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Abstract 

The utilization of biochar derived from biomass residue to enhance anaerobic digestion (AD) for bioenergy recovery 
offers a sustainable approach to advance sustainable energy and mitigate climate change. However, conducting 
comprehensive research on the optimal conditions for AD experiments with biochar addition poses a challenge 
due to diverse experimental objectives. Machine learning (ML) has demonstrated its effectiveness in addressing this 
issue. Therefore, it is essential to provide an overview of current ML‑optimized energy recovery processes for biochar‑
enhanced AD in order to facilitate a more systematic utilization of ML tools. This review comprehensively examines 
the material and energy flow of biochar preparation and its impact on AD is comprehension reviewed to optimize 
biochar‑enhanced bioenergy recovery from a production process perspective. Specifically, it summarizes the appli‑
cation of the ML techniques, based on artificial intelligence, for predicting biochar yield and properties of biomass 
residues, as well as their utilization in AD. Overall, this review offers a comprehensive analysis to address the current 
challenges in biochar utilization and sustainable energy recovery. In future research, it is crucial to tackle the chal‑
lenges that hinder the implementation of biochar in pilot‑scale reactors. It is recommended to further investigate 
the correlation between the physicochemical properties of biochar and the bioenergy recovery process. Addition‑
ally, enhancing the role of ML throughout the entire biochar‑enhanced bioenergy recovery process holds promise 
for achieving economically and environmentally optimized bioenergy recovery efficiency.
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Graphical Abstract

1 Introduction
The process of Anaerobic digestion (AD) involves the 
biodegradation of organic wastes, while producing meth-
ane, hydrogen biofuel and organic acid alcohols and other 
valuable biological chemicals[48, 73]. In recent years, 
there has been significant interest in research focused on 
strategies to enhance AD performance and performance 
and increase energy generation. [112, 130]. Biochar has 
emerged as a highly beneficial carbon-based additive for 
AD due to its numerous advantages [11].

Biochar is a porous solid material with a high carbon 
content. It is produced through the thermal conversion 
of biomass, making it a viable method for directly seques-
tering carbon. [27, 39]. Biochar has been applied in AD 
process to facilitate the colonization of symbiotic micro-
bial communities[122], accelerate electron transfer [61], 
enhance the bioavailability of the elements for microor-
ganisms [131], and produce more biogas [11] and valu-
able chemicals [34]. Biochar has various physicochemical 
properties based on its precursors [45]. In general, bio-
char derived from biomass residue exhibits superior pH 
stability, cation exchange capacity, porosity, and adsorp-
tion properties compared to biochar obtained from other 
materials. [39, 43]. Biomass residue-based biochar can be 
produced from a variety of raw materials, such as algae 

[35], food waste [21], digestate residues [56] and lignocel-
lulosic materials [99]. These organic wastes are generally 
difficult to biodegrade by AD and more favorable for bio-
char preparation due to the large amount of recalcitrant 
organic matter contained. Algae-based biochar is rich in 
various inorganic elements, such as potassium, calcium, 
and magnesium. Additionally, it contains a diverse range 
of functional groups containing nitrogen and oxygen [50]. 
This type of biochar has been shown to enhance the bio-
availability of nitrogen and phosphorus within the system 
[50]. On the other hand, biochar derived from lignocel-
lulosic materials has a high potential for energy recovery, 
with an energy yield ranging from 80 to 90%, as well as a 
mass yield of 70% to 80% [75]. The biochar derived from 
digestate residues is abundance in trace elements (iron, 
cobalt, nickel, molybdenum, zinc, selenium, copper and 
manganese) [6]. Additionally, this type of biochar con-
tains a higher concentration of alkaline groups, which 
can effectively mitigate acidification by neutralizing fatty 
acids [19]. Furthermore, biochar obtained from food 
waste, such as grape, citrus, and corn, demonstrates sig-
nificant potential for the colonization of specific microor-
ganisms, namely K. marxianus and P. kudriavzevii. These 
microorganisms play a crucial role in facilitating optimal 
bioethanol production [49, 63]. As previously mentioned, 



Page 3 of 21Zhang et al. Carbon Neutrality             (2024) 3:2  

the performance of biochar can be assessed based on 
several factors, including carbon conversion, energy loss 
during preparation, the presence of trace or common ele-
ments, and variations in functional groups and electron 
transport efficiency. The effectiveness of managing car-
bon sequestration using biochar derived from biomass 
residue can be observed in the following aspects: (1) the 
energy and material flow during the preparation of resi-
due-based biochar, (2) the enhancement of AD microor-
ganisms through the bioavailability of biochar elements 
derived from residue, and (3) the enrichment of residue-
based biochar for interspecies electron transfer (IET) and 
direct interspecies electron transfer (DIET).

The adoption of AI-based machine learning (ML) tech-
nology has gained prominence as a viable strategy for 
facilitating decision-making processes in recent years. 
This is attributable to its ability to elucidate the promot-
ing mechanism of biochar in the AD process by examin-
ing the relationship between biochar characteristics and 
output variables [42]. The adaptive network-based fuzzy 
inference system (ANFIS) has been demonstrated to 
accurately emulate nonlinear systems (such as biological 
wastewater treatment) with high precision across multi-
ple parameters [80]. The use of support vector machine 
(SVM) has been proposed as a viable approach for the 
identification of graphitized carbon, CO structure and 
defect edges on N-doped food waste biochar [80]. Rein-
forcement learning combined with deep neural net-
works (DNN) controls maximizes the yield of microbial 
co-culture in bioreactors [101]. The impact of various 
models, namely, Lift (XGBoost), Random Forest (RF) 
and artificial neural network (ANN) has been devised to 
enhance the cumulative methane production. The follow-
ing factors are among the most influential in determining 
methadone production: the intrinsic biological interac-
tions in complex systems, the electron donor capacity of 
and the physicochemical properties of biochar [39]. ML 
can potentially predict the effects of biochar properties 
on microorganisms in AD. This approach enables a sys-
tematic exploration of the interaction among the three 
factors. For instance, to verify the influence of highly cor-
related between biochar dimensions and microbial colo-
nization preferences on the methanogenesis rates [35]. 
Although the employment of the ML method has also 
been used to predict biochar yield and function from bio-
mass residues, i.e., lignin [70], microalgae [134], food res-
idues [65] and sludge [91], there remain specific research 
gaps concerning its integration with AD performance. It 
is provided a concise overview of the preparation meth-
odologies predicated on ML predictions of biochar out-
put, carbon content, aromaticity and capacitance [59]. 
Also, the predictive capabilities and research signifi-
cance of ML techniques in the context of AD bioenergy 

production and the synthesis of valuable chemicals under 
the addition of biochar were summarized by using the 
intelligent biological process prediction of the interaction 
between biochar and microorganisms.

The main objective of this study is to comprehensively 
review the role of ML in the biochar-enhanced AD pro-
cess, focusing on biochar preparation and the interaction 
between biochar and AD. Firstly, the current functional 
prediction methods of biochar based on ML are sum-
marized. Insightful suggestions are provided regard-
ing the formulation methodologies for biochar derived 
from residual materials. Additionally, the colonization 
and enhancement of microbial community functions 
and the regulation of element availability are specifi-
cally reviewed. Finally, the merits and demerits of ML 
techniques are scrutinized, and research gaps in bio-
char property prediction algorithms that affect micro-
bial behavior are identified. Future research initiatives in 
this field prioritize the improvement of data quality and 
model transparency as significant benchmarks.

