
RESEARCH ARTICLE

From roads to biobanks: Roadkill animals as a

valuable source of genetic data

Manuel Alejandro Coba-MalesID
1☯, Pablo Medrano-Vizcaı́noID

2,3,4☯, Sandra Enrı́quez1,

David Brito-Zapata4,5, Sarah Martin-Solano6, Sofı́a Ocaña-MayorgaID
7, Gabriel

Alberto Carrillo-Bilbao1, Wilmer Narváez1, Jaime Antonio SalasID
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Abstract

To protect biodiversity we must understand its structure and composition including the bac-

teria and microparasites associated with wildlife, which may pose risks to human health.

However, acquiring this knowledge often presents challenges, particularly in areas of high

biodiversity where there are many undescribed and poorly studied species and funding

resources can be limited. A solution to fill this knowledge gap is sampling roadkill (animals

that die on roads as a result of collisions with circulating vehicles). These specimens can

help characterize local wildlife and their associated parasites with fewer ethical and logistical

challenges compared to traditional specimen collection. Here we test this approach by ana-

lyzing 817 tissue samples obtained from 590 roadkill vertebrate specimens (Amphibia, Rep-

tilia, Aves and Mammalia) collected in roads within the Tropical Andes of Ecuador. First, we

tested if the quantity and quality of recovered DNA varied across roadkill specimens col-

lected at different times since death, exploring if decomposition affected the potential to

identify vertebrate species and associated microorganisms. Second, we compared DNA

stability across taxa and tissues to identify potential limitations and offer recommendations

for future work. Finally, we illustrate how these samples can aid in taxonomic identification

and parasite detection. Our study shows that sampling roadkill can help study biodiversity.

DNA was recovered and amplified (allowing species identification and parasite detection)

from roadkill even 120 hours after death, although risk of degradation increased overtime.

DNA was extracted from all vertebrate classes but in smaller quantities and with lower qual-

ity from amphibians. We recommend sampling liver if possible as it produced the highest

amounts of DNA (muscle produced the lowest). Additional testing of this approach in areas

with different environmental and traffic conditions is needed, but our results show that
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sampling roadkill specimens can help detect and potentially monitor biodiversity and could

be a valuable approach to create biobanks and preserve genetic data.

Introduction

Characterizing biodiversity including bacteria and microparasites is key to ensure planetary

and human health. However, acquiring this knowledge often presents challenges including

ethical (the need to capture, handle, and take samples from living organisms without causing

damage or death), logistical (the difficulty and cost of safely capturing and handling wildlife),

and methodological (the challenges for identifying and quantifying biodiversity in less studied

regions and from microscopic bacteria and parasites). In biodiverse and remote areas where

funding and research infrastructure are more limited, these challenges can be particularly sig-

nificant. This knowledge gap could be partly reduced by capitalizing on a potential source of

information: the animals that die on roads after collision with circulating vehicles, commonly

referred to as roadkill.

Human infrastructures, including roads, have important impacts on wildlife by hindering

movement (for food, mates, and refuge) and also causing direct mortality [1]. These aspects

can lead to population isolation, loss of genetic diversity, and in some cases even increased

extinction risk [2, 3]. However, animals that die on roads can be valuable resources for

research. Roadkill specimens can capture the (primarily vertebrate) biodiversity of a particular

location and give information about species distributions, behavior, diet, and other ecological

and physiological characteristics [4]. Unfortunately, in some cases the required taxonomic

identification can be difficult via direct examination due to the state of the specimen, these can

decompose or present damage caused by the collision and subsequent vehicles driving over.

As an alternative, collecting tissue from specimens could allow their identification via DNA

sequencing [5].

Tissue collected from roadkill specimens can be also provide very valuable information

about associated microorganisms such as fungi, protozoan, bacteria, and viruses [6–10]. This

information is important because these microorganisms can be pathogenic for wildlife and

thus, relevant for wildlife conservation and management. In addition, wildlife can act as reser-

voirs of human pathogens posing a health problem [9]. In this case, roadkill sampling used to

detect pathogens could align well with the One Health framework that integrates animal,

human, and environmental health [11]. Pathogen data can be obtained using traditional sam-

pling methods (from live animals), but these are often invasive and can negatively affect wild-

life, so there is a need for improved methods [12]. Alternative methods based on non-invasive

sampling from excretions or feces avoid impact but often the amount of extracted DNA is low

[13, 14]. Sampling roadkill could be a useful approach in areas where roads exist, offering no

sampling impact and potentially higher DNA yield. However, first we need to understand how

the source of the sample (which taxa and tissue) and the degree of decomposition of the road-

kill specimen affect DNA quantity and quality (purity and integrity) [15, 16].

Here, we address these questions by analyzing 817 samples from 590 roadkill specimens

representing amphibians, reptiles, birds, and mammals found dead on roads of the Napo prov-

ince in Ecuador. Whenever possible we collected samples from multiple tissues of the same

individual and report the obtained DNA quantity and quality. In addition, we explore the

value of collected samples for molecular identification of specimens and for detection of

microorganisms, in particular of the protozoan Leishmania spp. These parasites can affect
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humans, domestic animals like dogs and cats [17], wild mammals [18, 19], and likely birds and

reptiles [19–21].

