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Urospatha sagittifolia is a medicinal plant with antivenom, antihemorrhagic and anti-inflammatory 

properties commonly used by vulnerable Amazon indigenous communities to tackle venomous 

snakebites and their life-threatening consequences. Despite its pharmacological potential as a rich 

source of drug candidates, its metabolomic profile remains unknown. In this context, this study 

integrated mass spectrometry-based metabolomics, multivariate analysis, and molecular networks to 

uncover the chemical composition of U. sagittifolia and its dynamic metabolic changes during three 

plant growth stages (seedling, juvenile and adult). In general, 50 metabolites were identified in U. 

sagittifolia tubers by LC-MS (43 metabolites) and GC-MS (seven metabolites). Multivariate analysis 

using LC-MS showed that the relative concentrations of most of the identified metabolites were 

higher in seedlings or juveniles than in adults. On the other hand, GC-MS analysis showed that methyl 

palmitate and methyl stearate were the most abundant in the early growth stages, whereas allantoic 

acid and palmitic acid prevailed as the plant matured. In summary, this is the first metabolomics-

centered mining of U. sagittifolia compositional diversity focusing on chemical-level variability. 

These valuable findings offer a temporal view of metabolic changes during plant growth stages, which 

is useful for future bioprospecting, biological screening, and purification of metabolite-based 

therapeutics.
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Highlights

 Explore the metabolite changes in Urouspatha sagittifolia tubers across various growth 
stages

 Utilize a multi-platform approach involving metabolomics and molecular networking for 
comprehensive analysis of the metabolomic profile of Urouspatha sagittifolia

 Exploratory analysis in the investigation of metabolites in Urouspatha sagittifolia
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1. Introduction

Natural product-based research has been a successful niche with wide opportunities and significant 

contributions to the challenging drug discovery process.[1,2] The classical screening of rich and 

diverse natural libraries relying on bioactivity-guided fractionation is time-consuming and expensive 

leading to insufficient investment from the pharmaceutical market. However, recently interest in 

natural products has come onto the scene again due to several factors, such as failure of conventional 

treatments, antimicrobial resistance, the Coronavirus pandemic and the development of in silico and 

omics approaches.[3,4] High biodiversity areas, such as the Amazon, are of primary interest for 

bioprospection programmes and many initiatives have focused on pharmacologically active plant-

derived natural products.[5]

Plants represent one of the most well-studied natural sources of therapeutic agents. Their biochemical 

content, physiology and synthesis of metabolites are highly influenced by multiple factors beyond 

genetics, such as lighting, temperature, soil parameters, carbon dioxide availability, ozone, 

geography, altitude, seasonal shifts, and climate change.[6,7] In addition, the phenological stage of 

plants constitutes another important driver. A deeper understanding of the compositional variability 

is crucial to design strategies to modulate the synthesis and further pharmaceutical applications.[8–

10] To gain insights into the chemical diversity of plants in different growth stage, metabolomics-

driven approaches have emerged as useful tools.

Metabolomics strategies has evolved to identify a snapshot of the secondary metabolites, their 

intermediates and the content of molecules that can be extracted, separated and characterized in a 

complex mixture obtained from natural products.[11] Untargeted metabolomics combines modern 

analytical techniques and chemometric analysis and provides a promising platform for the metabolic 

variation of a natural system under diverse conditions or between individuals.[12] The integrated use 
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of these tools has been promoted by the resurgent growing interest in finding novel chemical scaffolds 

from plant extracts for drug discovery initiatives. Historically, phytomedicine is widely used in 

indigenous communities in Latin America. A classical use consists in the management of clinical 

manifestations associated with snakebite envenoming, which remains an important medical 

emergency and the rural tropics.[13,14] Urospatha sagittifolia is one of the plant extracts commonly 

employed for this purpose.

Urospatha sagittifolia (Rudge) Schott (Araceae) is a shallow-water emergent plant mainly distributed 

in the Amazon region from Venezuela, Brazil, Ecuador and Peru.[15] An in vitro study has confirmed 

the antivenom potential of the ethanolic extract of this plant characterized by neutralization of venom-

induced lethality, haemorrhage and inflammation.[16] The traditional colorimetric screening of the 

phytochemicals from the extract of U. sagittigolia pointed out the presence of alkaloids, saponins, 

terpenoids, tannins, coumarins and phenolics compounds. However, to date, there are no reports 

available exploring the profile chemical diversity in different growth stages of the plant, leaving much 

to clarify its composition and temporal changes in secondary metabolite production.

With this in mind, to identify variability in the chemical constituents of U. sagittifolia, we considered 

three growth stages based on plant height: seedling (0.20 m-height), juvenile (0.20-1.15 m-height) 

and adult (> 1.15 m-height with reproductive organs). We employed mass spectrometry-based tools 

to unveil the chemical profile. Multivariate and molecular networking analysis were used to 

extensively interrogate our data, allowing us to report the chemical variation of U. sagittifolia for the 

first time based on its growth stage.

2. Materials and methods 

2.1 Urouspatha sagittifolia tissue collection

Samples at different growth stages of U. sagittifolia were collected in Puerto Misahualli (1°3´20.49"S 

77°40´0.65" W), Napo, Ecuador at 460.6 meters above sea level. U. sagittifolia botanical sample was 
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deposited in Herbario Nacional del Ecuador (QCNE) herbarium with voucher number QCNE-030-

2021. Taking it account the previous study demonstrating the neutralizing abilities of metabolites 

from U. sagittifolia, we chosen the same Amazon geographic region sample collection. Three 

developmental stages were considered in this study based on the specimen height: (a) seedlings (0-

0.20 m), (b) juvenile (> 0.20-1.15 m), and (c) adults (> 1.15 m with present inflorescences). For the 

specimens classified as adults, we collected samples only if they had inflorescences present, and we 

did not discriminate by flower stage (as it has been reported that the same inflorescence can have 

flowers at different stages of development) [33]. Since this species is used by local communities in 

traditional medicine applications, we reduced our sample collection to three replicates per 

development stage to not jeopardize the availability of this resource for local communities.[16] In 

summary, we collected a total of nine samples: three seedlings, three juveniles, and three adults. After 

plants were identified in the field, they were measured using a measuring tape starting from the soil 

level to the highest aerial part of the plant. Plants were carefully extracted from the native substrate 

and placed on dry ice to promote metabolic quenching. Then, tubers were transported to the laboratory 

and stored at -80 °C for further analysis.

