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Abstract

The Puyo-Tena roadway is prone to landslides due to the geodynamics, geomorphology, and geological materials of
the area (unstable outcrops and strata). In recent years, this problem has persistently caused the road to be partially
or completely disabled on numerous occasions. The objective of the research was to generate a cartographic model
of landslides susceptibility based on variables such as slope, geological formations, land cover and land use, as well
as distances to faults, road, and rivers. The degree of landslides incidence was estimated as the linear combination of
the weighted variables using the analytic hierarchy process. The importance of this semi-quantitative method lies in
its ability to break down a complex decision problem into a simpler and more coherent decision model. The resulting
cartographic model was classified into five susceptibility categories: very low, low, moderate, high, and very high. The
results showed that 17 km out of the 80 km of the Puyo-Tena roadway have a high probability of landslides, which is
equivalent to 21.25% of the road. Furthermore, within this percentage, it was determined that there are fifteen regions
with a high probability of landslides due to their location in areas with steep slopes, porous and permeable lithology, a
large number of rivers, and agricultural soils. The area under the curve (AUC) of the receiver operating characteristic
(ROC) was used for model verification. The verification results showed that the cartographic model for the study area
has an accuracy value of 83.7%. The cartographic model of landslide susceptibility will enable relevant decisions to
be made to mitigate potential hazards that may endanger transporters, material goods, and residents of the area.
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Resumen

La carretera Puyo-Tena es propensa a deslizamientos de tierra debido a la geodinámica, geomorfología y materiales
geológicos de la zona (afloramientos y estratos inestables). En los últimos años, este problema ha provocado de for-
ma persistente la inutilización parcial o total de la carretera en numerosas ocasiones. El objetivo de la investigación
fue generar un modelo cartográfico de susceptibilidad a deslizamientos a partir de variables como la pendiente, las
formaciones geológicas, la cobertura y uso de la tierra, así como las distancias a fallas, carretera y ríos. El grado de
incidencia de deslizamientos se estimó como la combinación lineal de las variables ponderadas mediante el proceso
de jerarquía analítica. La importancia de este método semicuantitativo radica en su capacidad para desagregar un
problema de decisión complejo en un modelo de decisión más simple y coherente. El modelo cartográfico resultante
se reclasificó en cinco categorías de susceptibilidad: muy baja, baja, moderada, alta y muy alta. Los resultados mostra-
ron que 17 km de los 80 km de la carretera Puyo-Tena tienen una alta probabilidad a deslizamientos, lo que equivale
a 21,25% de la carretera. Además, dentro de este porcentaje, se determinó que existen quince regiones con alta proba-
bilidad de deslizamientos debido a su ubicación en zonas con fuertes pendientes, litología porosa y permeable, gran
cantidad de ríos y suelos agrícolas. Para la verificación del modelo se utilizó el área bajo la curva (en inglés AUC)
de la característica operativa del receptor (en inglés ROC). Los resultados de la verificación mostraron que el modelo
cartográfico para el área de estudio tiene un valor de precisión de 83,7%. El modelo cartográfico de susceptibilidad
a deslizamientos permitirá tomar las decisiones pertinentes para mitigar eventos potenciales que puedan poner en
peligro a transportistas, bienes materiales y residentes de la zona.

Palabras clave: susceptibilidad, deslizamiento, proceso de jerarquía analítica, sistema de información geográfica
(SIG), modelo cartográfico de susceptibilidad.
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Landslides Susceptibility Analysis employing Analytical Hierarchy Process on an Amazonian
roadway in Ecuador

1 Introduction

Landslides are characterized as mass movements
of rocks, soil and debris down the slope under
the direct influence of gravity (Cruden, 1991; Cru-
den and Varnes, 1996). These movements are part
of the geological dynamics of the planet influen-
ced by human activities, rains or static overloads,
causing them to accelerate and in some cases be
catastrophic (Pourghasemi et al., 2018; Basu and
Pal, 2020). Landslide susceptibility indicates how
likely a specific area is to fail, either locally or re-
gionally (Hearn and Hart, 2019). This susceptibility
is usually expressed with a landslide susceptibility
mapping model showing the probability of lands-
lide occurrence, regardless of the time scale. The
relevance of these mapping models is that their
development is specific and detailed about a parti-
cular area.

