left hand side of (24) is
either xe when e ∈ δ(S)\F or 1 − xe when e ∈ F . Then, for a given S, the smallest
possible value of the left hand side of (24) is obtained for the set F = {e ∈ δ(S) |
1 − xe ≤ xe} = {e ∈ δ(S) | xe ≥ 0.5}. When F defined this way is not odd, the
smallest increment in the left hand side that guarantees that F is odd is obtained either
by removing from or adding to one edge. Therefore, the smallest increase obtained is
min{min{xe | e ∈ δ(S)\F},min{1 − xe | e ∈ F}}.

Therefore, the separation method for inequalities (24) consists of identifying the
set S such that δ(S) contains the best possible set F . This is solved by computing the
tree of min-cuts of G, relative to the capacities vector given by xe if xe < 0.5 and by
1 − xe otherwise.

Once the tree is obtained, we evaluate all its min-cuts, since the smallest value of
the left hand side of inequality (24) after making F odd is not necessarily associated
with the smallest min-cut of the tree.

6.3.2 Generalized co-circuit inequalities

We use a heuristic to separate violated generalized co-circuit inequalities (18), via
their associated generalized matching inequalities (20) as indicated by Theorem 5.4
(see Sect. 6.4.2 below).

6.4 Matching-type inequalities

First, the separation procedure for the simple matching inequalities (19) is detailed.
And after that we proceed by describing the method for the generalized ones, (20).

123



516 J. Aráoz et al.

6.4.1 Separation of matching inequalities

In general, for a given solution x with x(δ(u)) = 1 for all u ∈ V , matching inequalities
x(E(S)) ≤ |S|−1

2 are equivalent to inequalities x(δ(S)) ≥ 1, being S ⊂ V , with |S|
odd. It is well-known that the separation problem for this later expression can be solved
with the algorithm of Padberg and Rao (1982), which finds a minimum odd cut-set
with respect to the capacities vector x . Nevertheless, these two inequalities are not
equivalent when exists x(δ(u)) < 1 for some u ∈ V .

In the case of the GARP, matching inequalities (19) only concern non-demand
edges, but in G R , the subgraph of the solution graph G induced by non-demand
edges, the condition x(δ(u)) = 1 does not necessarily hold for all u. An example has
been shown in Fig. 5, on page 13.

However, we can transform x and G R into an equivalent vector and induced graph
where all vertices have degree 1. Then the violated inequalities (19) are equivalent
to violated odd cut-set inequalities, and thus can be separated with the Padberg–Rao
algorithm.

To build this transformation, the connected components of G R must be computed
first. Let Ht (Vt , Et ) denote these components, for t ∈ T . Observe that without loss of
generality we can restrict the search of violated inequalities (19) to those associated
with sets S ⊆ Vt . Then, for each connected component Ht the following procedure is
performed:

1. If x(Et (Vt )) >
|Vt |−1

2 , then the inequality (19) associated with S = Vt is violated.
2. Else, we check whether the condition x(δ(u)) = 1 holds for all u ∈ Vt in Ht .

If it does, then odd cut-set inequalities and inequalities (19) are equivalent in Ht .
Thus, the outcome of the Padberg–Rao algorithm applied to Ht with the capacities
vector inherited from x indicates whether a violated inequality (19) exists for some
S ⊂ Vt .
When x(δ(u)) < 1 for some u ∈ Vt , then inequalities x(δ(S)) < 1 and
x(ER(S)) >

|S|−1
2 are not equivalent in Ht . In this case, we define an “extended”

component H ′
t where these two inequalities are equivalent for all S ⊆ Vt . The set

of vertices is V ′
t = Vt ∪ {wt }, where wt is a new vertex. Then, for all u ∈ Vt with

x(δ(u)) < 1 we define a new edge (u, wt ) of capacity xt
uwt = 1 − x(δ(u)). All

other previous edges inherit their capacity, i.e., xt
e = xe for all e ∈ Et . Note that

xt (E(S)) = x(E(S)), for S ⊆ Vt . The outcome of the Padberg–Rao algorithm
applied to the extended component indicates if xt (δ(S)) < 1 for some S ⊆ Vt .
Observe that if a violated odd cut-set inequality exists for S with wt ∈ S, the
inequality is also violated for S′ = (Vt ∪ {wt }). Since xt (δ(u)) = 1 for all u ∈ Vt ,
the outcome of the Padberg–Rao algorithm applied to the extended component
also indicates if x(ER(S)) = xt (E(S)) >

|S|−1
2 for some S ⊆ Vt .