Materials and methods

Study area and roadkill sampling

This work was conducted in the Amazonian province of Napo in Ecuador. We surveyed roads

surrounded by four protected areas: Antisana Ecological Reserve, Sumaco-Napo-Galeras

National Park, Cayambe-Coca National Park, and Colonso Chalupas Biological Reserve. This

area is located across an altitudinal gradient from 300 to 3000 m.a.s.l. and a climatic gradient,

with annual mean temperature varying from 4.63 to 23.7˚C and annual precipitation from

1100 to 3400 mm. The study area is described in more detail in previous publications [22, 23].

During 100 non-consecutive days from the 19th of September 2020 to the 23rd of March

2021, we monitored 240 km of primary and secondary roads from a car circulating at an aver-

age speed of 40 km/h. Each time we found a carcass, we stopped the car, collected the whole

individual or muscle samples if the state of the carcass preventing subsequent dissection for tis-

sue extraction. All collected material was stored in a container with dry ice until the end of the

day when all was taken to a laboratory. In the laboratory whole individuals were dissected aim-

ing to extract samples of muscle, brain, liver, heart, intestine, blood, blood vessel, bone, lung,

skin, and spleen. The condition of some specimens did not allow collecting samples from all

tissues. All samples were then frozen at -80˚C until DNA extraction (see below).

For each specimen we estimated the time since death, TimeDeath, in time blocks represent-

ing: 0, 12, 24, 36, 48, 60, 72, 96, or 120 hours. Observers had been previously trained to estimate

time since death by marking roadkill specimens which were revisited daily for ten days to char-

acterize degradation [22, 24].

All samples were collected with permission from the Ministerio del Ambiente, Agua y

Transición Ecológica from Ecuador (MAATE): Estudio e identificación molecular de parásitos

y microbioma presentes en fauna silvestre del Ecuador, No. MAAE-DBI-CM-2021-0215,

MAAE-ARSFC-2021-1862 and MAAE-ARSFC-2020-0791.

DNA extraction and evaluation of quantity and quality

We extracted DNA from tissues using a commercial kit (PureLink™ Genomic DNA Mini Kit,

from Invitrogen by Thermo Fisher Scientific) following the manufacturer’s instructions. We

measured the quantity of nucleic acids using a Nanodrop 2000 (Thermo Fisher Scientific) with

values transformed into ng/μL (full dataset available as S1 File). To assess DNA quality, we

considered two parameters: the purity given by the ratio A260/A280, and integrity. Integrity was

only evaluated in intestine tissue samples as we were particularly interested in microbiome

and gastrointestinal parasites. We qualitatively classified integrity based on the size of the

smear observed in gel electrophoresis [25] as: “minor degradation” (sizes over 6000 bp),

“medium degradation” (sizes from 1500 bp to 6000 bp), or “high degradation” (sizes below

1500 bp or not visualized DNA).

Statistical analyses. All statistical analyses were conducted in R version 4.2.1 [26]. We

tested if DNA quantity and purity were influenced by estimated TimeDeath and the taxonomic

class of the roadkill specimen using linear regression models with the function lm in base R.

We fitted models with only additive terms as well as models with an interaction term. We

report the most parsimonious model (i.e., if the interaction term was not significant, we report

results from the additive model). To avoid pseudoreplication caused by including data from

multiple tissues obtained from the same specimen, we selected the sub-sample with higher

DNA concentration (ng/μL). Results were qualitatively the same if we instead used the mean
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value calculated across tissues from the same specimen (S1 Table). In addition, to test the

robustness of results to the potential non-independence of data obtained from related organ-

isms with shared evolutionary history, we also fitted linear mixed effects regression models

using the function lmer from the lme4 package version 1.1–27.1 [27] with taxonomic order

and family as nested values random effects. Because not all specimens could be identified to

order or family levels, mixed effect models included fewer specimens.

To test if DNA quantity and purity were influenced by the sampled tissue, we focused on

tissues sampled from at least 50 specimens (obtaining samples from some tissues was difficult

due to their size and degradation). In this case we analyzed all samples, including replicates

from the same specimen, and thus, to avoid pseudoreplication we fitted mixed effects regres-

sion models with specimen ID as a random factor using the function lmer from the lme4 pack-

age version 1.1–27.1.

To meet assumptions of normality and homoscedasticity of residuals we log10 transformed

DNA quantity and purity values. Model assumptions (linearity, normality and homoscedastic-

ity of residuals, and lack of outliers) were visually checked using the function check_model

from the performance package version 0.7.2 [28]. This function also returns Variance Inflation

Factors (VIF) that were used to test for collinearity among predictors. We used the function

emtrends from the package emmeans version 1.6.1 [29] to estimate the estimated marginal

means reported as model output.