Mapping to determine landslide susceptibility
analyzes variables that affect soil stability such as
geology, geomorphology, topography and distan-
ce to rivers (Raghuvanshi et al., 2014; Dahal and
Dahal, 2017; Hamza and Raghuvanshi, 2017; Vás-
quez, 2023). The development of susceptibility car-
tographic models considers data quality, spatial
resolution of the work area and the methodology
for the analysis and digitization of the variables
used (Mansouri Daneshvar, 2014). The develop-
ment of these models considers qualitative approa-
ches (such as the heuristic method and the Mora-
Charson-Mora method), quantitative approaches
(such as the deterministic method and the statisti-
cal method) or the union of both. Historically, the
first models to be developed consisted of qualitative
data with geological and morphological aspects of
landslides inventoried (Nilsen et al., 1979; Mallick
et al., 2018). Progressively, they were further refined
and included more robust analyzes such as analy-
tical hierarchy analyzes (Komac, 2006; Tešić et al.,
2020; Chanu and Bakimchandra, 2022), bivariate
(Van Westen, 1997; Jamir et al., 2022), multivariate
(Carrara, 1983; Benchelha et al., 2020; Pham et al.,
2021), logistic regression(Dai et al., 2001; Lee and
Min, 2001; Nhu et al., 2020; Wubalem and Meten,
2020), fuzzy logic (Ercanoglu and Gokceoglu, 2004;
Bahrami et al., 2021; Bien et al., 2022) and artificial
neural networks (Bragagnolo et al., 2020; Bravo-
López et al., 2022; Gameiro et al., 2022).

Qualitative methods are characterized by in-
corporating expert opinion based on small-scale
empirical results (Demir et al., 2013; Roccati et al.,
2021; Asmare, 2023). In general, the most com-
mon qualitative methods are limited to analyzing
the geological and geomorphological properties of
landslides inventoried. However, there are more
sophisticated qualitative methods such as semi-
quantitative methods (Nicu and Asăndulesei, 2018;
Dolui et al., 2019). A semi-quantitative method uses
weighting and classification procedures in quali-
tative methods. A clear example is the analytical
hierarchy process developed by Saaty (1990), which
has been employed in this research. This method
has become a widely used tool as it helps decision
makers to choose the best criterion, reducing com-
plex decisions to a series of comparative pairs and
synthesizing the results (Sonker et al., 2021). Hence,
this tool has been widely used by several resear-
chers in the world for developing mapping models
for landslide susceptibility (Guillen et al., 2022; Oz-
turk and Uzel-Gunini, 2022; Salcedo et al., 2022;
Wang et al., 2022; Okoli et al., 2023).

A characteristic of the Amazon region of Ecua-
dor is the frequency of landslides around major
towns and major road networks (Gobierno Canto-
nal de Pastaza, 2020; Gobierno Provincial de Napo,
2020; Secretaría Técnica de la Circunscripción Te-
rritorial Especial Amazónica , 2021; Servicio Nacio-
nal de Gestión de Riesgos y Emergencias, 2022a,b).
However, the low spatial resolution of the suscep-
tibility models available at regional scale prevents
to know the susceptibility of point areas (Zumpano
et al., 2014). For example, the Puyo-Tena highway,
located between the provinces of Pastaza and Na-
po, does not have detailed studies by the decentra-
lized autonomous governments regarding the sus-
ceptibility to landslides as seen in the reports of the
Gobierno Cantonal de Pastaza (2020) and the Go-
bierno Provincial de Napo (2020). This road often
presents constant landslides that have affected the
road between both provinces (Ecoamazónico, 2014,
2020, 2021; Correo, 2017; Obras Públicas Ecuador
, 2022). Therefore, this research aims to generate a
landslide susceptibility mapping model that identi-
fies the regions most prone to landslides along the
Puyo-Tena road. The route is considered an impor-
tant network connecting Ecuador with its Amazon
region.
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2 Study Area

The research was carried out on the Puyo-Tena
highway, between the provinces of Pastaza and Na-
po, in the Ecuadorian Amazon (Figure 1). The road
is bounded to the west by the Cordillera Real, to the
north by the canton Tena, to the east by the Basin
Oriente and to the south by the province of Pastaza.
In addition, it has a wide variety of landforms such
as mountainous regions, slopes and plains (Minis-
terio del Ambiente de Ecuador, 2014).

The aspects that comprise the study area are slo-
pe (from 5◦ to >70◦), altitude (from 449 meters abo-
ve sea level (hereinafter m.a.s.l) to 1108 m.a.s.l), pre-
cipitation (from 3500 mm/year to 4500 mm/year)
and residual soils. In addition, the area of interest
has an average annual temperature of 23.5◦C and
an annual precipitation of 4200 mm (Harris et al.,
2020). Certain areas of the slopes studied lack ve-
getation cover, porous lithology and heavy rainfall,
develop ideal conditions for high infiltration rates,
making them susceptible to landslides and soil ero-
sion (Laraque et al., 2004; Bravo et al., 2017).