2  Characteristics and advantages of lignocellulose, 
microalgae and food waste based‑biochar

2.1  Carbon recovery and loss rate during preparation
The ongoing advancements in the biochar preparation 
procedure have significantly increased the extraction of 
valuable resources from bio-waste. However, implement-
ing this technology is confronted with impediments to 
its debatable energy efficiency and techno-economic 
features. These challenges encompass a range of consid-
erations, including the bio-residue drying, the thermal 
energy consumption, and the need to consider the bio-
residue recovery rate. Therefore, it is essential to inves-
tigate the effect of different pyrolysis process parameters 
on carbon recovery and loss rates during the preparation 
phase.

The production of bio-oil is commonly associated 
with the biochar preparation process. The parameters 
such as temperature, heating rate, reactor configuration, 
pressure, residence time, carrier gas flow rate, catalysts, 
feedstock composition and blending ratios could affect 
biochar production. The influence of feedstock composi-
tion on the material flow during biochar preparation has 
been demonstrated [24, 31].

With regards to food waste, biochar yield was increased 
with the escalation of pyrolysis temperature. The highest 
biochar recovery can reach 60.55% at 300 °C [79]. When 
the temperature exceeds 800  °C, the resulting prod-
ucts are apportioned among three phases, namely gas 
(15–25%), liquid (50–60%) and solid residue (25%) [24]. 
The higher oxygen content of the feedstock is respon-
sible for the higher liquid recovery rate and the lower 
biochar recovery rate. Lower temperatures result in 
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greater charcoal yields than higher temperatures, while 
an increase in pyrolysis temperature hastens the hydro-
gen evolution [21]. The microalgal biochar presentation 
reveals a noteworthy similarity between the biochar 
yield and pyrolysis temperature of food waste [50]. The 
preparation of microalgae biochar is deemed appropri-
ate within a temperature range of 300–700 °C. Approxi-
mately 50% carbon could be recovery as biochar by 
pyrolysis [5]. Moreover, it should be noted that the heat-
ing rate can affect biochar production significantly. A 
gradual heating rate at (0.1–1℃/s) could obtain a high 
amount of biochar while producing less liquid and gas-
eous by-products. [45]. In contrast, a high heating rate 
at 1000 ℃/s will generate 10–20% of gaseous products, 
15–25% of biochar, and 60–75% of bio-oil [3]. In addi-
tion, the lignocellulose (LC) is also often used to prepare 
biochar by pyrolysis. Abdullah et al. [1] investigated the 
effect of different process temperatures (230–300  °C) 
and residence times (30–90 min) on the yield of biochar 
product based on LC. The highest yield of biochar was 
obtained (91%) at 230 °C for 30 min, which is lower than 
that obtained from of food waste and microalgae. The 
calorific value ranged from 22 to 27  MJ/kg, an increase 
of 22–59% when compared to the relative virgin bio-
mass [1]. Previous studies have reported that an increase 
in residence time and temperature is associated with a 
decline in biochar yield. This phenomenon is attributed 
to the accelerated decomposition rate of the highly reac-
tive hemicellulose. The outcome of this process is the 
partial carbonization and volatilization of lignocellulosic 
compounds [63].

Overall, the form of carbon in pyrolysis/gasification 
products is primarily influenced by the reactor temper-
ature, holding times, and heating rate. When preparing 
biochar, it is important to consider the characteristics 
of the substrate in order to enhance carbon recovery 
and minimize loss rates. Although the optimal tempera-
tures and holding times typically fall below 800 ℃ and 
30–90 min, respectively.

2.2  Reinforced biochar with non‑metallic and metallic 
elements

2.2.1  Reinforced biochar with non‑metallic
Biochar is a highly efficient carbon-rich product with 
enhanced properties obtained by pyrolysis of residual 
biomass. The versatile utilization of biochar allows its 
application in the energy recovery and the environmen-
tal remediation [41, 46, 74]. Tables 1 and 2 lists what rea-
son contribute its superior physicochemical properties, 
including the N element and O-containing functional 
groups, etc. However, the further modification of virgin 
biochar by a variety of physical, mechanical, and chemi-
cal processes to produce engineered biochar for energy 

and environmental applications is a topical issue requir-
ing an up-to-date review [4].

The modification of biochar with non-metallic elements 
is predominantly achieved through the modification of 
functional groups, organic polymer modification, and 
other techniques. The process of modification induces 
changes in the physicochemical attributes of biochar, 
including but not limited to polarity, ion exchange capac-
ity, surface charge, and specific surface area. These modi-
fications have a consequential impact on the interactions 
between biochar and the surrounding environment. 
These adjustments present advantages with respect to 
the adsorption of pollutants and the  augmentation of 
biological mechanisms. The functional groups that are 
frequently utilized comprise of O-containing functional 
groups, N-containing functional groups, P-containing 
functional groups and S-containing functional groups 
[31]. The O-containing functional groups (e.g., hydroxyl 
groups, phenolic groups, lactonic groups) has an impor-
tant effect on the physicochemical properties of biochar. 
These functional groups have a pronounced impact on 
the surface behavior, hydrophilicity, electrical and cata-
lytic of biochar [116]. The incorporation of functional 
groups increases the adsorption capacity of biochar for 
various wastewater heavy metals [52]. Biochar from lig-
nocellulosic materials has many O-containing functional 
groups, which boosts methane production in AD. This is 
due to microbial activity and electron transfer processes 
[89, 99, 122]. Jiang et  al. [34] modified the blue algal 
based biochar with  H2O2 to improve the content of phe-
nolic and lactonic groups. The result demonstrated that 
the redox capacity of biochar, especially the electron-
donating capacity, increased by 64.9%, which is beneficial 
for the electron transfer and methanogenesis.

The implementation of N-containing functional groups 
modification, specifically pyridinic-N and oxidized-N, 
on biochar has been identified as a highly efficacious 
approach. It can be introduced into the biochar surface 
via hydrothermal carbonization and high-temperature 
carbonization [51]. By this way, the electrical conductiv-
ity of biochar could be improved [86]. The biochar sur-
face modified with pyrroline-N, pyridine-N and oxide-N 
showed basicity, which could promote the interaction of 
BC with acidic  CO2, enhance the adsorption of  CO2 and 
utilization by hydrogenophilic methanogenic [18]. How-
ever, it should be noted that the pH of the system should 
be maintained at a stable level when N-containing func-
tional groups of biochar are input because the released 
nitrate or nitro groups in system decrease the pH of sys-
tem (lower than 6), which causing a inhibit effect on the 
methanogenesis [34]. The incorporation of P into biochar 
has been identified as a potential strategy to enhance 
biochar performance. This addition can reduce a charge 
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transfer resistance from microbes to the carbon surface, 
which is beneficial for the electron transfer [69]. Li et al. 
[51] investigated the effects of dual-heteroatom doping, 
specifically N-P and N-S, on AD systems. The findings 
indicated that the presence of P-OH facilitated the diffu-
sion of H during AD system, which improved hydrogen 
consumption by hydrogenotrophic methanogenesis [32, 
69]. N-containing functional groups has been observed 
to enhance the adsorption of  CO2 and promote the 
charge transfer between acetogens and methanogens in 
the digestion system [51].