2.1.1 Sample Preparation. 

Tubers at each growth phase were thawed at room temperature, washed thoroughly with distilled 

water, and heat-dried for seven days at 30 °C (ESCO ISOTHERM, OFA-54-8). The dried roots were 

uniformly ground using a manual mill until reaching a fine powder. The ground plant tissues were 

soaked in methanol 1:10 (w:v) for 5 days.[34] The solvent was recovered and then filtered through 

15 μm cellulose filter paper (MicroLAB Scientific). The filtered extracts were subsequently 

evaporated using a rotary evaporator (Buchi, R-300). The resulting extracts were concentrated using 

a vacuum dryer to completely remove the extraction solvent (Geneva, Mi Vac Duo). Finally, the 

powdered extracts were stored at -20 °C until further use.
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2.2 Quantification Of Total Phenolic Content

The phenolic content of each extract was analyzed with the Folin-Ciocalteu colourimetric 

method,[35] using gallic acid as standard: 100 µL (5 mg of extract in 1.5 mL of MeOH: H2O 1:1 v/v) 

of the sample was mixed with 200 µL of Folin Reagent (0.1 M) protecting it from light, then 700 µL 

of Na2CO3 (7.5%) was added and left to stand for 120 min. The absorbance of the mixture was 

measured at 765 nm in a spectrophotometer (Shidmazu, UV-1280), a calibration curve for gallic acid 

was prepared in the range between 25-150 μg/L and the results were expressed as µg of gallic acid 

per mg of extract.

2.3 Quantification Of Total Flavonoid Content

 The total flavonoid content was determined by the aluminium trichloride (AlCl3) method,[36] using 

quercetin as a standard: 1 mL of samples (5 mg of extract in 1.5 mL of MeOH) were mixed with 1 

mL of 2% AlCl3 and incubated at room temperature leaving to stand for 5 min. The absorbance was 

measured at 438 nm in a spectrophotometer (Shidmazu, UV-1280). A calibration curve was prepared 

in the range between 5-50 μg/mL and the results were expressed as µg of quercetin per mg of extract.

2.4 Untargeted Metabolomics Analysis

 After conducting the total phenolic and total flavonoid analysis, extracts were reconstituted in H2O: 

MeOH 1:1 (v/v), and the sample was diluted using a 1:100 dilution factor. Finally, the diluted samples 

were filtered using a 0.22 µm PTFE filter to avoid any solids to before mass spectrometry analysis.

2.4.1. Liquid Chromatography-Mass Spectrometry Analysis 

Metabolomics data acquisition. U. sagittifolia samples were analyzed using an Agilent 1290 Infinity 

II series UHPLC coupled to an Agilent 6545 quadrupole time of flight mass spectrometer with 

electrospray ionization (ESI-QTOF-MS) (Agilent, Santa Clara CA) using an optimized method for 

untargeted metabolomics.[37]
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An equal aliquot volume of each sample extract was used to create a pooled quality control (QC) 

sample to conduct a downstream data quality control.[38] Furthermore, solvent and process blanks 

were also included in the injection list to remove later features detected in blanks. The analysis was 

performed with an injection volume of 3 μL per sample. Reverse phase chromatography was 

conducted with a Waters (Milford, MA, USA) Acquity UPLC HSS T3 column (2.1 x 50 mm, 1.8 μm 

particle size) maintained at 40°. Full-scan spectral data were collected separately in both positive and 

negative ionization modes for more comprehensive metabolite coverage.[39] Mobile phases consisted 

of water with 0.1% formic acid (A) and acetonitrile with 0.1% formic acid (B), flowing constantly at 

0.5 mL/min. The gradient was set as follows: 0-0.5 min 0% B; 0.5-8 min increase to 100% B; 8-9 

min hold 100% B; 9.01-10.0 isocratic at 0% B.

Settings of the mass spectrometer (MS) were as follows: gas temp 350 °C, gas flow 10 L/min, 

nebulizer 35 psi, sheath gas temp 375 °C, sheath gas flow 11 L/min, VCap 4500 V, nozzle voltage 

500 V, fragmentor 100, skimmer1 45, octopoleRFPeak 750, and scan rate of 2 spectra/s with a mass 

range of 100-1700 m/z.

Using the same MS settings described above, the MS/MS data of the pooled QC samples was obtained 

with the method described below. Data were acquired with MassHunter (Agilent Technologies), in 

iterative data-dependent acquisition mode. These experiments were conducted in positive and 

negative ionization modes with five injections for each collision energy, 20 and 40 eV. Parameters 

for AutoMS2 scans were as follows: MS minimum range 40 m/z, MS maximum range 1700 m/z, MS 

scan rate 3 spectra/s, MS/MS minimum range 40 m/z, MS/MS maximum range 1700 m/z, MS/MS 

scan rate 1 spectra/s, isolation width narrow (~1.3 amu), and decision engine advanced. Terms for 

precursor selection were max precursors per cycle 2, threshold (absolute) 10.000, threshold 

(relative)(%) 0.100, precursor abundance-based scan speed – yes, target 100.000 counts/spectrum, 

use MS/MS accumulation time limit – no, use dynamic precursor rejection – no, purity stringency 

100%, purity cutoff 30%, common isotope model for small molecules, active exclusion enabled – 
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yes, active exclusion excluded after 2 spectra, active exclusion released after 0.12 min, and sort 

precursors by abundance only.