Again, the computational burden of this exact procedure can be reduced by applying
it onto the connected components of the subgraph of G R induced by edges e ∈ ER

with values xe > ε where ε is a given parameter.
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6.4.2 Generalized matching inequalities

Weapply a heuristic which reduces the separation of generalizedmatching inequalities
(20) in the solution graph G(V, E) to the separation of matching inequalities (19) in
a graph of smaller size, G ′, in which some vertices and edges have been merged.
Only pairs of vertices in the same component such that (u, v) /∈ E can be merged.
This means that a pair u, v ∈ Vk for some k ∈ K , is candidate for merging if either
(u, v) ∈ Dk and xuv = 0, or no edge connecting u and v exists in the original graph.

A candidate pair or vertices is selected for merging if either a third vertex i exists
such that xui > 0 and xvi > 0, or another pair of vertices of the same cluster out of
Dk , say i, j ∈ Vl , l �= k exist such that xui > 0 and xv j > 0.

Merging two vertices i, j consists of replacing vertices i and j by one single vertex
l and assigning to it the union of the cuts, δ(l) = δ(i) ∪ δ( j). When merging these
cuts, if i belongs to the same cluster as u and v, both edges (i, u) and ( j, u) ∈ Dk .
Therefore, the merged edge (l, u) has both end-vertices in the same cluster and is
declared as a demand edge. In contrast, when u belongs to a different cluster from that
of i and j , both edges (i, u) and ( j, u) are non-demand. Therefore, the merged edge
(l, u) (which connects the same pair of clusters as both (i, u) and (u, j)) is declared
as non-demand.

The heuristic sequentially explores all clusters. Within each cluster it merges all
pairs of candidate vertices satisfying any of the two criteria above. It is repeated again
with the resulting shrunk graph, until no more vertices can be merged. Let x and
G = (V , E), respectively, denote the weights vector and shrunk graph at the end of
the process. Let also V k , k ∈ K denote the shrunk vertex sets of the clusters. For
S ⊂ V , its shrunk vertex set is denoted by S ⊂ V . For u ∈ V , its “original” vertex set
is denoted by Su ⊂ V .

Observe that x(V k : V k′) = x(Vk : Vk′), for all k, k′ ∈ K , k �= k′. Note also that
for u ∈ V , it holds that x(ED(Su)) = 0, since only pairs (i, j) /∈ E(x) can be merged.
Therefore, we have

Theorem 6.1 Let S ⊂ V be the vertex set of a matching inequality (19) violated by x
in G. Then, the GMI (20) associated with S is violated by x in G.

Let S = {u1, . . . , ur } ⊂ V with h(ui ) �= h(u j ), for i �= j , i.e. in different original
clusters. For i = 1, . . . , r , let also Fi = δD(Sui ). By Theorem 5.4, we also have the
following corollary.

Corollary 6.1 If the matching inequality (19) associated with S is violated by x in G,
the GCI (18) associated with F = F1 ∪ · · · ∪ Fr is violated by x in G.

7 A solution algorithm for the GARP

In this section,we present a solution algorithm for solving theGARPusing formulation
Fx . It has two phases: the first one is an iterative LP based cutting plane algorithm,
which starting from a relaxed formulation reinforces at each iteration the current
formulation by adding valid inequalities violated by the current LP solution. The
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second phase is only applied when a provable optimal solution has not been found in
the first phase, and resorts to CPLEX for solving exactly formulation Fx . For the first
phase initially we consider the relaxation of formulation Fx which includes constraints
(8) and (9), implying thus the connectivity constraints x(δ(Vk)) = 2 for each cluster
k ∈ K , but does not include any connectivity constraint (10). This formulation is
further enhanced with the family of inequalities

x(Vk : Vl) ≤ 1 k, l ∈ K , k �= l (25)

which are valid for any alternating tour.
As before, let G(V, E) denote the support graph associated with the solution x at

any iteration of the cutting plane algorithm. The strategy we use for finding violated
inequalities is the following (using ε ∈ {0, 0.05, 0.1} in all cases):

Step 1: Cluster-connectivity inequalities of type (10) for S = ∪k∈KS Vk, KS ⊆ K
(see Sect. 6.1). We operate on the graph Gk with its weighted edges as
capacities.We first identify the connected components in the graph induced
by edges with xe > ε. Then, if no violated inequality (10) has been found,
we apply the exact separation procedure by finding the tree of min-cuts
relative to the capacities vector.