The main types of organic polymer modification 
include surface active agents, chitosan, amino acids, etc. 
Yu et  al. [119] found that chitosan-modified biochar 
could increase the Cr (VI) adsorption and bio-reduction. 
The chitosan could induce Cr (VI) migration from an 
aqueous to a solid phase and accelerate the EET by Mtr 
respiratory pathway in Shewanella oneidensis MR-1. 
Also, previous research has demonstrated that arginine 
modification can alter the zeta potentials of biochar. The 
biochar capture ability of microorganisms can also be 
improved [127].

2.2.2  Reinforced biochar with metallic elements
The utilization of metal elements or metal oxides as 
modifiers for biochar represents a promising approach 
to augment the energy recovery efficiency through AD. 
Common metals include Fe, Cu, and Mg, among others. 
Fe or Fe oxides have been the most prevalent modifica-
tion materials due to their low cost, abundant source 
availability, and high efficiency [31, 46, 62]. Applying 
iron-based biochar derived from biogas residue and 
ferric chloride could show higher specific surface area 
and more abundant functional groups, which increased 
22.50% than the control group for methane production 
from food waste [56]. The relative abundance of func-
tional genes involved in DIET can be promoted. Also, the 
biochar based on zero-valent iron (ZVI) derived by corn 
straw pyrolysis could showed an increased performance 
for methane production potential [128]. However, aceto-
trophic methanogens can be inhibited by ZVI-based bio-
char, which showed that this element could only enrich 
the hydrogenotrophic methanogens and improve the 
DIET between bacteria and methanogens [118, 128]. In 
addition, iron-based biochar could also achieve higher 
energy recovery efficiency from industrial organic waste-
water, like sulfamethoxazole wastewater [78] and salty 
organic wastewater [9]. Using iron-based biochar exhib-
its diverse potential applications within environmental 
science. Su et  al. [96] found that the use of magnesium 
(Mg) and calcium (Ca) as a means of modifying biochar 
improved its physicochemical properties, thus favor-
ing the AD process. However, despite the numerous 

advantages of metal-modified biochar in enhancing 
methane production, it is crucial to exercise caution in 
the use of metallic-containing reagents during the modi-
fication process. It is imperative to explore low-carbon 
footprint synthesis methods to enhance the efficiency of 
modification [36].

2.3  Machine learning assists in predicting the yield 
and properties of biochar

2.3.1  Biochar yield prediction
The yield of biochar plays a crucial role in its preparation, 
as it requires a careful balance between energy-consum-
ing processes and energy recovery. To assist in predicting 
the biochar yield, the use of ML models can be explored, 
taking into account factors such as feedstock character-
istics and temperature. However, predicting the biochar 
yield can be challenging due to the diverse characteris-
tics of feedstocks and the complex conditions involved in 
the preparation process. ML models designed for biochar 
yield prediction must consider various input parameters, 
including feedstock characteristics, pyrolysis conditions, 
and process parameters. Different algorithms perform 
differently with different data types, and the accuracy of 
model predictions can be impacted by several variables 
[2]. ML-assisted biochar yield prediction has been exten-
sively studied. Zhu et al. [134] proposed that the RF algo-
rithm could effectively predict biochar yield, achieving a 
high  R2 value of 0.85, given appropriate input variables. 
They discovered that structural information, such as the 
relative proportions of lignin, cellulose, and hemicel-
lulose, produced more accurate results than constituent 
compositions. Similarly, Hai et al. [26] demonstrated that 
RF outperformed other algorithms, including Multiple 
Linear Regression (MLR), Decision Tree (DT), SVM, and 
K-Nearest Neighbor (KNN), with an  R2 value of 0.855 in 
biochar yield prediction. Pathy et al. [83] suggested that 
Extreme Gradient Boosting (XGBoost) could achieve 
comparable performance with an  R2 value of 0.84 in bio-
char prediction.

In contrast, Li et  al. [59] showcased the impressive 
accuracy of Multi-Layer Perceptron Neural Network 
(MLP-NN) in biochar yield prediction, achieving an  R2 
value of 0.964. However, selecting appropriate hyper-
parameters for the model is crucial to avoid underfit-
ting or overfitting the data, which can lead to inaccurate 
predictions. In a comparative study that explored inte-
grated methods (ML models integrated with Genetic 
Algorithm and Particle Swarm Optimization). Haq et al. 
[28] found that the Ensembled Learning Tree (ELT-PSO) 
model outperformed others, achieving an  R2 value of 
0.99. Even though various studies have identified various 
parameters for feature importance analysis, the pyrolysis 
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temperature has emerged as the most significant variable 
in all of these investigations.

In general, simple algorithms (e.g., MLR) might exhibit 
less acceptable outcomes compared with RF, XGBoost, 
SVM, and ANN. Combined methods have demonstrated 
exceptional performance, although one must consider 
the trade-off among computational complexity, cost-
effectiveness and convergence speed when applying these 
models [123].

2.3.2  Predict carbon content, aromaticity and capacitance
Predicting the carbon content of biochar is a vital aspect 
of evaluating its potential. The carbon content of biochar 
is potentially linked to its carbon dioxide sequestration, 
stability, and adsorption capacity for various applications 
[81]. Accurate prediction of carbon content is essential 
for determining the effectiveness of biochar in mitigating 
carbon emissions and enhancing digestate quality. ML 
has been successfully applied to predict the carbon con-
tent of biochar with a high degree of accuracy. Interest-
ingly, while the inclusion of structure information (such 
as lignin, cellulose, and hemicellulose contents) signifi-
cantly improved the accuracy of predicting biochar yield, 
the elemental compositions (i.e. C-H–O-N) played a 
more critical role in predicting the carbon content [134].

Aromaticity in biochar plays a vital role in interac-
tions with organic matter, adsorption capacity for con-
taminants, stability, and resistance to degradation [8]. 
Measuring aromaticity in biochar is often complicated, 
expensive, and time-consuming, making it less acces-
sible in many research organizations. To address this 
challenge, researchers have explored more straightfor-
ward approaches using basic characteristic properties to 
predict biochar aromaticity [80]. Cao et al. [7] compared 
simple polynomial models with ML algorithms (Genetic 
Algorithms) and found that ML methods provided more 
accurate predictions, capturing the underlying mapping 
relationship between elemental compositions and bio-
char aromaticity. Similarly, Pan et  al. [80] investigated 
the ANFIS and least square support vector machine 
(LSSVM) algorithms. The results indicated that the 
LSSVM method exhibited greater reliability  (R2 = 0.986), 
with carbon percentage being the most influential input 
parameter. These results demonstrate the feasibility and 
dependability of using element composition-based input 
parameters for predicting biochar aromaticity with ML 
methods, offering a plausible solution to the dearth of 
support for aromaticity measurement in many academic 
institutions. Besides, the electron capacitance of biochar 
is a crucial characteristic for enriching microorganisms. 
Yang et al. [117] explored four regression algorithms (DT, 
ANN, XGBoost, and RF) to predict the specific capaci-
tance of biochar. Among these algorithms, XGBoost 

demonstrated superior performance with an  R2 of 0.983, 
with the activator ratio being the most influential factor. 
Additionally, accurate prediction of specific capacitance 
in heteroatoms-rich activated carbon was achieved using 
MLP-NN, where micropore surface area and volumes 
had the most significant impact on the prediction perfor-
mance [88].