2.4.1.1 Metabolomics feature identification. 

Agilent files (*.d) of raw spectral data were converted to (*.mzML) using ProteoWizard.[40] Raw 

data was deposited in the database MetaboLights (MTBLS8067).[41] First, MZmine 3.3.0 

software[42] was used to find the optimal parameters for peak deconvolution (Supplemental Table 

S1-7) with a pipeline including mass detection using wavelets (Automated Data Analysis Pipeline, 

ADAP),[43] including feature detection, isotope grouping, alignment, gap filling, and filtering. Then, 

the MS-DIAL 4.9.221218v software was set with optimal parameters reached in MZmine (Supporting 

Information Table S8-S11). Also, the “exclude process blank features” present in samples available 

MS-DIAL option was used (maximum sample intensity/average blank intensity ratio > 5). Finally, 

the MS-DIAL feature table (*.txt) was exported for statistical analysis with the notame R package 

(https://github.com/antonvsdata/notame).[44,45]

2.4.1.1.1.Level 1 metabolite identification. 

To report metabolite identification, we used the proposed levels by the metabolomics standard 

initiave.[23] For level 1 identification, we compared the spectrometric in our samples versus an in-

house compound library, using MS/MS and MS spectrometric matching. In both cases, the retention 

time match was required.

For the first approach, we matched the MS/MS spectrometric collected with the iterative DDA method 

on QC samples, against an in-house MS/MS library (PhenolicsDB).[46] The parameters used were: 

retention time tolerance (0.115 min.), minimum MS/MS match score (0.70) (Agilent MS/MS licensed 

score), and mass tolerance (7 ppm). Due to the limitations of the DDA acquisition method, such as 

low abundance metabolites not reaching the minimum abundance threshold to trigger MS/MS 
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fragmentation, or isobaric metabolites eluting in a narrow retention time window, we manually 

inspect for metabolites that are in the in-house library at level MS1.

In the manual inspection step, we used two criteria: (a) retention time matches with the authentic 

standards, and (b) isotopic pattern matches with at least two isotope ions present. 

2.4.1.1.2. Level 2 metabolite identification

Agilent files (*.d) of raw MS/MS data were converted to (*.mzML) format using ProteoWizard 

applications.[40] Raw spectral data were deconvoluted in MZmine 3.3.0 (Supporting Information 

Table S5-11) and MS-DIAL 4.9.221218 (Supporting Information Table S3-4). Negative and positive 

ionization modes were processed together (only in MZmine), and separately for each of two collision 

energies (20 and 40 eV), to obtain a peak list for putative identity generation, via different library 

searches algorithm available in Global Natural Products (GNPS) platform.[47] Three GNPS 

algorithms were used: Classical Molecular Networking, Feature-Based Molecular Networking 

(FBMN) and Library Search (Supporting Information Table S12).

2.4.1.2 Molecular Networking.

 The MS/MS data deconvoluted from MS-DIAL was transferred to the GNPS Molecular Networking 

server to generate the chemical map in positive (ID=2a3baf635b54492bb5e41d35b2b2bd79) and 

negative ionization mode (ID=6c9421f32ed142f59239db0df2cc13fb) according to the GNPS 

documentation.[48] Also, raw data was deposited in the GNPS/MassIVE repository 

(MSV000090922). The molecular network was generated so that the mass tolerance of precursor ions 

was 0.005 Da. The mass variances of ion fragments for each group of acquired MS/MS spectra were 

set as 0.006 Da for clustering. The connections between nodes were formed only if the cosine score 

was above 0.7 and with a minimum correspondence of 3 peaks in the fragmentation spectrum. The 

molecular network spectra were then compared to the GNPS spectral libraries, where the same data 

parameters were applied to the sample spectra.
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Besides the feature-based molecular network analysis, we also used MS2LDA[49] and merge 

polarities pipelines available in GNPS, to propagate the molecular networks. In the case of MS2LDA, 

we submitted a separate task for each ionization polarity. We selected all MotifDBs available except 

from the Urine database. For both MS2LDA tasks, the overlap score threshold was set to 0.3, the 

probability value threshold was set to 0.1, and the topX in node was set to 5. Finally, to connect 

features that were detected in both ionization polarities, we used the “merge polarity” workflow by 

providing the task IDs from the feature-based molecular network for each polarity. This workflow 

accounts for the m/z shift due to the ionization polarity and retention time shift. We used the merged 

polarity network to propagate annotation based on two criteria: (a) the mass difference connecting 

two nodes must be 2.012 Da, and (b) the retention time shift must not be greater than 3 seconds (0.05 

min), to propagate annotation based on polarity similarity. Finally, the molecular network was pruned 

and visualized in the Cytoscape software.[50]

2.4.2 Gas Chromatography-Mass Spectrometry Analysis

Methanolic tuber extract samples (5.0 mg) were dissolved in 1.0 mL of analytical-grade methanol. 

Samples were centrifuged ((Sorvall ST 40R, Thermo Scientific)) at G-force 112 for 3 min. To avoid 

any insoluble solids,[51] and the resulting supernatant was diluted until 0.1 mg/ml, with 200 ng/ml 

of caffeine as internal standard. Also, a process blank, solvent blank, and pooled QCs were included 

for GC-MS analysis.

2.4.2.1 Untargeted metabolomics profile by GC-MS

Chemical composition of the methanolic extract of the species was performed using a gas 

chromatograph coupled with a mass spectrometer Shimadzu GCMS-QP2020NX fitted with a 

split/splitless injector and equipped with a capillary column Rtx-5 (30 m x 0.25 mm i.d. x 0.25 μm 

df). The oven temperature was programmed as follows: the initial column temperature was 70 °C, 

then increased 6 °C/min to 300 °C for 10 min for a total run time of 48.33 min. The injection port and 
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transfer line were kept at 200 °C and 220 °C, respectively. Ultra-pure helium was used as carrier gas 

at 1 mL/min initial flow. The analyses were performed operating in the electron impact (EI) ionization 

mode and full mass spectra were acquired. The MS ionization source was set to 200 °C, and the mass 

scan range was 50 to 500 Da. All the analyses were performed in triplicate, and an aliquot of each 

sample extract was pooled to create a pooled QC sample.