Step 2: General case of cluster-connectivity inequalities (10) and reinforced set-
connectivity inequalities (14) and (16) (see Sect. 6.2). We proceed as in
Step 1, with the only difference that we work on the graph G relative to the
capacities given by x . For each candidate set S, we check whether Vk ⊆ S
for some k ∈ K to find out the type of inequality it may produce: a violated
inequality (10) in the former case or set-connectivity in the latter one.

Step 3: Co-circuit inequalities (17). We proceed as indicated in Sect. 6.3. We apply
the heuristic first, and only if it fails we apply the exact separation.

Step 4: Matching inequalities (19). We proceed as indicated in Sect. 6.4.1. As
before, we apply the heuristic first, and only apply the exact separation
when it fails.

Step 5: General matching inequalities (20). We proceed as indicated in Sect. 6.4.2.

A violated inequality of any kind is added to the current LP only if its violation is
greater than or equal to a given parameter that we have fixed at 0.1.

When violated inequalities are no longer found and the current LP solution is not
integerwe apply the secondphase inwhichCPLEX is used for solving exactly formula-
tion Fx reinforcedwith the violated inequalities found in the first phase. Inequalities (8)
guarantee that integer solutions to the current formulation satisfy the parity constraints.
However, it is possible that integer solutions to the current reinforced formulation do
not satisfy all connectivity constraints (10) associated with sets S which are the union
of vertex sets. For this reason, in the second phase we use as callback function for
CPLEX a separation routine for such connectivity constraints (the same that is used in
Step 1), which is only applied at the nodes of the search tree where an integer solution
is found. In this way, the second phase terminates with an integer solution satisfying
all connectivity constraints (10) which is optimal for formulation Fx .
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8 Computational experiments

Next, we describe the computational experiments we have run and we report on the
results obtained. The programs were coded in IBM� ILOG� Script and run with the
IBM ILOG CPLEX Optimization Studio Version 12.4. Default parameters were used.
All the experiments were run on an Intel(R)Core(TM)2 Quad CPUQ9400 at 2.66GHz
and 8 GB of RAM using a 64-bit operating system.

Three sets of instances have been used in these computational experiments. The
first two contain well-known instances used as benchmarks for numerous arc routing
problems. As might be seen in the next section, for all these instances an optimal
solution was already found without the need of the branch and cut algorithm. The
cutting plane was enough to solve these instances in 677s. For this reason a new
set of instances was generated specially for the GARP. Thus, the third set contains
some new larger instances. Later in this section, the steps to build these data will be
described.

8.1 Instances already existent in the literature

The first two sets are:

S1 The 118 clustered prize-collecting arc routing problem (CPARP) instances used
by Aráoz et al. (2009a) for the clustered prize-collecting arc routing problem and
in Corberán et al. (2011a) for the windy prize-collecting arc routing problem.

S2 The 40 general routing problem (GRP) instances of http://www.uv.es/corberan/
instancias.htm used in Corberán et al. (2011a) for the windy prize-collecting arc
routing problem.

The 118 instances of the set S1 are divided into five groups. The first group con-
tains two instances, ALBAIDAA and ALBAIDAB (Corberán and Sanchis 1994). The
second group, instances labeled P, contains the 24 instances from Christofides et al.
(1981). The last three groups contain instances from Hertz et al. (1999): 36 instances
with vertices of degree 4 (labeled D), 36 grid instances (labeled G), and 20 randomly
generated instances (labeled R).

The 40 instances of the group S2 are divided into three groups. Sets ALB andMAD
contain 15 instances each, generated from the street networks of the Spanish towns of
Albaida and Madrigueras (Benavent et al. 2007). The set GRP contains ten randomly
generated general routing problem instances (Corberán et al. 2001).

Like in other works where instances in sets S1 and S2 have been used in a clustered
context, the clusters have been set to be the connected components induced by the
required edges of the original RPP or GRP instance. In all cases, vertex 1 has been
taken as depot.

8.2 Instances specially generated for this problem

All instances of the group S3 have 300 vertices. They were generated following the
next steps:
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1. Start with an Euclidean bidimensional space sizing 10,000 × 10,000 points.
2. Set the vertices at randomly chosen locations with minimum distance of 50 points

between them.
3. For each vertex, add a random quantity of edges connecting it to others with dis-

tance under 500. These degrees follow a uniform distribution, |δ(v)| ∼ U [6, 30].
As costs, the integral part of their distances are taken.

4. Add edges to connect the distinct connected components obtained so far. These
edges are created from a random quantity, t , of minimum spanning trees among
these connected components. This quantity follows a uniform distribution t ∼
U [10, 50], too.