Figure 1. Location of the study area.

3 Materials and Methods

The Analytical Hierarchy Process (AHP) was used.
AHP is a semi-quantitative method based on the

evaluation of multi-criteria decision-making to treat
complex and multi-attribute problems (Gudiyanga-
da Nachappa et al., 2020). The analytical hierarchy
process developed by Saaty (1990) disaggregates a

120
LA GRANJA: Revista de Ciencias de la Vida 39(1) 2024:117-138.

©2024, Universidad Politécnica Salesiana, Ecuador.



Landslides Susceptibility Analysis employing Analytical Hierarchy Process on an Amazonian
roadway in Ecuador

complex decision problem at different hierarchical
levels and allows to quantify opinions and trans-
form them into a coherent decision model. The
process is based on four principles: (i) hierarchy
development, (ii) peer comparison, (iii) judgment
synthesis and (iv) consistency check. This method
along with the weighted linear combination allows
to have the graphical representation of the most sus-
ceptible zones to landslide. In the end, the process
of analytical hierarchy confers the best choice for
the decision-making (Mallick et al., 2018; Basu and
Pal, 2020; Zhou et al., 2020). The process leading to
the landslide susceptibility mapping model is detai-
led below.

3.1 Landslide Inventory
According to Wieczorek (1984), it is necessary to
provide a landslide map to discern locations and

specify landslides that have occurred with different
spatial and temporal scales. Thus, a representative
landslide database is a prerequisite for any lands-
lide hazard or risk assessment (Varnes and Inter-
national Association of Engineering Geology, 2021;
Guzzetti et al., 1999); and a landslide susceptibility
mapping model is no exception. Using orthophoto-
graphs as a base, landslides were identified which
were later confirmed in the field by three days of
travel (July 27th, 28th and 29th, 2021). In addition,
as a result of the in situ tour other landslides we-
re found. Each landslide found was georeferenced
and characterized according to its lithology and ty-
pe of landslide. In total, 62 landslides were identi-
fied along the highway of interest. The largest slides
are shown in Table 1 and Figure 2.

Table 1. Representative part of the inventory of landslides found on the Puyo-Tena road.

Inventory Degree-Decimal Coordinates Geological
Formation

Slide
TypeLongitude Latitude

1 −77.8088◦ −1.1159◦ Arajuno Rotational
2 −77.7947◦ −1.0978◦ Chalcana Fall
3 −77.7933◦ −1.0936◦ Chalcana Fall
4 −77.7905◦ −1.0831◦ Chalcana Rotational
5 −77.7912◦ −1.0789◦ Tiyuyacu Rotational

3.2 Preparation of the Layers of the Sliding
Variables

All the information was collected from governmen-
tal and educational sources. This information is lis-
ted in Table 2. The variables to be considered in
the susceptibility to landslides were geological for-
mations, slope, geological faults, road construction,
distance to rivers and land cover and use (herei-
nafter CUT). The selection of the six variables and
their categories was based on the information ob-
tained in the field and office. Similar studies in the
region support the importance of taking into ac-
count this type of variables in the development of
landslide susceptibility mapping models (Klimeš
and Rios Escobar, 2010; Ortiz and Martínez-Graña,
2018; Barella et al., 2019; Orejuela and Toulkeridis,
2020; Vásquez, 2023). Categories refer to the dif-
ferent divisions of each variable; for example, the

Napo, Tena, and Mera formations are categories of
the variable geological formations. Subsequently,
the selected variables were converted into thematic
layers as an initial step in the development of the
mapping model of susceptibility.

All subject layers were rasterized with a pixel
resolution of 12.5 m. All the weights made for the
six variables and their categories were selected ac-
cording to the analyzes carried out in the field and
office. The reclassifications for each thematic la-
yer were performed based on the data obtained
from each variable. Subsequently, the thematic la-
yers were combined, analyzed with the AHP, using
the Weighted Linear Combination (WLC) which is
an analytical and hybrid method (qualitative and
quantitative) used in GIS to process raster layers
(Feizizadeh and Blaschke, 2013).
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Figure 2. Landslides according to the inventory in Table 1: a) is 1, b) is 2, c) is 4, d) is 3 and e) is 5.