2.4.2.1.1 Metabolomics feature identification

Shimadzu files (*.qgd) data were converted to (*.mzML) using ProteoWizard (Supporting 

Information Table S13). Also, raw data was deposited in GNPS/MassIVE Repository 

MSV000091437. Raw spectral data were deconvoluted in MS-DIAL 4.9.221218 

(http://prime.psc.riken.jp/) with a pipeline including peak detection, alignment, gap filling, and blank 

filtering (maximum sample intensity/average blank intensity ratio > 7) according to various 

parameters recorded in Supporting Information Table S13. The feature list table (*.txt) from MS-

DIAL was exported for statistical analysis with the notame R package.

Additionally  three approaches were adopted for metabolite identification: first, the (*.mgf) alignment 

result from MS-DIAL was exported to GNPS according to the GNPS documentation;[52] second 

(*.msp) alignment result from MS-DIAL was exported to NIST MS Search 2.4 software, where 

mainly, replib and mist_ri libraries of National institute Standard and Technology (NIST, Wiley 

Registry 12th Edition/NIST 20) were chosen, retention index tolerance used was 20 for Semi-

Standard Non-Polar column; third, the MS-DIAL was used, the curated MSP spectral library from 

RIKEN Center for Sustainable Resource Science (http://prime.psc.riken.jp/; last edited on Aug. 21th, 

2022) was load, the retention index tolerance was 20, mass tolerance used was 0.5 Da and EI similarity 

cut off was 70 %.

2.5 Data Analysis.
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 Based on the phytochemical analysis of the samples at each growth phase, we conducted a one-way 

analysis of the variance (ANOVA) followed by Tukey’s test (p > 0.05) to identify statistical 

differences in the quantities of flavonoids and phenolic compounds in all the growth stages. 

Additionally, a principal component analysis (PCA) was conducted using the MS1 features table for 

each of the three final metabolomics datasets LC–MS (+), LC–MS (−) and GC-MS. All procedures, 

including Hierarchical Cluster Analysis (HCA) and heatmap for the identified metabolites, were 

performed using R v.3.6.2 (R development). The detailed scripts and data are available in the GitHub 

repository (https://github.com/IKIAM-NPL/U_sagittifolia_tubers).

3. Results and discussion

3.1 Total Phenolic And Flavonoid Content. 

We found differences in the total phenolic and flavonoid content between U. sagittifolia growth 

stages. Specifically, juveniles exhibited a higher concentration compared to all other growth stages 

(Table 1). When examining the total flavonoid compounds, there was no noteworthy difference in 

their quantities between seedlings and adults. In contrast, the total phenolic content differed at each 

growth stage. In general, the results showed that the total phenolic content was lower in the initial 

stage, then significantly increased in juveniles, and subsequently decreased in adults. A similar trend 

was observed in the content of total flavonoids, initially, its content was low in seedlings, then 

increased substantially in the juvenile stage, but then dropped to seedling levels in the adult stage.

Table 1. Total phenolic and flavonoid content.

Growth stage Phenolic (µg/mg) Flavonoids (µg/mg)

Seedling 17.09 ± 0.08c 6.83 ± 0.11b

Juvenile 21.67 ± 0.03a 8.23 ± 0.37a
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Adult 17.65 ± 0.06b 7.14 ± 0.11b

Note: Values are mean ± SD (n = 3), different lowercase letter within the same column indicates 
significant differences based on Tukey’s multiple comparisons (p < 0.05)

Our results are consistent with those reported by Li and Hu (2009).[17] These types of secondary 

metabolites have a wide spectrum of actions. For example, phenolics that are found in roots serve the 

purpose of chemical communication with the belowground microbiome. Although the plant-

microbiome interaction involving phenolic exudates has been studied more in nodule-forming plants, 

most of these phenolics described in the literature (p-coumaric acid, protocatechuic acid, malic acid 

and others) are found in U. sagittifolia.[18,18–21] Conversely, as the plant matures, it becomes more 

likely to encounter above-the-ground stressors, such as UV radiation affecting the now-developed 

aerial tissues.[22] Thus, the requirement of phenolics in aerial tissue could explain the low levels of 

phenolics detected in adult roots.

3.2 LC-MS/MS-Based Metabolite Identification

 A total of 43 metabolites were identified for the first time in U. sagittifolia tubers (Table 2). Between 

these 43 reported metabolites, 19 were identified at level 1 with the hybrid approach of comparing 

MS/MS fragmentation patterns between standard versus samples, while also manually checking the 

match of the protonated/deprotonated molecule with the known retention time of the analytical 

standard. Then, the remaining 24 metabolites were identified by using the available MS/MS libraries 

in GNPS (identification level 2). We encountered metabolite annotation challenges, such as having 

multiple promising candidates with a matching score difference of less than 1 unit of the MS2 score 

difference between annotation candidates. For example, the case of three quercetin monohexose 

detected at 2.8 min at 465.1020 m/z [M+H]+ and 463.0869 m/z [M-H]-. Despite having authentic 

standards for quercetin 3-glucofuranoside, quercetin 3-galactoside and quercetin 3-glucoside, the 

reported MS2 scores for these three matches varied by 0.2 units. Consequently, we were unable to 

confidently differentiate between the candidates due to the narrow margin in MS/MS matching scores. 
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For the downstream analysis, features with multiple annotation candidates, the candidate with the 

highest score was kept for figure labelling purposes.

Furthermore, we also reported the observed molecule mass at each ionization polarity (protonated 

[M+H]+ and deprotonated [M-H]-) for annotated metabolite. In cases, where a specific metabolite was 

not detected at a given ionization polarity, we reported it as a dash. Moreover, we found that most 

annotated compounds were detected in negative polarity, while specific compounds were only 

detected in positive polarities such as amino acids (e.g., phenylalanine, betaine) and an alkaloid 

(trigonelline).

Table 2. Phenolic and other chemical compounds were identified in U. sagittifolia using UHPLC-

MS/MS and GC-MS.