3  Biochar‑assisted AD for bioenergy recovery: 
based on the biochar characteristic

3.1  Effects of biochar on elemental bio‑utilization 
of microorganism on biofuel recovery

3.1.1  Biochar enhanced bioavailability of Fe 
for microorganism

The cellular and metabolic activity of anaerobic micro-
organisms is the key to the energy conversion of organic 
waste. Biochar plays a crucial role in facilitating the colo-
nization and growth of microorganisms, enabling close 
interspecific material and energy exchange, and influenc-
ing pH, alkalinity, and oxidation–reduction (REDOX) 
potential. Additionally, the bioavailability of elements, 
despite being a neglected factor, is of utmost importance 
in terms of biological regulation. The bioavailability of 
elements determines the biological activity within anaer-
obic digesters, as trace elements serve as non-substitut-
able coenzymes and cofactors in the enzyme systems of 
anaerobic microorganism [120]. Notably, biochar con-
tains significant amounts of trace elements, making it 
worthwhile to investigate the bioavailability of these ele-
ments when biochar or elementally modified biochar is 
introduced into AD systems. Previous studies have dem-
onstrated that biochar can enhance the bioavailability of 
trace elements such as Fe, Co, and Ni [85].

Fe is the most crucial element involved in the synthe-
sis of most enzymes, and is a necessary trace element 
for hydrogenase, methane monooxygenase and nitro-
genase, which plays an essential role in the growth and 
metabolism of anaerobic bacteria [97]. However, most of 
the Fe in AD is generally found in carbonates, sulfides, 
hydroxides, and residual fractions, which are in a bio-
logically unavailable state. In the previous research, lig-
nocellulose-based biochar can increase Fe bioavailability 
by 5 times [85]. For instance, this phenomenon can 
contribute to the removal of sulfides and their derived 
anions, the enhancement of chemisorbed capacity by 
oxygen-rich functional groups and the release of bound 
Fe by other specific functional groups such as hydroxyl, 
carboxyl and carbonyl groups. Zhang et  al. [131] found 
that the increase of iron bioavailability benefited the pro-
portion of viable microorganisms and the increase of 
methane production. As a former preparation material 
for biochar, food waste comes from a variety of sources 
and carries more iron. Shin’s research demonstrates that 
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food waste-based biochar leads to a 33-fold increase in 
micronutrient Fe in digestion. Iron elutes from food 
waste-based biochar lead to the growth and continuous 
increase in methanogenic microorganisms, and methane 
production increases by 4% [95]. The absolute concentra-
tion of iron is needed for bioavailability, but dosing con-
centration does not increase bioavailability [131]. Many 
factors affect the actual bioavailability of iron by microor-
ganisms, such as its availability, interspecific competition 
and physical distance. Although the iron content of waste 
wood-based biochar is slightly lower than that of food 
waste-based biochar, the chemical adsorption capacity of 
cellulosic biochar for Fe is 15 mg/g (the highest relative 
to other trace elements). This contributes to the avail-
ability of Fe to electroactive microorganisms due to the 
increment of its electrical conductivity and accumulates 
a large number of electroactive microorganisms [6]. By 
increasing the proportion of exchangeable parts of iron, 
the bioavailability of Fe in the biochar treatment was 
nearly tripled to 0.33. The content of methane in biogas is 
stable in the range of 55–62% [6]. In addition to enhanc-
ing the methane production effect, under the same lig-
nocellulosic biochar enhancement, Fe increased the  H2 
production by 63.27%. This strong promoting effect is 
related to the requirement of Fe by the  H2-producing 
bacteria for hydrogenase protein redox [97].

3.1.2  Biochar enhanced bioavailability of non‑Fe elements 
for microorganism

In addition to Fe, many other trace elements have good 
bioavailable functions and are indispensable growth 
factors for microorganisms [85]. The addition of bio-
char significantly increases the contents of total Co, 
Mo, and Ni in digestion, and since Ni is also required 
for hydrogenase, the metabolic pathways involved in 
methanogenesis have increased [85]. Biochar increases 
the bioavailability of Co, Ni, Mo, Se, Mn, Cu, and Zn, 
which are essential cofactors of key enzymes [124] 
involved in methane production and are generally used 
to improve methane production and substrate utiliza-
tion [6]. The methane yield increased to 134.7  mL/(g 
VS) during the treatment of nickel-loaded shrimp shell 
biochar by promoted the number and activity of Meth-
anosarcina and Methanosaeta [58]. Food waste-based 
biochar contains a wider range of trace elements (Ti, 
Cu, Cr and Zn). Notably, Ca is required for the growth 
and aggregation of certain methanogenic microorgan-
isms [95]. The contents (wt) of total nitrogen, phos-
phate and potassium in microalgal biochar were 6.34%, 
2.44% and 3.64wt %, respectively, which were 2.31%, 
2.19% and 3.0% higher than the corresponding values in 
the control sample. These results suggest that biochar 

amendments increase the nutrient content of the diges-
tives and enrich Genus Proteiniphilum and genus 
Defluviitoga, thereby increasing average methane pro-
duction by 12–54% [125].

3.1.3  Inhibition and relieve inhibition of microorganism 
by biochar‑induced element variation

Maintaining the stability of the microbial energy con-
version process is dependent upon a reasonable level of 
element control. Excessive element concentration may 
be fatal to cell activity. Ca content in kitchen waste-
based biochar is the highest, about 60% [6, 95], it was 
found that 47.4–237  mg/L of Ca can inhibit microbial 
growth [97]. However, it is important to note that the 
elemental composition of biochar may differ from the 
concentration of elements that are released from the 
biochar into the AD system. Therefore, it is neces-
sary to conduct further evaluations to determine the 
extent to which these elements contribute to the per-
formance of the AD system. In addition, excessive Fe 
input will cause excessive cell oxidation and reduce 
microbial activity [131]. The removal of heavy metals 
is also a crucial part of organic waste treatment, which 
not only inactivates methanogenic microorganisms but 
also damages the stability of anaerobic systems and 
eventually causes further harm when it flows into the 
environment. Biochar is a good metal passivator with 
a strong adsorption capacity for the exchangeable part 
of heavy metals. Adding lignocellulosic-based biochar 
promotes the transformation of Cr, Cu, Pb and Zn into 
bio-unavailable states, which is conducive to reducing 
the toxicity of Cr, Cu, Pb and Zn to cells [115]. It can 
improve the AD efficiency of pigment sludge contain-
ing heavy metals, reduce the bioavailability volatility 
of Cd and Pb, and increase the solid removal rate and 
cumulative methane production by 37.8% and 56.3% 
[90]. Previous studies have proposed to adsorb Hg 
(II) to biochar by complexation and precipitation to 
reduce the bioavailability of Hg (II). Another possibil-
ity is that biochar induces S and Fe to stabilize Hg (II) 
by solid-state precipitation of mercury sulfide minerals 
and FeS (s) minerals [110]. Paper mill sludge biochar 
has a high pH value, rich ash content and large pores, 
which can reduce the ecotoxicity of Cu, Zn and As in 
biogas. Additionally, it has been observed that As can 
be immobilized in a non-bioavailable state through 
the adsorption process of paper mill sludge biochar. 
Complex pollution of heavy metals can be reduced 
while higher methane production can be achieved [33]. 
Biochar prepared by mixing algae whit other biomass 
residues showed a maximum adsorption capacity of 
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50.71 mg/g for  Cu2+, which was more than three times 
that of the original biochar [37].