The distance to geological faults, roads and ri-
vers were calculated using the buffer tool in QGIS.
The slope was obtained from a Digital Elevation
Model (DEM) of 12.5 m pixel resolution for the

study area. All spatial analysis procedures were
performed on the free software QGIS version 3.4
Madeira (Figure 3).
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Table 2. Data sources used for the study.

Data Description Source
Orthophotos
(Resolution 0.30 m)

Downloaded
SIGTIERRAS PROGRAM
http://www.sigtierras.gob.ec/

Digital Elevation
Model- DEM
(Resolution 12.5 m)

Downloaded
ASF
https://search.asf.alaska.edu/#/

Slope
Derived from

the 12.5 m DEM
DEM 12.5 m

Geological
Formations

Downloaded
MAGAP
http://geoportal.agricultura.gob.ec/

Geological Faults Downloaded
SARA PROJECT
https://sara.openquake.org/start

Roads Downloaded
IGM
http://www.geoportaligm.gob.ec/portal/

Rivers Downloaded
IGM
http://www.geoportaligm.gob.ec/portal/

Land Cover and
Land Use (CUT)

Downloaded
MAGAP
http://geoportal.agricultura.gob.ec/

Figure 3. Flow Chart of the Study.
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All vector subject layers were rasterized with
pixel resolution of 12.5 m × 12.5 m. Rasterization
allowed the six thematic layers to be combined and
form a single raster layer. The pixel resolution of
12.5 m was selected because the DEM was worked
with this spatial resolution. The procedure for each
of the variables is detailed below.

Slope

The slope values were extracted from the DEM of
12.5 m pixel resolution. The slope is an indispensa-
ble variable, since depending on its inclination an-
gle it will cause that there is greater or lesser sus-
ceptibility to landslides (Dolui et al., 2019; Nguyen
et al., 2019; Bahrami et al., 2021). In this study, this
topic layer was obtained using the QGIS gdaldem
library; and it was categorized into six parts: < 5◦,
5– 12◦, 12– 25◦, 25– 40◦, 40– 70◦ y >70◦ (Figure 4a).
The categorization was based on the reclassification
established by the data source (Table 2). The weight
values and the other variables are detailed in the re-
sults.

Geological Formations

Geological formations depending on lithology, per-
meability and soil consolidation will greatly in-
fluence the likelihood of landslides (Althuwaynee
and Pradhan, 2017; Salehpour Jam et al., 2021). For
developing this thematic layer, a total of seven geo-
logical formations, alluvial deposits, colluvial depo-
sits and others (without description) along the road
of interest were recorded (Figure 4b). The categori-
zation was based on observations from recent for-
mations and deposited.

Distance to Geological Faults

Areas with active faults are susceptible to landslides
(Demir et al., 2013; Ozdemir, 2020). The areas closest
to this area are more likely to occur due to landsli-
des, due to intense shear. For developing this the-
matic layer, distances to failure were categorized in-
to five classes: <200 m, 200- 400 m, 400- 600 m, 600-
1000 m and >1000 m (Figure 4c). This categorization
was based on observations of outcrops affected by

the fault zones, which appeared up to 1000 m. In
addition, the faults present in the study area corres-
pond to quaternary faults, approximately <1.8 Ma.

Distance to Road

Roads located in slope areas condition that there is
greater susceptibility to landslides, due to the pre-
sence of infrastructure, colonization process, emer-
gence of new settlements and connections with
other roads (Igwe et al., 2020; Panchal and Shrivas-
tava, 2020). During the fieldwork, because of these
four factors it was evident that there were outcrops
affected located up to 750 m from the road line. For
this reason, this thematic layer was categorized in-
to four classes: <250 m, 250- 500 m, 500- 750 m and
>750 m (Figure 4d).

Distance to rivers

Rivers erode the terrain, thus favoring landslides
(Achour et al., 2017; Tešić et al., 2020). In the field,
landslides located up to 750 m measured from the
margin of the rivers were evidenced. There was
a higher number of landslides near rivers and a
higher displacement mass, compared to more dis-
tant regions where there was a lower number of
landslides. Therefore, for this thematic layer, rivers
were categorized into five classes: <50 m, 50- 250 m,
250- 500 m, 500- 750 m and >750 m (Figure 4e).