IL RT/RI [M+H]+ [M-H]- Molecular 

Formula

Error(

ppm)

MS2 

Score*

Identification

1 0.312 - 179.0567 C6H12O6 3.35 - D-(+)-glucose

1 0.328 343.1237 341.1100 C12H22O11 2.93 74.00 Sucrose

1 2.358 169.0493 167.0350 C8H8O4 -0.35 94.25 Vanillic acid

1 2.692 - 163.0403 C9H8O3 0.98 - p-Coumaric acid

1 2.890 - 193.0507 C10H10O4 -0.05 - Ferulic acid
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1 2.865 - 223.0614 C11H12O5 0.57 - Sinapic acid

1 2.890 - 163.0406 C9H8O3 2.82 - Trans-3-

hydroxycinnamic 

acid/m-Coumaric acid

1 2.848 465,1021 463.0869 C21H20O12 -2.97 86.40 Quercetin 

monohexosa 

1 2.770 611.1612 609.1468 C27H30O16 1.01 98.95 Rutin

1 2.981 625.1774 623.1651 C28H32O16 1.92 96.01 Isorhamnetin-3-O-β-

D-

Rutinoside/Narcissin

1 0.360 - 133.016 C4H6O5 12.63 99.72 Malic acid

1 1.827 - 153.0197 C7H6O4 1.90 99.41 3,4 dihydroxybenzoic 

acid/Protocatechuic 

acid

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4680948

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



1 2.407

2.407

- 153.0190

153.0190

C7H6O4 -2.67

-2.67

90.13

90.20

2,3-dihydroxybenzoic 

acid/Pyrocatechuic 

acid

2,6-dihydroxybenzoic 

acid

1 2.435 - 121.0296 C7H6O2 0.17 100 4-

hydroxybenzaldehyde

1 2.939 - 593.1512 C27H30O15 0.00 93.25 Kaempferol-3-O-β-

rutinoside/Nictoflorin

1 3.152 - 137.0245 C7H6O3 0.04 100 Salicylic Acid

1 4.049 - 315.0509 C16H12O7 -0.63 99.22 Isorhamnetin 

2 1.571 284.0989 282.0850 C10H13N5O5 -2.09 79.75 Guanosine

2 2.965 479.1193 477.1040 C22H22O12 -0.52 88.00 Isorhamnetin-3-O-

glucoside
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2 3.248 - 361.1670 C20H26O6 1.90 79.00 2,3-bis[(4-hydroxy-3-

methoxyphenyl)methy

l]butane-1,4-

diol/Secoisolariciresin

ol

2 2.743 - 165.0557 C9H10O3 3.22 70.00 3-(3-

Hydroxyphenyl)propa

noic acid

2 2.893 . 503.2521 C24H40O11 5.73 71.00 3,5,5-trimethyl-4-[3-

[(6-O-beta-D-

xylopyranosyl-beta-D-

glucopyranosyl)oxy]b

utyl]/NCGC00380271

-01

2 1.569 - 182.0459 C8H9NO4 3.12 88.00 4-Pyridoxic acid

2 5.965 - 295.2278 C18H32O3 1.63 77.00 9-hydroxy-10,12-

octadecadienoic acid

2 2.423 - 593.152 C27H30O15 2.28 78.00 Vicenin
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1 2.347 - 177.0196 C9H6O4 4.61 86.00 Esculetin

1 2.971 - 433.0783 C20H18O11 2.80 73.00 Guajavarin

2 2.141 - 175.0615 C7H12O5 4.860 72.00 Isopropylmalic acid

2 2.617 - 639.1564 C28H32O17 0.43 71.00 Isorhamnetin-3-

Glucoside-4'-

Glucoside/Isorhamneti

n 3,4'-diglucoside

2 2.577 - 563.1412 C26H28O14 1.99 78.00 Isoschaftoside

2 2.483 - 172.0984 C8H15NO3 5.99 82.00 N-Acetyl-L-leucine

2 1.175 - 292.1396 C12H23NO7 -0.09 82.00 N-Fructosyl 

isoleucine/3-Methyl-

2-[[2,3,4-trihydroxy-

5-

(hydroxymethyl)oxola

n-2-

yl]methylamino]penta

noic acid
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2 0.701 - 290.0879 C11H17NO8 1.06 73.00 N-Fructosyl 

pyroglutamate

2 2.148 - 137.0244 C7H6O3 3.88 89.00 Protocatechuic 

aldehyde

2 0,861 - 180.0667 C9H11NO3 3.51 75.00 Tyrosine

2 2.185 144.0809 - C10H9N -2.95 73.00 2-

Naphthylamine/Napht

halen-2-amine

2 0.497 136.0616 - C5H5N5 -5.29 81.00 Adenine/7H-purin-6-

amine

2 0.350 118.0859 - C5H11NO2 -7.65 73.00 Betaine

2 0.489 244.0929 - C9H13N3O5 -1.83 77.00 Cytidine

2 1.679 166.0871 - C9H11NO2 -1.23 88.00 Phenylalanine/2-

amino-3-

phenylpropanoid acid
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2 0.630 170.0812 - C8H11NO3 -3.05 79.00 Pyridoxine

2 2.748 303.0500 - C15H10O7 -1.58 71.00 Robinetin

2 0.335 138.0550 - C7H7NO2 -3.65 78.00 Trigonelline

2 1925 - - C17H34O2 - 88.49 Methyl palmitate●

2 2123 - - C19H38O2 - 88.44 Methyl Stearate●

2 1958 - - C16H32O2 - 71.45 Palmitic Acid●

2 1104 - - C11H24 - 98.47 Undecane●

2 3343 - - C29H50O - 63.50 γ-Sitosterol●

2 - - - C4H8N4O4 - 79.77 Allantoic acid●

2 3284 - - C29H48O - 71.20 Stigmasterol●

Where IL identification level according to Summer et al. (2007) [23], RT retention time in minutes, 
RI experimental Kovats retention index (value > 1925) and ● metabolite identified by GC-MS. *For 
metabolites identified at level 1, the MS2 score reported referred to the Agilent MassHunter MS/MS 
score, while for metabolites identified at level 2, the MS2 score refers to the GNPS-modified cosine 
score.
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Additionally, it was possible to differentiate between the distinct growth stages by analyzing the 

reduced subspace that is defined by the principal component analysis (PCA). For the PCA analysis 

of both polarities, we used the complete feature table and replaced the identities of the features that 

we could annotate at levels 1 and 2 (Figure 1). The score plots for positive and negative polarity and 

the loading plots with the annotated features are presented in Figures 1A, 1B, 1C, and 1D, 

respectively.