3.2  Effects of biochar characteristic on microbial electron 
transfer during biofuel recovery

3.2.1  Effect of biochar characteristics on IET
Microbial electron transfer is fundamental to redox reac-
tions and serves as the foundation for converting organic 
waste into energy. It is important to note that this elec-
tron transfer is not solely limited to the formation of 
polymers or the transfer of hydrogen and formic acid. 
Interspecific formic acid transfer and interspecific hydro-
gen transfer (IHT) are more common cooperative modes 
in AD, which methanogens use as electron donors for 
 CO2 methanation and solve the thermodynamic adverse 
conditions caused by high hydrogen reaction for bacte-
ria [129]. In a previous study, it was reported that biochar 
could serve as an ideal additive to promote IHT [12], 
sawdust biochar is believed to be a temporary electron 
acceptor that promotes butyrate oxidation, and metha-
nogens accept these electrons from the reduced biochar 
to reduce carbon dioxide to methane. In this way, the 
inhibition of butyrate oxidation by high hydrogen partial 
pressure is alleviated [126]. At the same time, methano-
gens (such as Methanothermobacte and Methanosarcina) 
exhibit a synergistic effect of hydrogenotrophic and ace-
toclastic methanogenesis pathways [126].

3.2.2  Effect of biochar characteristics on DIET
The concept of DIET has garnered significant attention in 
recent years. Unlike IET, the transfer efficiency of DIET is 
not limited by the mass transfer rate and typically occurs 
between electroactive bacteria and methanogens. There 
was clear evidence that Geobacter, a type of electroac-
tive bacteria, showed the highest abundance in the lig-
nocellulose-based biochar treatment, increasing 34-fold. 
This phenomenon can potentially be attributed to an 
enhancement in the biochar’s conductivity following the 
adsorption of trace elements, resulting in an approxi-
mate ten-fold increase in conductivity and improved 
DIET performance. Furthermore, biochar has the abil-
ity to enhance the growth of hydrogenophilic methano-
genic archaea, a functional microorganism associated 
with DIET, and the presence of trace elements showed 
an enhanced performance on this effect. Trace element 
stimulated the abundance of Methanobacillus and Spiro-
spira [6], and the effect of cyanobacteria biochar in Taihu 
Lake on methane production in the AD process of sludge. 
The study found that lower vaccination rates (4% and 1%, 
v/v) increased methane output. Algae-based biochar at 
lower vaccination rates enriched methane sarcoma better 
than higher vaccination rates. According to prior study, 

focused DIET may enable methane synthesis [35]. The 
algal biochar, owing to its porous structure and distinct 
functional groups, exhibits remarkable electron transport 
capabilities with superior storage capacity. This property 
expedites the reduction of Fe (III) to Fe (II) [104], and the 
cytochrome and ferredoxin involved in the synthesis of Fe 
(II) are key factors in electron transport [104]. It is worth 
mentioning that most microorganisms participating in 
DIET, such as Geobacter, Sphaerochaeta and Sporanaero-
bacter species, rely on exchangeable (bioavailable) iron 
and sulfur to complete the process of extracellular res-
piration [61]. Surface functional groups may trigger the 
DIET mechanism between anaerobic microorganisms. 
The addition of rice straw biochar has no significant effect 
on the function of bacterial flora, but biochar material 
with rich specific surface area and hydrophobicity can 
provide better electronic conductivity as an electronic 
conduit. Thus, enhancing electron transport capacity 
between microorganisms [108]. Besides, it is worth not-
ing that the augmentation of distinct surface functional 
groups, namely phenolic and lactic acid groups, is the 
underlying cause of the alteration in redox characteris-
tics of algal biochar. This phenomenon is also responsible 
for the rise in electron-donating potential. The coenzyme 
 F420 activity of methanogenic was enhanced, and the 
methane yield was increased by 58.7%. Thus, algal bio-
char acts as an effective electron conduit for DIET dur-
ing anaerobic methane generation [34]. In thermophilic 
digesters modified from waste wood pellet biochar, ben-
eficial bacteria (e.g., Thermotogae and Defluviitoga) play 
a leading role in the fermentation of food waste. Due to 
the good electrical conductivity of biochar, the DIET pro-
cess between methanogens and their syntrophic partners 
is promoted. The addition of sawdust biochar effectively 
shortened the lag period by 27.5–64.4%, and increased 
the maximum methanogenesis rate by 22.4%-40.3%, due 
to the enrichment of Anaerolineaceae and Methanosaeta, 
typical microorganisms for DIET [12]. Agricultural waste 
corn straw biochar also promoted the abundance of two 
electron-synergistic microorganisms, Clostridia and 
Methanosarcina [93]. Draff-based biochar has abundant 
active surface functional groups (such as -CO, pyridine-
N, and graphite-N), and it has been shown that increased 
methane production is associated with DIET through 
the charge–discharge cycle containing C, N, and O func-
tional groups on the surface [17]. Furthermore, previous 
reported that the presence of elements also exerts a sig-
nificant influence on the development of biochar func-
tional groups, which affect the DIET indirectly [133]. 
Accordingly, trace or common elements with bioavail-
ability can enhance DIET through two paths: (1) Enhanc-
ing the DIET by abundant functional groups on biochar 
surface; (2) Enriching the electroactive microorganisms 
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related to DIET and strengthening the cooperative rela-
tionship of DIET between electroactive microorganisms 
and methanogens.

3.3  Effects of biochar characteristic on biochemical 
recovery

3.3.1  Enhanced volatile fatty acids recovery efficiency 
by biochar

In addition to biofuels, biochar can also facilitate the 
recovery of value-added chemicals, such as volatile fatty 
acids (VFA). The surface functional groups on biochar 
surface, such as OH groups and C-O groups, can affine 
to the cell surface, which could facilitate biofilm devel-
opment and accelerate the hydrolysis process of large 
molecular organic substance [20]. Also, the DIET effi-
ciency could be accelerated by high biochar bulk crys-
tallinity [71]. Nonetheless, considering the syntrophic 
growth of fermentative bacteria and homoacetogens in 
the biochar could lead to a change in the  H2 partial pres-
sure in the system, the main product of fermentation 
would vary with different types of biochar. For instance, 
Lu et  al. [71] found that the enrichments of acetate 
over butyrate from glucose follow: boconut > longan 
shell > bamboo > borncob > pinecone. In addition, the 

algae-derived biochar has been proven to enhance the 
algae anaerobic fermentation for short-chain fatty acids 
production. And the acetate concentration varied with 
biochar content [20]. The algae-based biochar could 
destroy the algae cells and release more macromolecu-
lar organic substrates, which can be used for short-
chain fatty acids production. Currently, the abundant 
hydrophilic functional groups permit the attachment 
and growth of microorganisms on its surface, while 
the conductive properties of biochar promote electron 
transport in the system. The economy analysis also 
showed that the algae-based biochar couple AD could 
have a 1.08 Yuan/kg profits more than that in solo-algae 
AD [20]. Although AD has widely used biochar in VFA 
production, VFA yield can be further improved by mod-
ifying the biochar. Du et  al. [19] explored the effect of 
activated persulfate corn straw-based biochar on VFA 
production from animal wastewater. According to the 
research, persulfate modification could lengthen the 
acidification period and inactivate. The rate of released 
dissolved organic matter with low molecular weight 
(0–10  kDa) increased nearly 2.1 times that of the con-
trol group, which led to higher VFAs yield [19]. The 
research has given a novel strategy for enhancing the 