Land Cover and Use (CUT)

The CUT is an important variable involved in lands-
lide processes. The removal of forests to convert
them into grasslands, agricultural areas or areas of
urban expansion, intensifies the erosion and flow
of flows when there is precipitation. These events
largely favor the occurrence of landslides (Guevara
et al., 2020; Roccati et al., 2021). For the development
of this last thematic layer, five land use categories
were registered: Agriculture, Area without Vegeta-
tion Cover, Forest, Shrub Vegetation and Anthropic
Zone (Figure 4f). Water bodies were excluded be-
cause they were analyzed in the distance to rivers
variable.
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Figure 4. Thematic layers of variables along the Puyo - Tena road: (a) Slope, (b) Geological Formations, (c) Distance to Faults,
(d) Distance to Road, (e) Distance to Rivers and (f) CUT.
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3.3 Susceptibility Mapping
For the application of the AHP method, it is es-
sential to assign a relative weight to the variables.
Mathematical calculations to obtain the values of
each step of the AHP were performed using the RS-
tudio software. The steps used are described in de-
tail below. a) Development of the hierarchical struc-
ture of the variables. b) Matrix of judgments by
pair comparison. Relative weight according to Ta-
ble 3 (Saaty, 1977). Applying the criterion of this ta-
ble, it was decided which variable is more influen-
tial in relation to another variable. Priority was es-

tablished and the six variables were weighted. (c)
Synthesis of comparative judgements. Calculation
of the final priority of each variable according to
the table (Saaty, 1977). At this point the final nor-
malized weighting of each variable was obtained,
thus determining how much the variables contribu-
ted to meet the objective. d) Consistency evaluation.
It allowed to verify if the weights of the comparati-
ve judgments had logic. e) Combination of thematic
layers and obtaining the mapping model of suscep-
tibility. f) Reclassification of the final mapping mo-
del of susceptibility.

Table 3. Fundamental Scale of Saaty (1977).

Value Definition Explanation

1 Equally important
Two decision items influence the main
decision item equally.

3
Moderately more
important

One decision element is moderately
more influential than another.

5 Much more important
One decision element has more
influence than another.

7
Really much more
important

One decision-making element has a significantly
greater influence than the other.

9
Extremely
important

The difference in decision between
the influences of the two decision
elements is extremely significant.

2, 4, 6, 8
Intermediate Judgment
Values

Values of judgment among equals, moderately,
much, and extremely.

Once the weights were made, using the calcula-
tion of coherence or radius of coherence (CR), it was
determined whether the calculation concluded co-
rrectly or not, described in the Eq (1). Thus, it was
possible to recognize if there was coherence in the
comparison of importance range of each variable.

CR =
CI
RI

(1)

Where, RI (Table 4) refers to the random consis-
tency index; instead,CI refers to the consistency in-
dex, described in Eq (2). The RI index is a defined
value that is part of the AHP method.

CI =
λmax −n

n−1
(2)

Where,λmax is the eigen maximum value and is
calculated from the array and n is the order of the
array. According to Saaty (1990), the coherence ratio

must be less than or equal to 10% or an imprecision
of less than 10%. The principle is to compare judg-
ment with random comparison of elements. Finally,
the weights integrated the different causal classes
in a single index of susceptibility to landslides, LSI
using the Eq (3) (Saaty, 1990).

LSI =
n

∑
i=1

Ri ∗Wi (3)

Where, Ri are the classification classes of each
variable and Wi are the weights for each of the con-
ditioning variables of the landslides. The resulting
cartographic model LSI was reclassified into five
susceptibility classes: very low, low, moderate, high,
and very high. These five divisions were made ac-
cording to the method of quantiles using the pixel
values of the final cartographic model of susceptibi-
lity to landslides.
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3.4 Validation of the Cartographic Model

An adequate validation is obtained by comparing
the final mapping model, developed from the AHP
method with the landslide inventory map (Basu
and Pal, 2020; Ozdemir, 2020). The validation was
performed using the Receiver Operating Characte-
ristics (ROC) method, which has been widely used
for this type of studies (Igwe et al., 2020; Bahrami
et al., 2021; Salehpour Jam et al., 2021; Kincal and

Kayhan, 2022).

The ROC curve is used to graphically show the
correlation between the true-positive rate and the
false-positive rate (Soeters and Van Westen, 1996;
Williams et al., 1999; Althouse, 2016). The area un-
der the curve (AUC) of the ROC curve, the closer
it is to 1.0, the better the prediction of the mapping
model; however, the closer it is to 0.5, the more un-
reliable the model will have a random prediction.