In the score plot for positive and negative polarity (Figure 1A and 1B), we see a clear overlap of the 

pooled quality control samples, indicating good performance of the mass spectrometer as well as 

consistency in the data cleaning process. It is worth noting that both polarities display a similar 

projection in the score plot; thus, we will discuss both score plots simultaneously. Two clear clusters 

were captured by the first principal component (PC1), clustering juvenile and seedling tubers in a 

similar group (positive PC1), while adult tubers are clustered in the negative domain of the first 

principal component. Moreover, one seedling replicate was placed closer to the adult tuber, which 

suggests that the metabolomics profile of this replicate is more similar to the adult stage than the 

seedling stage. On the other hand, the PC2 separated two main groups consisting of seedlings and 

adults, and another composed of juveniles.
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Figure 1. Principal component analysis (PCA) score and loadings plots the deconvoluted feature table 

at MS1 from different growth stages of U. sagittifolia. (A) Score plot in positive ionization mode, (B) 

Score plot in negative, (C) Loading plot in positive and (D) loading plot in negative.
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The loadings matrix obtained from the PCA analysis for both, positive and negative polarities, are 

shown in Figure 1C and 1D, respectively. We present the annotated features at level 1 as red circles, 

while features annotated at level 2 are displayed as blue triangles. It is worth noting that the grey 

circles in the loading plots represent the remaining features that we could not identify. Similar 

behavior can be distinguished in the location of the annotated features, as most features are located 

in the positive domain of the first principal component (PC1 > 0). After a closer look at the annotated 

features identified by LC-MS, we discovered that features located in the positive domain of the first 

PC have a greater relative abundance difference between groups, while features located near the origin 

of the PC1 tend to be more similar or present low variation across groups.

To interrogate the metabolite expression levels across the growth stages, we subset the annotated 

features and subjected them to heatmap visualization and hierarchical clustering analysis (HCA) 

(Figure 2). The HCA analysis was conducted sample-wise and metabolite-wise to reveal common 

clusters across samples and metabolites. While we decided to use a clustering cutoff of two groups 

sample-wise (shown as 1 and 2), three groups cutoff was used to create metabolite clusters (shown as 

a, b, and c); the cutoff threshold is displayed as a red dotted line above dendrograms in Figure 2. We 

also included the metabolite classification legend using a classifier at the superclass level.
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Figure 2. Heatmap and HCA analysis of the identified metabolites using LC-MS and LC-MS/MS in 

negative (A) and positive polarity (B). Legends were included to indicate the growth stage (seedlings, 

juveniles, and adults), and compound classification according to classifier. Cold colors (blue scale) 

represent a low metabolite abundance, while warmer colors (red scale) indicate a higher abundance.

In contrast with the suggested grouping found with PCA, the HCA of the annotated metabolites. HCA 

suggests a different group clustering where seedlings and juveniles are more similar, as they are 

consistently clustered together, while adult tuber is clustered in a separate node. However, the 

clustering grouping is not perfect as the seedling and juvenile tubers are not allocated in single 

clusters, suggesting that seedling 3 has a metabolite expression that more closely resembles the 

juvenile profile.

With the assistance of metabolite-wise HCA, we were able to identify common patterns in the 

metabolite distribution. In terms of relative abundance. In both polarities metabolites, we observe 
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three delineated clusters where cluster (c) is generally compromised of the most abundant metabolites, 

cluster (b) consists of a combination of abundant and less abundant metabolites, whereas cluster (a) 

encompasses the least abundant metabolites. To denote a particular grouping of metabolite clusters, 

we can utilize the metabolite and sample-wise clusters as coordinates.

In negative polarity (Figure 2A), it is depicted that metabolite cluster (c) accounted by malic acid, 

narcissin, and rutin are the most abundant metabolites at the early growth stage (seedling and 

juvenile), and decreases in the late growth stage (adult). Cluster (b) is the largest cluster found in this 

polarity with 21 metabolites from salicylic acid to isopropylamalic acid, while cluster (a) has the least 

abundant metabolite, exhibiting the lowest abundance in the late growth stage (Figure 2A clusters 

1a).

In contrast with the negative polarity where cluster (c) presents different abundance by group, the 

positive polarity cluster (c), Figure 2B, suggests a constitutive metabolite expression throughout the 

tuber development. In the same vein as negative polarity, clusters (b) and (a) present in positive 

polarity show a differential metabolite expression. Cluster (b), starting with narcissin and ending with 

rutin, presents a mixed metabolite abundance distribution, where in the adult phase these metabolites 

are the least abundant. Finally, cluster (a) with sucrose and robinetin, is in general a cluster with the 

least abundant metabolites. It is worth noting that some metabolites present in both polarities, such as 

rutin detected the highest relative abundance in negative polarity, but moderate to low abundance in 

positive polarity. These different relative abundances in different polarities can be attributed to 

ionization efficiency, where in this case, rutin ionizes better in negative polarity.[24,25] However, 

metabolites with different relative abundances present a consensus behavior in expression profiles 

regardless of different ionization polarities.

Upon a closer examination of the metabolite profile of U. sagitifolia (Figure 2), it exhibits two clear 

patterns of metabolite expression in tubers. First, we noticed metabolites that are expressed 
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consistently across all three growth stages with metabolites such as malic acid (Figure 2A cluster c), 

salicylic acid, glucose, sucrose, protocatechuic acid (Figure 2A cluster b), as well as phenylalanine, 

betaine, pyridoxine (Figure 2B cluster c). The second cluster shown in Figure 2A (cluster b), refers 

to metabolites that are expressed in different abundances at different growth stages, where the 

majority of them are expressed in the seedling and juvenile growth phase.