5. Purge the graph by deleting all edges uv if cuv < 0.98(cuw +cwz) for some vertex
w. This, to avoid almost-parallel edges.

At this point we have already created the graph. Continue to define the clusters.

6. Choose p centroids, one for each new cluster. Each centroid is a randomly selected
vertex, but neighbors of any previously selected as centroid.

7. Assign the rest of vertices to their nearest centroid. This might lead to have more
than p clusters since one node may not be connected to its nearest centroid.

8. Define as demand edge, each one already existent with both end-vertices in the
same cluster.

9. Once at this point, for each node with δD(v) = ∅ either:
• If there is no edge joining the node with its nearest centroid, add a new edge
between it and the nearest node already belonging to some cluster.

• If it is an isolated centroid, join it to the nearest cluster without creating new
edges, but defining the corresponding edge as demand one. This might reduce
the number of clusters.

By this mean, ten instances with p � 50 have been created, and ten more with
p � 30.

In Table 1, information on all is depicted in groups according to their characteristics
and sizes. Columnunder Instances gives the number of instances in the group, followed
by the numbers of vertices n, edges m, demand edges |D|, and clusters, p. When all
values do not coincide, minimum and maximum values in the group are given.

8.3 Numerical results

Throughout, z0 denotes the value of the solution to the initial LP formulation, zr the
lower bound obtained after the cutting plane algorithm, and z∗ denotes the optimal
integer value.

In Table 2 results for sets S1 and S2 are depicted. As already said, all instances
of these sets where solved optimally with the cutting plane algorithm only. Thus, in
Table 2, zr = z∗. For this reason, columns show the deviation from the solution to
initial formulation with no inequalities added to the final solution of the cutting plane
algorithm, that is, the integer optimal solution for these instances. These deviations
are printed in absolute, z∗ − z0, and relative terms, (z∗ − z0)/z∗. The average number
of iterations and the average time for each group may be seen in last two columns.
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Table 1 Summary of instances

Instances n m |D| p

ALBAIDA 2 90–102 144–160 88–99 10–11

P 24 7–50 10–184 4–78 2–8

D16 9 16 31–32 3–16 2–5

D36 9 36 72 10–38 5–12

D64 9 64 128 27–75 5–15

D100 9 100 200 50–121 9–23

G16 9 16 24 3–13 4–6

G36 9 36 60 11–35 5–10

G64 9 64 112 24–68 4–15

G100 9 100 180 41–113 4–21

R20 5 20 37–75 3–7 4–5

R30 5 30 70–112 7–11 5–7

R40 5 40 82–203 8–18 6–9

R50 5 50 130–203 13–20 6–12

ALBA_3 5 116 174 44–57 16–24

ALBA_5 5 116 174 88–92 9–18

ALBA_7 5 116 174 113–122 2–9

GRP 10 116 174 52–126 5–35

MADR_3 5 196 316 86–108 34–43

MADR_5 5 196 316 147–163 21–27

MADR_7 5 196 316 211–238 2–7

GARP50 10 300 43,000–45,000 447–522 46–52

GARP30 10 300 43,000–45,000 567–613 25–36

Results for the larger instances of set S3 are shown in Table 3. The first column,
with the �, gives the number of instances for which an optimal solution was found
with the cutting plane algorithm. Next, four columns give the average and maximum
deviation of the solution to the initial formulation z0 and the final lower bound zr ,
from the optimal value z∗ in relative terms. Follow the averages of the number of
iterations carried out and the times in seconds spent in the LP, tzr . After that averages
of nodes explored in the search tree by the exact algorithm and the total times, tz∗ also
in seconds, are shown.

In groupGARP50 only one instancewas solvedwithout the branching.However, all
other nine reached the optimal value as the lower bound. Thus, for these cases the task
done by the branch and cut part was getting the final integer values for the variables.
On the other hand, note also that the time to solve the ten instances of GARP30 set
required almost one whole day.

Nevertheless, the effectiveness of the cuts can be appreciated by comparing the
values in the entries of columns (z∗ − z0)/z∗ and (z∗ − zr )/z∗, which illustrate the
reduction in the deviation of the lower bound,with respect to the optimal value, initially
and at termination of the cutting plane algorithm.