Table 4. Index of Random Consistency of Saaty (1990).

n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

4 Results

4.1 Analytic Hierarchy Process

Hierarchy and pair comparison allowed to know
the influence degree of the variables of landslides
(Table 5). The most outstanding variables were slo-
pe, geological formations, distances to rivers and
land cover and use, while the least influential were
road distances and faults. The analysis of the co-
herence radius for each variable and for the final
susceptibility cartographic model obtained a value
lower than 0.10 (Table 5 and Table 6). These values
reflect that the AHP procedure was performed co-
rrectly. After hierarchization, pair comparison, com-
parative judgments and consistency assessment, the
final matrix was obtained with the weights of the
six variables to make final landslide susceptibility
model (Table 6).

The final landslide susceptibility model was re-
classified into five classes: very low, low, moderate,
high and very high (Figure 5). Based on data from
the table (Table 7), the susceptibility area percenta-
ges were very low (0.64%), low (31.96%), moderate
(50.87%), high (15.83%), and very high (0.70%). On-
ce the model was completed, it was found that there
are fifteen regions in the Puyo-Tena road with high
and very high susceptibility classes (Figure 5 and
Table 8), where four of them are located near the
towns of Puyo, Santa Clara, Arosemena Tola and
Puerto Napo. The 15 regions were selected after ob-
servation and analysis of the final model. The in-
ventoried landslides were placed on the final car-

tographic model and most of them were located
within these fifteen regions of high and very high
susceptibility to landslides.

4.2 Validation of the Cartographic Model
The “ROCR” library of the “ROCR” package was
used in the RStudio software to evaluate the accu-
racy of our landslide susceptibility mapping mo-
del. Analysis of the ROC curve revealed an AUC of
0.837, indicating a predictive accuracy of 83.7% (Fi-
gure 6). This metric is a reliable measure to evaluate
the performance of the model in predicting landsli-
des.
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Table 5. Matrix of hierarchy and pairs comparison of variables.

Variables Categories Weighting
Categories

Variables
Weighting

Weights
Categories

CR
Variables

Geological
Formations

Alluvial
Deposit

2

7

0.039 0.0032

Tena
Formation

8 0.154

Mera
Formation

7 0.135

Arajuno
Formation

8 0.154

Chambira
Formation

6 0.115

Napo
Formation

5 0.097

Tiyuyacu
Formation

6 0.115

Chalcana
Formation

5 0.097

Coluviall
Deposit

4 0.077

Otros 1 0.020

Failures

<200 9

2

0.359 0.0011
200 – 400 7 0.280
400 – 600 5 0.199

600 – 1000 3 0.120
>1000 1 0.039

Slope

<5° 1

9

0.039 0.0028
5 – 12° 2 0.077
12 – 25° 4 0.154
25 – 40° 5 0.193
40 – 70 ° 8 0.308

>70° 6 0.230

Distance to
Roads

<250 7

3

0.411 0.0033
250 – 500 5 0.294
500 – 750 3 0.176

>750 2 0.118

Distance to
Rivers

<50 9

6

0.375 0.0017
50 – 250 7 0.292
250 – 500 4 0.167
500 – 750 3 0.125

>750 1 0.043

CUT

Agriculture 7

5

0.368 0.0039
Vegetation
Uncovered

Area
1 0.053

Forest 4 0.211
Shrub

Vegetation
5 0.263

Anthropic Zone 2 0.105

128
LA GRANJA: Revista de Ciencias de la Vida 39(1) 2024:117-138.

©2024, Universidad Politécnica Salesiana, Ecuador.



Landslides Susceptibility Analysis employing Analytical Hierarchy Process on an Amazonian
roadway in Ecuador

Table 6. Pair comparison matrix and final weighting of each landslide variable.

Peer Comparison Matrix Weighting Final
CR

Slope
Geological
Formations Rivers CUT Roads Failures

Slopes 1.00 0.281

0.0039

Geological
Formations 0.78 1.00 0.219

Rivers 0.67 0.86 1.00 0.187
CUT 0.56 0.72 0.84 1.00 0.157
Roads 0.34 0.43 0.50 0.60 1.00 0.094
Failures 0.23 0.29 0.34 0.40 0.67 1.00 0.063

5 Discussion
In this research, the GIS-based AHP method was
used as a multicriteria evaluation method to iden-
tify areas susceptible to landslides on the Puyo-
Tena road. The data presented from the six varia-
bles show how they influence landslide suscepti-
bility along the study road; similar situation was
observed in Hepdeniz (2020) and Chanu and Ba-
kimchandra (2022). As a result of hierarchization,
peer weighting, comparative judgments and the
value obtained in the consistency radius (CR <0.1),
the weights made in the variables are reliable and
were correctly performed. In addition, with the va-
lidation of the cartographic model using the area
under the AUC curve of the ROC curve, 0.837 was
obtained, supporting that the quality of the suscep-
tibility landslide model is very good (Roy and Saha,
2019; Sonker et al., 2021).