If we consider the phenylpropanoid pathway, the early phase of polyphenol biosynthesis, 

phenylalanine is the precursor for phenylalanine ammonia-lyase (PAL) to synthesize cinnamate, 

which subsequently is synthesized to p-coumaric acid by cinnamate 4-hydroxylase. This metabolite 

can be directed to produce p-coumaric acid derivates which can later contribute to lignin creation 

for root cell walls, or be allocated to polyphenol biosynthesis.[22,26] According to our results, 

phenylalanine is a housekeeping metabolite in relatively high abundance which could be used to 

produce p-coumaric acid. The observed low relative intensity of p-coumaric acid and the high 

relative abundances of a series of polyphenols shown in Figure 2A, suggest an effective allocation 

of p-coumaric acid as a precursor for polyphenol biosynthesis. However, we cannot discard the 

possibility of phenylalanine allocation to p-coumaric acid production as it might also be allocated to 

other pathways such as protein and lignin synthesis.

3.3 Molecular Networking By LC-MS/MS

To complement the multivariate analysis to better understand the metabolite similarly based on its 

fragmentation patterns, we use molecular networking using GNPS, which provides information on 

structural similarities between phytochemicals.

The nodes in the network correspond to metabolomics features. In cases where we could identify the 

feature identity, we include the node name with the identified metabolite. Metabolites are linked to 

other nodes based on their similarity in terms of chemical structure, fragmentation, and retention 

times.
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The feature-based molecular networking algorithm available in GNPS was used for molecular 

network analysis. Results showed 539 nodes in negative and 393 nodes in positive ionization polarity 

(Supporting Information Figure S1 and S2). In negative ionization polarity, 55 molecular clusters 

with at least 2 connected nodes, and 101 unconnected nodes were detected, while in positive mode, 

24 molecular clusters with at least two connected nodes and 56 unconnected nodes were generated.

The molecular network was propagated taking two approaches. First, we evaluated the connection 

between nodes based on the result of the merge polarities pipeline, relating features in different 

ionization polarities considering precursor ion mass correction and retention time match. The second 

approach was manually curating the relationship between the unannotated nodes with the nearest 

annotated node. The result of the propagated molecular network is presented in Figure 3. The black 

edges connecting the nodes were calculated based on cosine similarities, while purple edges reflect 

nodes are connected by polarity match. Furthermore, nodes with a circular border represent features 

detected in negative polarity, while nodes with square borders are features detected in positive 

polarity (Figure 4).

In terms of polarity match, there were metabolites that we were able to annotate in both ionization 

polarities based on retention time and MS/MS match. One of these cases is of nictoflorin, where we 

see a clear mirror plot match where the experimental MS/MS spectrometric matches in retention 

time as well as the spectrometric product ion against the analytical standard spectrometric (Figure 

3). Furthermore, annotating the same metabolite in both polarities was not always the case. There 

were instances where metabolites were annotated in either negative or positive polarity. For 

example, rutin was only annotated in negative polarity with a reference spectrometric from the 

MONA database (GNPS spectrometric ID = CCMSLIB00004719964). The molecular network 

connects the GNPS annotated rutin node with a feature detected in positive mode (node id = 2879). 

The retention time difference between these two features is 0.02 minutes and has a mass difference 

of 2.012 Da, attributed to the correction of the proton mass based on distinct polarities. This node 
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had a match in MS2LDA to a motif that represents a quercetin or a glycosylated quercetin 

substructure (https://ms2lda.org/motifdb/motif/151174/), suggesting a glycosylation with a 

quercetin polyphenol backbone. When we investigated the node id = 2879 further, this node was 

annotated as rutin in positive polarity against the in-house library at the MS1 level, and we proceeded 

to propagate the molecular annotation. We took the same reasoning to propagate the annotation of 

isoschaftoside from negative polarity to positive polarity. This polyphenol was annotated in negative 

polarity based on the MS/MS reference spectrometric from MassBank present in GNPS (GNPS 

spectrometric ID = CCMSLIB00005778299), and connected with a node with a mass difference of 

2.013 Da and a retention time shift of 0.03 min. We present the mirror plot of the experimental 

spectrometric in negative polarity at 40 eV against the literature spectrometric from MassBank at 50 

eV (Figure 3). In this mirror plot, we can see a clear match between the experimental and the 

literature spectrometric, and the inner spectral differences in ion intensities could be attributed to the 

different collision energies applied.

On the other hand, when we analyzed the molecular network by cosine similarity, we noted that 

narcissin is the node with the most connections (6 connections), and the mirror plot shows a good 

match between the experimental and analytical standard spectrometric (Figure 4). Narcissin was 

connected with a node that, according to the GNPS annotations is CCG-208435 (GNPS spectrometric 

ID = CCMSLIB00010113678). The mass difference between these nodes is 35.97 Da. The mass 

difference between CCG-208435 and narcissin can be attributed to the adduct type since this node 

was identified as a [M+Cl]- adduct based on the isotope pattern by GNPS. After we accounted for the 

mass of chlorine, the monoisotopic mass of CCG-208435 is the same monoisotopic mass as narcissin. 

However, not only the monoisotopic masses are the same, but both metabolites were detected at the 

same retention time (Δ rt = 0.008 min), suggesting that CCG-208435 might be the [M+Cl]- adduct of 

narcissin. To confirm or discard the new annotation of this feature, we compared the authentic 

standard of narcissin against the MS/MS spectrometric of what GNPS annotated as CCG-208435, 
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and we observed a cosine score of 0.97. Therefore, we decided to report this feature as the [M+Cl]- 

adduct of narcissin, instead of CCG-208435. In the same vein, we observed a [2M-H]- adduct, which 

suggests to be a narcissin dimer, which is in line with retention time and MS/MS fragmentation.

Figure 3. Molecular network results of untargeted metabolomics of U. sagittifolia tubers. Feature-

based molecular networks differentiated by cosine (black edges) or polarity (purple edges) match 

(left). Node fill areas represent the relative abundance of each feature at each growth stage. The node 

border represents at which polarity each node was detected. In the right side, mirror plots for 

nictoflorin, isoschaftosie and narcissin.