123



522 J. Aráoz et al.

Table 2 Summary of results for sets S1 and S2

z∗ − z0 (z∗ − z0)/z∗ Iterations Time (s)

Avg Max Avg Max

ALBAIDA 1224.00 1592 0.29 0.37 75.50 8.338

P 5.08 32 0.05 0.24 5.13 0.222

D16 6.00 18 0.01 0.03 1.67 0.055

D32 40.56 100.5 0.08 0.19 11.78 0.420

D64 55.06 149 0.08 0.24 11.22 0.831

D100 126.58 209 0.15 0.26 51.33 5.905

G16 0.22 1 0.02 0.08 2.00 0.068

G32 1.00 3 0.05 0.17 5.22 0.237

G64 3.11 7 0.13 0.32 20.67 1.418

G100 4.81 11 0.14 0.32 43.44 4.984

R20 0.00 0 0.00 0.00 1.00 0.060

R30 193.40 967 0.01 0.03 2.00 0.124

R40 1392.70 5662 0.04 0.16 1.80 0.186

R50 2914.20 5439.5 0.08 0.12 9.60 0.451

ALBA3 735.40 606 0.15 0.18 41.40 3.341

ALBA5 936.27 1332 0.22 0.33 104.00 17.005

ALBA7 791.60 1948 0.18 0.43 75.60 7.417

GRP 955.70 1358 0.19 0.29 64.40 7.943

MADR3 411.67 372.5 0.06 0.09 37.60 17.553

MADR5 978.00 1427.5 0.19 0.26 60.40 29.996

MADR7 374.00 950 0.13 0.36 44.20 7.381

Table 3 Summary of results for set S3

� (z∗ − z0)/z∗ (z∗ − zr )/z∗ Iterations tzr (s) Nodes tz∗ (s)

Avg Max Avg Max

GARP50 1 0.1249 0.1744 0.0000 0.0000 245 4196.045 391 4460.388

GARP30 2 0.1957 0.3358 0.0090 0.0247 366 7420.331 790 8673.278

The number of violated inequalities found by the separation procedures are sum-
marized in Table 4.

Columns under connectivity indicate the number of connectivity inequalities sepa-
rated with the heuristic and with the exact algorithm. The next two columns, co-circuit
give the number of co-circuit inequalities separated by heuristic methods and by the
exact one. Heuristic methods include the one used in Aráoz et al. (2009a), and the
procedures that work on the shrunk graph induced by the solution. The columns under
matching show matching inequalities separated by the heuristic, and the inequalities
separated when considering the generalized matching inequalities heuristically. As
can be seen in Table 4, most of the inequalities added during the iterative procedure
were connectivity inequalities, although some of the other types were also used.
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Table 4 Total number of different types of inequalities

Connectivity Co-circuit Matching

Heuristic Exact Heuristic Exact Heuristic Extended

ALBAIDA 20 424 – – – –

P 34 115 – – – –

D16 – 8 – – – –

D36 13 122 – 5 – –

D64 14 129 – – – –

D100 58 941 20 80 2 1

G16 1 5 4 2 1 1

G36 5 52 8 2 – –

G64 22 404 – – – –

G100 45 962 16 26 2 1

R20 – – – – – –

R30 1 4 – – – –

R40 2 4 – – – –

R50 5 50 – 8 – 1

ALBA3 37 424 4 – – –

ALBA5 56 1219 – – – –

ALBA7 6 615 – – – –

GRP 79 1105 16 11 – 2

MADR3 32 379 20 2 – –

MADR5 38 1021 – – – –

MADR7 21 332 – – – –

GARP50 283 9894 80 206 – 4

GARP30 409 21,194 10 30 – –

9 Conclusions

In this paper, we have studied the generalized arc routing problem (GARP), an undi-
rected arc routing problem, defined on an undirected graph with a given set of pairwise
disjoints connected subgraphs (clusters) that looks for aminimum cost route traversing
at least one edge of each cluster. A polyhedral analysis of it has been carried out for a
mathematical programming formulation, which uses only binary variables. Facets and
families of valid inequalities have been given, some of them extending the well-known
co-circuit and matching-type inequalities for odd subsets of vertices. The separation
problem for the different families of valid inequalities has been studied and a branch
and cut solution algorithm has been proposed. Finally, the numerical results of a series
of computational experiments have been presented and analyzed.

According to these results, the running time of the presented algorithm seems to
grow with the number of instance clusters. Anyway, the relation among the number
of edges and clusters seems to have some impact too. A deeper analysis of this topic
should be done in the future. Predictably, some of the families of valid inequalities
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introduced in this paper for the GARP will be used in the future, specially in other
more specific problems, since their usefulness has been studied and demonstrated in
this work. Another aspect that may deserve further attention is the relation between
the generalized matching and co-circuit inequalities.
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