Fig. 1 Schematic diagram of predicting biochar application in AD. Abbreviations: SI (Structure information), includes the content of lignin, cellulose, 
and hemicellulose; EC (Element compositions), includes C, H, O, N and S; PT (Pyrolysis temperature); RT (Retention time); HR (Heating rate); PS 
(Particle size); Aro. (Aromaticity); Cap. (Capacitance); VS (Volatile solids); TS (Total solids); volatile fatty acids (VFA); COD (Chemical oxygen demand); 
HRT (Hydraulic retention time); OLR (Organic loading rate); T (Temperature); BD (Biochar dosage); PHA (polyhydroxyalkanoate); PI (Permutation 
importance); SHAP (SHapley Additive exPlanations); PDP (Partial Dependence Plot); PCA (Principal component analysis)
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VFA recovery by synergistic chemical and microbial 
effects of biochar.

3.3.2  Enhanced alcohol recovery efficiency by biochar
Alcohol production from biomass is a meaningful mod-
ern adjunct to fossil fuels. However, during the pro-
duction process, some pretreatment technology could 
introduce toxic substances, i.e., furfural and acetic acid 
[29]. Biochar has been proven to enhance alcohol pro-
duction. The biochar could act as an effective adsorbent 
to remove this toxic inhibition. The research by Sun et al. 
[98] improves ethanol production by switchgrass, for-
age sorghum, redcedar and poultry litter-based biochar 
addition. In their research, the biochar could adsorb the 
lignocellulose-derived microbial inhibitory compounds. 
Also, Klasson et al. [44] used dew-retted flax shive-based 
biochar to adsorb the released by-product furfural and 
hydroxymethylfurfural during pretreatment of ethanol 
fermentation. The added 2.5% (w/v) biochar in fermen-
tation broth could significantly reduce the fermentation 
lag phase [44]. However, Wang et al. [109] found that the 
increase in ethanol production from lignocellulosic bio-
mass by biochar was mainly due to the biochar extracts 
in the fermentation broth and cell immobilization on bio-
char. Adsorption detoxification is not a factor in control-
ling ethanol production. Further studies are needed to 
elucidate the formation process of cell immobilization on 
biochar and the effect of biochar on alcohol production. 
Moreover, the biochar could couple with the bio-elec-
trochemical system to enhance alcohol production [13]. 
The bio-electrochemical system coupled with biochar 
showed a high alcohol/acid ratio of 0.179 mol/mol, which 
increases nearly threefold of unmediated mixotrophy at 
an open circuit. The research indicated that the biochar 
could be coupled with other technology to enhance the 
biochemical recovery efficiency.

3.3.3  Enhanced other biochemical recovery efficiency 
by biochar

The recovery of other biochemical products can also be 
improved by biochar. Medium-chain carboxylates acids 
(MCCAs) such as hexanoate (C6) and caprylate (C8) are 
valuable commercial chemicals with relatively higher 
energy density and a wide range of applications. It can 
be the precursor of spices, renewable fuels, fungicides 
and food additives [87, 106]. The addition of biochar has 
been reported to enhance the MCCAs production and 
product selectivity [106]. The detailed mechanism can 
be divided into follows points: (1) reinforcement effect in 
chain elongation. The biochar addition could be induc-
ing more extracellular polymers substance by its high 
conductivity, which is beneficial for creating a more 
demanding system with a more stable microorganism 

community structure on the biochar for chain elonga-
tion [68]. Moreover, it should be noted that the biochar 
smaller than 5  μm may be more efficient for enhancing 
chain elongation due to its higher K content in an aque-
ous solution, electrical conductivity and surface area[67]. 
(2) shorten the lag phase in the chain elongation reac-
tions. The biochar could create some microlocations or 
‘hotspots’ with higher local pH around the biochar, which 
would decrease the toxicity of undissociated carboxylates 
[68, 102]. (3) increasing the selectivity of MCCAs. Ghy-
sels et al. [23] concluded that the biochar could enhance 
the ethanol conversion and selectivity to caproic acid by 
Clostridium kluyveri. The biochar could serve as a pH 
buffer and enrich the functional microorganism [68]. 
Recent research by Cheng et al. [13] found that butyrate 
and hexanoate production from glucose increased sig-
nificantly by biochar. Beside the MCCAs, the production 
of acetone-butanol-ethanol (ABE) fermentation could 
also be enhanced by biochar. The biochar derived from 
switchgrass, forage sorghum, and red cedar could act as 
buffer and provide mineral nutrients to functional micro-
organism, i.e., Na、Ca、Mg、K、S、P、Fe、Zn and 
Mn, which are crucial for metabolic processes and the 
growth of microbes [103].

4  Machine learning for biochar‑enhanced 
anaerobic systems

4.1  Machine learning for biochar‑enhanced bioenergy 
recovery process

AD is a conventional technology employed for the effi-
cient recovery of energy from organic waste. However, 
due to the diverse range of substrates and the variability 
of environmental factors, AD often encounters unex-
pected disturbances during the energy recovery process. 
Consequently, this leads to suboptimal energy recovery 
performance and increased operational costs. To address 
these challenges, the implementation of a suitable ML 
model can be beneficial in optimizing the AD process 
[107]. Additionally, in the context of biochar-enhanced 
AD systems, ML models can be utilized to predict the 
intricate properties of biochar (Fig. 1). By inputting easily 
measurable features of biochar and information on pyrol-
ysis conditions, these models enable accurate predictions 
to be made. Furthermore, these results can be integrated 
with other feedstock properties and AD operational con-
ditions to further predict AD products. It is important 
to note that these outputs are continuous data, and the 
nature of variables has been pre-identified. Therefore, the 
common algorithms used in this process are regression 
models (a category of supervised ML) [26]. On the other 
hand, discrete output data such as system faulty identi-
fication, process inhibition, biogas quality, etc., are com-
monly predicted using classification models [25].
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However, due to the “black box” nature of ML, many 
studies combine feature analysis methods with ML mod-
els to compensate for the limited interpretation capabil-
ity of ML models. For instance, Permutation Importance 
is a technique used in ML to assess the significance of 
features in a predictive model. It determines the extent 
to which each feature contributes to the efficacy of the 
model. Additionally, when investigating microbial infor-
mation, Principal Component Analysis (PCA) reduces 
high-dimensional datasets for better correlation analysis 
[59]. Combining these methods can enhance our under-
standing of microbial community interactions, biochar, 
and AD systems. It is envisioned that artificial intelli-
gence (AI) can assist in the inverse design and develop-
ment of an intelligent biological industry for AD with 
these techniques.