In this sense, molecular networking (Figure 3) facilitated the identification of some flavonoids (of 11 

flavonoids identified), contributing to the differentiation among various stages of the plant´s growth 

(Figure 1). The rutin abundance behavior during the growth stages (Figure 2 and 4) was consistent 

with a study on P. coccinea by Fico et al. (2000), which found that rutin was always present during 

the pre-flowering growth phase as one of its main constituents.[27] Moreover, it was found that 

certain compounds such as gujavarin, sinapic acid, and tyrosine were hardly detected in adult plants 
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compared to seedlings and juveniles. Conversely, compounds such as isopropylmalic acid, 

NCGC00380271-01, D(+)-glucose, and sucrose were found to be higher in the reproductive phase. 

This might be explained due to the difference in nutrient requirements during the plant's life cycle. 

Likewise, the analysis uncovered metabolites such as guanosine, cytadine, and vanillic acid at every 

growth phase, with greater concentrations in the initial development phase. However, metabolites 

such as quercetin-3-glucoside and isorhamnetin were more prevalent in the juvenile phase. As the 

plant reached the reproductive phase, the concentration of these elements declined, with trigonelline 

and sucrose being the most abundant metabolites. The production and accumulation of metabolites 

are linked to variations in biosynthetic metabolic pathways of medicinal constituents, which could 

explain the abundance fluctuations observed during different growth stages. An example of this 

metabolite variation was reported in Calluna vulgaris roots, which had the highest phenolic content 

during the vegetative pre-reproductive stage as well as in our study (Table 1) while the leaves had the 

lowest concentrations.[28] However, as the plant matured, a redistribution of phenolic compounds 

occurred during the floral budding stage. Similarly, perennial medicinal plants usually experience an 

increase during their growth phase and subsequently decrease once they reach a certain point. For 

instance, Zhannan et al. (2012) found that chlorogenic acid, hyperin, and quercetin were most 

abundant in 13-year-old plants, while rutin and quercitrin were highest in 7-year-old plants, and 

magnolol was highest in 10-year-old plants of Magnolia officinalis bark.[29] This variation could be 

attributed to the rapid nutrient consumption by developing reproductive organs, which causes the 

swift reduction of compound diversity until the plant reaches reproductive age, a phenomenon that 

can be observed in the root metabolite content since roots are closely associated with plant 

reproductive growth.[29]

3.4 GC-MS-Based Metabolite Identification

 Volatile and semi-volatile compounds identified by GC-MS in methanolic extracts are shown in 

Table 2. Seven compounds were tentatively identified, four were identified by the public MS-DIAL 
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library (http://prime.psc.riken.jp/), two by the NIST library and one by the GNPS platform, most of 

them through spectrometric similarities and retention index.

Most of the identified compounds were fatty acids and phytosterols and their distribution was 

relatively similar between juvenile and adult plants. In contrast of seedlings, which is reflected in the 

score’s plots shown in Figure 4.

Figure 4. Principal component analysis (PCA) score (A) and loadings (B) plots of GC-MS from 

different growth stages of U. sagittifolia.

Principal component analysis of the volatile compounds revealed that PC1 and PC2 account for 62% 

and 15% of the explained variance, respectively. Through analyzing the loadings plots (Figure 5B), 

it was determined there were three groups in the PC1 space (Figure 4). Seedlings showed higher 

levels of fatty acids, including methyl palmitate, methyl stearate, and undecane, which were only 

detected during this period. while the remaining components were found in all growth phases. 
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Additionally, stigmasterol and sitosterol were found in higher concentrations in seedlings, while 

allantoic acid and palmitic were present in higher concentrations in juveniles and adults.

This discovery aligns with the fact that lipids are essential for promoting growth in the early stages 

of the plant's life cycle.[17] Similarly, Pariyani et al. (2020) reported higher concentrations of fatty 

acids in the young roots of four different plant species.[30] As the plant matures, allantoic acid and 

palmitic acid become to be produced at higher levels. This shift can be explained since low molecular 

weight organic acids play a crucial role, as they can be released into the soil, mobilizing nutrients, 

and increasing the plant's ability to survive and grow normally. This process is particularly 

significant in environments with low nutrient availability.[31] Therefore, understanding the 

accumulation pattern of metabolite in plant growth and its development can help determine the most 

appropriate harvest periods for medicinal plants.[32]

Conclusions

Motivated by the promising ability of by U. sagittifolia root extracts to neutralize the Bothrops atrox 

venom-induced toxicity, we investigated the metabolomics profile of the tubers at three different 

growth stages.[16] In this study, we used untargeted metabolomics assisted by gas and liquid 

chromatography coupled with mass spectrometry to unveil the phytochemical diversity of U. 

sagittifolia roots, used as traditional medicine by local communities to treat snakebite cases. 

Furthermore, we used chemometrics and molecular networking-based algorithms to understand 

better the similarities and differences across the chemical profile based on the growth stages and 

propagate the metabolite molecular network annotation.

Overall, we found 50 compounds, such as polyphenols (no flavonoids), flavonoids, lipids, alkaloids, 

sugars, and others. Most of the flavonoids are found at the highest levels in seedlings, while sugars 

are at the highest abundance in adults, and polyphenols (no flavonoids) are in juveniles. This 
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metabolomic characterization will allow subsequent studies about obtaining pure molecules or 

extracts that could present further biological activities.

Although our findings suggest a diversity in phenolic content, the phytochemical screening 

conducted by Vera-Palacios et al. (2022) also reported high levels of alkaloids. Therefore, future 

studies to explore this phytochemical class, with specific sample preparation and metabolomics 

methods are required. Between our limitations, we can also note that we report metabolite levels in 

terms of relative abundance based on peak height, and not in absolute quantities, which might not 

be comparable across different chemical classes as they present different ionization efficiencies that 

can intricate the comparison between different phytochemical classes.
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