Compared to similar studies carried out on
roads in other countries, different results were ob-
served than those obtained in this research. The
Indian road studied by Panchal and Shrivastava
(2022) showed a value close to our study, with
an AUC of 0.825. On the other hand, the China-
Pakistan road studied by Ali et al. (2019), obtained
an AUC of 0.72, while the road studied in Algeria
by Achour et al. (2017), achieved an AUC value of
0.66. This brief comparison reveals the variability
of AUC values in studies conducted in different re-
gions of the world. This variation will be related
to the number of landslides inventoried and the
quality of the final landslide susceptibility mapping
model.

According to the 1000 m buffer analyzed along
the study road, 16.53% (25.38 km2) correspond to
potential regions for landslides distributed 15.83%

(24.31 km) in high and 0.70% (1.07 km) in very
high susceptibility. The rest, approximately 83.57%
(128.14 km2) of the road, does not represent a great
risk for a possible landslide.

Table 7. Areas of categories of the landslide susceptibility map-
ping model.

Susceptibility
Categories

Area
[km2]

Area
[%]

Very Low 0.97 0.64
Low 49.07 31.96

Moderate 78.10 50.87
High 24.31 15.83

Very High 1.07 0.70
Total 153.52 100%

According to the landslide susceptibility LSI
mapping model (Figure 5) and the data shown in
Table 8, approximately 17 km of approximately 80
km of the Puyo- Tena road are landslide suscepti-
ble, i.e., 21.25% of the road is landslide-susceptible.
Once analyzed the variables in situ and digitally, it
was determined that the four most important varia-
bles to intervene in landslide processes in this study
site are slope, geological formations, distances to ri-
vers and CUT; on the contrary, the remaining two
variables, distance to road and distance to faults, are
the ones that have less influence. For this research
the analyzed variables have this hierarchy, but as
He and Beighley (2008) mention, perhaps in other
conditions and another area of study, the less in-
fluential variables could be more determinant. For
example, if a road under construction is passing th-
rough steep mountains (Pourghasemi et al., 2012),
or if the study area is near areas of active fault cau-
sing earthquakes (Abedini et al., 2017), they would
be the main variables for landslide susceptibility.
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Table 8. Main regions of the Puyo- Tena road with high and very high susceptibility to landslides.

Region km
[Home]

Degree-Decimal
Coordinates km

[End]

Degree-Decimal
Coordinates

Longitude Latitude Longitude Latitude
1 0.125 -78.0500 -1.5088 3.692 -78.0236 -1.4993
2 14.163 -77.9987 -1.4235 14.275 -77.9988 -1.4225
3 29.018 -77.9238 -1.3486 29.329 -77.9224 -1.3465
4 36.498 -77.8880 -1.3119 36.765 -77.8858 -1.3111
5 38.933 -77.8822 -1.2963 39.679 -77.8840 -1.2914
6 41.097 -77.8897 -1.2853 42.424 -77.8898 -1.2746
7 44.583 -77.8886 -1.2569 48.331 -77.8821 -1.2304
8 56.780 -77.8547 -1.1634 57.653 -77.8511 -1.1568
9 59.150 -77.8425 -1.1470 60.820 -77.8328 -1.1361

10 63.517 -77.8169 -1.1197 63.938 -77.8137 -1.1217
11 66.121 -77.8053 -1.1076 66.700 -77.8018 -1.1042
12 67.864 -77.7920 -1.1051 68.886 -77.7947 -1.0973
13 70.238 -77.7901 -1.0871 70.937 -77.7916 -1.0812
14 72.836 -77.7904 -1.0657 73.655 -77.7912 -1.0597
15 75.536 -77.7966 -1.0459 76.381 -77.7951 -1.0391

Based on the results, it is determined that there
are fifteen regions of the road with a high proba-
bility of landslides (Figure 5 and Table 8). Most of
these regions are located outside the main towns
except for regions 1, 6, 8 and 15, which are loca-
ted near the towns of Puyo, Santa Clara, Arose-
mena Tola and Puerto Napo, respectively. Despite
the proximity, it does not represent a latent risk to
the inhabitants of these sectors. For this study, the
slope is the most important variable because most
of the landslides inventoried show features of being
influenced by the upwelling inclination; similar sce-
nario in the studies carried out by Dolui et al. (2019)
and Bahrami et al. (2021).