4.1.1  Machine learning prediction for biological energy 
recovery: methane and hydrogen

Recent importance analysis has highlighted a significant 
correlation between cumulative methane production 
(CMP) and the physicochemical properties of biochar 
[42]. This discovery implies that it may be possible to 
forecast CMP under unexamined conditions by accu-
rately predicting these properties. This finding opens up 
new opportunities for comprehending and optimizing 
biochar-enhanced AD systems. And it is essential to con-
sider the conditions and operational parameters of AD 
systems that can be optimized to favor either methane 
or hydrogen production, the latter of which is known as 
“dark fermentation” [111]. The prediction of energy pro-
duction is an attractive application for industries, as it 
directly impacts profitability. Many methane prediction 
models have been applied in techno-economic analysis 
(TEA) to assess the economic feasibility of new biogas 
plants or evaluate optimization strategies for future 
scenarios [40, 60, 76]. Extensive work has been done in 
this field; however, the models vary in complexity and 
reliability.

Notably, many kinetic-based models are derived 
from the well-known Anaerobic Digestion Model No. 1 
(ADM1), which requires multidisciplinary knowledge. 
In contrast, more straightforward techniques based on 
approximate stoichiometry equations have been more 
commonly used in TEA models without considering the 
kinetics of the reactions [76]. These prediction methods 
have complex expressions and may not be adaptable to 
novel feedstocks (e.g., lignocellulosic biomass), different 
reactor configurations, reaction temperatures, and reac-
tion types (e.g., dry AD). Consequently, the prediction 
results can exhibit significant variations, leading to unre-
liable economic assessments. Moreover, conventional 

models often overlook factors affecting methane yields, 
such as inhibition factors, trace elements, and enhance-
ment strategies [2, 64]. The conventional models are 
either too simple to adequately depict the overall per-
formance or too complex to be applied at the commer-
cial and full-scale industrial levels. Some studies have 
attempted to overcome these limitations by developing 
statistically based, multi-level regression optimal models 
[66]. However, these models often require a large amount 
of full-scale data and may struggle to accurately capture 
the complex nonlinear responses that occur in biogas or 
biohydrogen processes [47].

In contrast, ML methods offer a quick and effective 
way to predict methane production and identify the key 
parameters influencing the prediction. It requires no 
knowledge of the biological, physical, or chemical sci-
ences [16, 114, 132]. Simple parameter inputs can lead 
to highly reliable predictions. For instance, Ghatak and 
Ghatak [22] utilized feedstock composition, HRT, and 
temperature to predict biogas production, achieving an 
 R2 value of 0.99. Similarly, Cheon et  al. [14] employed 
OLR, pH, alkalinity, VFA, and COD removal efficiency 
to predict methane yield, resulting in an impressive  R2 
value of 0.97. Similarly, Wang and Wan [105] demon-
strated the usefulness of neural networks in optimizing 
multiple responses in fermentative hydrogen produc-
tion processes. In a review by Kumar Sharma et al. [47], 
various ML algorithms were critically discussed, and it 
was concluded that ML methods hold promise in pre-
dicting biohydrogen yield. The authors encouraged 
using advanced ML techniques, such as deep learning, 
and integrating theoretical models to enhance interpre-
tation and prediction capabilities. Pandey et al. [82] also 
discussed the applications of ML models for predict-
ing and optimizing biohydrogen production. The study 
emphasized the need for robust ML techniques that can 
explore the target system and aid in decision-making 
processes.

Several cases have confirmed the outstanding perfor-
mance of biochar-enhanced anaerobic systems. However, 
most ML models in this field primarily focus on conven-
tional parameters and are limited to case-to-case stud-
ies. Only a few studies have investigated the correlation 
between biochar properties and energy production per-
formance [42]. The feature importance of biochar con-
cerning CMP remains unclear, and the impact of biochar 
on hydrogen production performance in this context is 
still unknown. These studies demonstrate the flexibility 
of ML in prediction, as it is not limited to specific input 
parameters. Such findings suggest the potential for devel-
oping highly efficient prediction models for industrial 
applications.
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4.1.2  Machine learning prediction for valuable chemicals 
production: PHA

Bioplastics have gained significant attention recently due 
to their environmental benefits and sustainable character-
istics. Among the fully degradable bioplastics, PHA can be 
produced by a wide range of bacteria and archaea [54].

To optimize the selection process for PHA production, 
Xu et  al. [113] integrated mechanistic and deep learning 
models to accurately predict the dynamic enrichment of 
PHA accumulating bacteria (PAB) in mixed microbial cul-
tures. Luna et al. [72] developed a hybrid model to describe 
the continuous production of PHA at a laboratory culture 
scale. It is worth noting that the use of ML for PHA produc-
tion prediction is an emerging field, and further research 
is needed to fully explore the capabilities and potential 
applications of ML models in this context. However, the 
eco-friendliness, biosynthesis capability, and modifiable 
properties of PHA-based polymers make them promising 
alternatives to petroleum-based plastics, fueling the inter-
est in developing efficient production strategies [84].

4.1.3  Machine learning prediction for microorganisms 
interactions in anaerobic digestion

Biochar has been shown to enhance the performance of 
AD, a strategy known as the additive approach. Similar 
to carbon-rich materials such as activated carbon and 
graphene, biochar demonstrates immobilization and sup-
port for microbial growth, as well as mitigation of acid 
stress and ammonia inhibition [130]. Moreover, there is a 
growing interest in exploring the role of biochar in facili-
tating DIET among microbes [10].

ML methods provide a new approach to understand-
ing these interactions with microorganisms, mitigating 
labor-intensive, costly, and time-consuming work. For 
instance, Treloar et al. [101] applied reinforcement learn-
ing combined with neural networks to control multiple 
interacting species in a bioreactor, showing promising 
results for co-culture control. Feature importance analy-
sis conducted by Xu et  al. [114] demonstrated that cer-
tain microbes play crucial roles despite having relatively 
low abundances. ML-assisted identification of these fea-
tures can guide the proactive management of microbial 
communities. However, Li et  al. [53] pointed out that 
most ML-assisted applications in the AD process have 
been limited to simple feature importance analysis, and 
there is a need for a more in-depth interpretation of 
microbial interactions.

4.2  Machine learning for visualizing correlations 
between biochar and anaerobic digestion

In recent years, AI-based ML has been applied not only 
to guide the preparation of biochar but also to guide the 
operation of AD. However, there is currently limited 

research on the application of machine learning to guide 
the preparation of biochar for enhancing energy recovery 
in AD. The reason behind this phenomenon stems from 
the fact that current experiments on the enhancement of 
AD by biochar primarily focus on the impact of biochar 
on anaerobic digestion-related indicators. However, there 
is a lack of research connecting experimental results 
with the structural characteristics of biochar, resulting 
in insufficient data. Zhang et  al. [132] using tree-based 
ML models (the GBR, RF, and XGBoost) to investigate 
the effect of digestion time and particle size on methane 
yield. By employing this approach, it is possible to iden-
tify the optimal biochar characteristics that lead to maxi-
mum methane production. Also, it can save costs, time, 
and effort on the process. Consequently, feedback can be 
provided to the biochar preparation process to produce 
biochar with responsive properties, thereby optimizing 
the energy recovery process. However, it is important to 
note that different AI models need to be employed for 
predictions based on various experimental objectives 
in subsequent work. For instance, if the primary goal of 
the experiment is PHA recovery, the parameters of the 
model like input and output variables need to be modi-
fied accordingly.