Most landslides occur in areas with slopes >40◦,
specifically in the range of 40◦- 70◦. Geological for-
mations are considered the second important inci-
dence variable, since their lithological constitution,
geomechanical resistance and porosity are involved
in the occurrence of landslides. The physical con-
ditions of each geological formation have different
influences for the appearance of landslides. Geolo-
gical formations, such as Chambira, Tiyuyacu, Me-
ra, Tena and Arajuno, have porous lithology, low
geomechanical resistance and low resistance to per-
meability; for this reason, they have a large number
of landslides. Rivers are the third important varia-

ble. The different rivers cross different areas of high
and low slope, thus favoring soil erosion and loss
in soil resistance. Most landslides were found near
the rivers, giving a clear idea that it is an important
variable in landslide processes. Finally, CUT is also
considered an important variable. Land-use change
causes soil degradation, loss of mechanical strength,
and increased water infiltration and therefore grea-
ter susceptibility to landslides. All these aspects are
influenced by anthropic activities, which are clearly
observed along the Puyo- Tena road. In contrast, the
distance to the road and the distance to faults have
the least influence on landslides. There is a lot of
traffic in the road Puyo - Tena, but the movements
originated by vehicles or human activities do not
influence to a great extent the landslides.

Geological faults are triggers of earthquakes,
which generate ground movements. Earthquakes in
the Amazon are not too frequent compared to other
regions of the country, and the effects have been
slight (Rivadeneira et al., 2007). On the study road
these earthquakes have low magnitude and little
periodicity and do not have great impact for landsli-
des. For this reason, these two variables are the ones
that least influence the occurrence of landslides in
the study area.
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Figure 5. Landslide Susceptibility LSI cartographic model using the AHP method. Regions of the Puyo- Tena road.

Finally, new cartographic methods have been deve-
loped in recent decades for analyzing the suscepti-
bility to landslides such as logistic regression, neu-

ral networks, machine learning and AHP, which is a
method based on landslide inventories and statisti-
cal analysis, multicriteria, expert judgment, hierar-
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chization, among others. Six variables that are com-
monly present in landslide processes were taken in-
to account. The hierarchization of each of them was
subject to the landslide inventory and the knowled-
ge of the study area. From the four principles of the

AHP method it was possible to obtain a mapping
LSI model of susceptibility to landslides, and thus
determine the main regions susceptible to landsli-
des of the Puyo- Tena road.

Figure 6. The ROC curve of the landslide susceptibility mapping model using the AHP method.

6 Conclusions

The susceptibility to landslides on the Puyo- Te-
na road, assessed by the AHP method, allowed a
quick and practical manipulation of the physical
data of the study area. The mapping LSI suscep-
tibility model was obtained through the hierar-
chization, weighting and digitalization of the six
variables involved in the research. Validation via
the AUC/ROC method yielded a value of 0.837
corresponding to a predictive accuracy of 83.7%,
supporting the quality of the cartographic model
developed. The application of the AHP method
allowed to identify the most influential variables,
which were slope, geological formations, distances
to rivers and land cover and use. Firsthand, the LSI
model was reclassified into five susceptibility clas-
ses, obtaining surfaces of 0.64%, 31.96%, 50.87%,
15.83% and 0.70% for the classes of very low, low,
moderate, high and very high, respectively. It was
determined that approximately 17 km of the ap-
proximately 80 km of the Puyo-Tena road are sus-
ceptible to landslides, i.e. 21.25% of the road has
potential to landslides. In addition, it was known

that the studied road has 15 regions between high
and very high probability for landslides. These re-
gions were located on areas of high slope, porous
and permeable lithology, a large number of rivers
and soils suitable for agriculture. In addition, re-
gions 1, 6, 8 and 15 were located near the towns
of Puyo, Santa Clara, Arosemena Tola and Puerto
Napo, respectively. These regions, despite their pro-
ximity to the towns, apparently do not represent a
risk to the inhabitants of the sector.

The landslide susceptibility mapping model
provides information consistent with the landsli-
de inventory collected in the field. This model can
be operated by governmental or non-governmental
institutions that aim at land use planning and land
management or similar purposes. The susceptibi-
lity model will allow decisions to avoid potential
dangers that threaten the life and well-being of the
population, plan an efficient road network, consi-
der the best options for urban and rural expansion,
including developing construction policies adjacent
to the roads.
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