4.3  Research gap and challenges for ML assisted biochar 
in AD system

As discussed above, ML has been extensively applied to 
individually predict the yield and properties of biochar 
and AD systems. However, there is a lack of studies that 
can explain the interactions when these two systems are 
coupled together [42]. Therefore, we propose investigat-
ing the interactional correlation between biochar proper-
ties and microbes to forecast further the performance of 
AD systems in producing fuels and chemicals. Further-
more, the current understanding of these interactions 
remains superficial, with most studies not considering 
the Phylum and Species level [53]. Comprehending the 
complex interactions between biochar and microorgan-
isms is indispensable to achieving intelligent biological 
processes.

In addition to the specific challenges that AD sys-
tems may face, the application of ML also has intrinsic 
drawbacks.

• Firstly, while the ‘black box’ nature of ML may appear 
as a robust and straightforward technique for indus-
trial applications, there is still a need to uncover the 
underlying mechanisms and provide interpretability 
and rationale for scientific study. One possible solu-
tion is to combine kinetic models with multidiscipli-
nary knowledge to address this challenge.
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• Secondly, it is important to consider the efficiency of 
ML models. While many models may demonstrate 
good performance, integrating complex models can 
increase computation time and reduce practical value 
in commercial applications.

• Thirdly, the variation in feedstocks, scales, and evalu-
ation metrics across different studies poses a chal-
lenge of inconsistency, limiting the ability to extrapo-
late findings from one condition to another.

• Lastly, to achieve intelligent biological processes, 
a comprehensive comprehension of the complex 
interactions between biochar and microorganisms is 
indispensable.

By addressing these challenges and advancing our 
understanding of biochar-microorganism interactions 
and ML applications, we can pave the way for more effec-
tive and reliable intelligent biological processes in the 
context of biochar-enhanced AD systems.

5  Conclusion and future perspectives
Biochar, a by-product of pyrolysis, hydrothermal car-
bonization, and gasification, possesses distinct physico-
chemical properties that make it a valuable additive for 
enhancing the resource recovery efficiency of organic 
waste, including biofuels and high-value biochemicals. 
Furthermore, biochar holds great potential in contribut-
ing to global carbon reduction efforts. This review aims 
to explore the relationship between the physicochemi-
cal properties of biochar, its functionality, current appli-
cations in biofuel and biochemical recovery of organic 
waste, as well as the utilization of ML for carbon recov-
ery. However, there are significant challenges that need to 
be addressed before biochar can be widely implemented 
on a large scale. To achieve efficient large-scale applica-
tion of biochar derived from biomass residues for the 
conversion of organic carbon sources into valuable chem-
icals and biomass energy, further research is required in 
the following areas:

(1) Enhancing the efficiency of biofuel and biochemi-
cal recovery relies on the unique physicochemi-
cal properties of biochar. These properties, which 
include functional groups, size, and porosity, are 
influenced by various factors such as the type of 
biomass (algae, food waste, or waste biomass), 
pyrolysis temperature, and preparation process 
(gasification, pyrolysis, or hydrothermal carboniza-
tion). When utilizing biochar to improve specific 
bioenergy recovery processes, it is crucial to select 
the appropriate biochar based on the principles 
of biochemical reactions and the characteristics 
of biochar. Therefore, it is necessary to investigate 

how these properties are preserved and how they 
transform under different carbonization condi-
tions, whether through gasification or hydrother-
mal conversion, when biomass is converted into 
biochar. Furthermore, t is worth investigating the 
correlation between key characteristics of biochar 
and the process of bioenergy recovery. For example, 
the pH buffering capacity of biochar proves benefi-
cial in pH-sensitive biological treatments involving 
acid-producing bacterial species and methanogen-
esis archaea. The presence of a high surface area, 
porosity, and functional groups can enhance the 
enrichment process of functional microorganisms. 
Additionally, the electrical conductivity of biochar 
facilitates electron transfer during anaerobic diges-
tion. Furthermore, biochar can be modified to meet 
specific application requirements, such as func-
tional group modification and metal/non-metal ele-
ment doping, thereby further improving bioenergy 
recovery efficiency. Lastly, expanding the sources of 
biochar beyond the currently reported feedstocks 
can help identify more cost-effective options.

(2) Focusing on the interactions between biochar and 
microorganisms is crucial in the context of bioen-
ergy recovery. Since bioenergy production heavily 
relies on biological processes, understanding the 
relationship between biochar and microbial inter-
actions becomes significant when incorporating 
biochar into the system. It is necessary to explore 
the corresponding relationships between biochar, 
microbial structure, and environmental conditions. 
This exploration can provide insights into establish-
ing a targeted strategy for shaping the microbiome 
to enhance bioenergy production using biochar. 
Additionally, the metabolic pathways of microor-
ganisms in the system are often complex, involv-
ing mixed-culture microbial systems with various 
functional microorganisms. Therefore, it is essen-
tial to address different technological limitations in 
biochar-enhanced bioenergy recovery processes to 
optimize the biological process. Furthermore, the 
micro-energetic strategies employed by functional 
microorganisms remain unclear. Investigating the 
impact of biochar on the micro-energetic strategies 
of functional microorganisms can help elucidate the 
interaction between biochar and microorganisms. 
Finally, employing statistical methods and a multi-
group approach, such as macro-proteome and 
macro-transcriptome analysis, would be beneficial 
in this regard.

(3) The economic and environmental assessment of 
biochar production and its application in bioenergy 
recovery systems is a crucial aspect. It has been 
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demonstrated that biochar can enhance the effi-
ciency of bioenergy recovery processes. However, it 
is important to note that the preparation of biochar 
involves energy-intensive procedures, such as high-
temperature treatments. Therefore, a comprehen-
sive evaluation of biochar sustainability is necessary, 
encompassing the gasification process, the resulting 
products (i.e., syngas and biochar), and the overall 
bioenergy recovery process. In order to establish a 
financially and environmentally sustainable system 
for the recovery of organic waste resources, a con-
cept that effectively balances biochar production 
and application needs to be proposed.

(4) ML plays a crucial role in the preparation of bio-
char and the enhancement of energy recovery. As 
mentioned earlier, ML has been extensively utilized 
to predict the performance and properties of bio-
char and bioenergy recovery systems individually. 
However, there is a dearth of studies that explore 
the interactions between these two systems when 
they are combined. Employing ML to investigate 
the relationship between biochar properties and 
microbial activity can provide valuable insights for 
future experiments. Nevertheless, it is important to 
address the limitations of machine learning applica-
tions. For instance, the efficiency and reliability of 
machine learning models should be taken into con-
sideration, given that the database is not yet com-
prehensive and evaluation metrics lack uniformity. 
To accurately evaluate the system, more precise 
models are required.
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