Molecular identification of vertebrates and parasites

For the identification of vertebrate specimens, we amplified 700 bp of mitochondrial cyto-
chrome C oxidase subunit 1 (COI) using 10 pmol/μL of two primer cocktails. The forward

cocktail (C_VF1LFt1) contained VF1_t1:VF1d_t1:LepF1_t1:VF1i_t1 (1:1:1:3). The reverse

cocktail (C_VR1LRt1) contained VR1_t1:VR1d_t1:LepRI_t1:VR1i_t1 (1:1:1:3) (Table 1).

Analyses focused on eight specimens (seven reptiles and one amphibian) that could not be

identified through direct observation (i.e., traditional taxonomic identification) as our goal

was to generate a complete identified dataset.

The polymerase chain reaction (PCR) was performed with Platinum™ Taq DNA Polymerase

from Invitrogen as described by Hebert et al. [32] with some modifications; 2.5 μL buffer 10 X,

1.15 μL (2.3 mM) MgCl2, 0.12 μL (0.046 mM) dNTPs, 0.25 μL (0.1 mM) of each cocktail of oli-

gonucleotides (C_VF1LFt1 and C_VR1LRt1), 7.5 μL (0.3 mg/mL) of BSA, 0.5 U of Taq poly-

merase, and 100 ng of DNA per reaction in a final volume of 25 μL. PCR amplification was

performed with an initial denaturation step (94˚C, 1 min), followed by 5 cycles of denaturation

(94˚C, 1 min), annealing (50˚C, 40 sec), and polymerization (72˚C, 1 min), followed of 30

cycles of denaturation (95˚C, 15 sec), annealing (54˚C, 20 sec) and polymerization (72˚C, 45

sec), and a final step of 10 min at 72˚C.

To detect Leishmania spp. we amplified a small subunit (18S) of ribosomal RNA (18S SSU-
rRNA) from liver samples of roadkill specimens [33] using universal primers (Table 1). We

first used the external primers SLF/S762R (primary amplification) and the internal primers

S825F/SLIR targeting a*959 bp product of the first half (Nt) of the 18S SSU-rRNA locus [31].

The polymerase chain reaction (PCR) was performed with Platinum™ Taq DNA Polymerase

from Invitrogen with 2.5 μL buffer 10 X, 0.75 μL (1.5 mM) MgCl2, 0.5 μL (0.2 mM) dNTPs,

1 μL (0.4 μM) of each oligonucleotide, 0.5 U of Taq polymerase, and 100 ng of DNA for reac-

tion in a final volume of 25 μL. PCR amplification was as described previously for primary and

secondary 18S SSU-rRNA [31].

We visualized the PCR products by DNA electrophoresis on a 1.5% agarose gel. Positive

amplicons, identified by their size (˜ 700 bp for the COI gene and 959 bp for the 18 SSU-rRNA
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gene), were sequenced in two directions: forward and reverse (Sanger method) by Macrogen

Inc. (South Korea). Resulting sequences were trimmed and edited with Bioedit and MEGA 11

software [34, 35] to perform pairwise alignment, assembling the contig, and creating consen-

sus sequences which were then analyzed by BLAST using the blastn algorithm in NCBI

(National Center for Biotechnology Information) [36]. To assign sequences to Leishmania spp.

and relevant vertebrate genera we used a threshold of 85% for identity and of 90% for cover.

Results

We obtained 817 samples representing 590 unique roadkill specimens (Table 2, all data in S1

File). From 516 specimens we collected samples from a single tissue; the other 74 specimens

were represented by samples from 2–7 different tissues.

Nucleic acids were successfully extracted from 812 samples representing 586 unique road-

kill specimens with time since death (TimeDeath) varying between 0 and 120 hours. No DNA

Table 1. PCR primers used in this study to identify vertebrate roadkill specimens and Leishmania spp.

COI
Name Primer sequence 5’-3’ Reference

LepF1_t1 TGTAAAACGACGGCCAGTATTCAACCAATCATAAAGATATTGG [30]

VF1_t1 TGTAAAACGACGGCCAGTTCTCAACCAACCACAAAGACATTGG

VF1d_t1 TGTAAAACGACGGCCAGT TCTCAACCAACCACAARGAYATYGG

VF1i_t1 TGTAAAACGACGGCCAGTTCTCAACCAACCAIAAIGAIATIGG

LepR1_t1 TGTAAAACGACGGCCAGTATTCAACCAATCATAAAGATATTGG

VR1_t1 TGTAAAACGACGGCCAGTTCTCAACCAACCACAAAGACATTGG

VR1d_t1 TGTAAAACGACGGCCAGT TCTCAACCAACCACAARGAYATYGG

VR1i_t1 TGTAAAACGACGGCCAGTTCTCAACCAACCAIAAIGAIATIGG

18S SSU rRNA
Name Primer sequence 5’-3’ Reference

SLF GCTTGTTTCAAGGACTTAGC [31]

S762R GACTTTTGCTTCCTCTAATG

S823F CGAACAACTGCCCTATCAGC

S662R GACTACAATGGTCTCTAATC

S825F ACCGTTTCGGCTTTTGTTGG

SLIR ACATTGTAGTGCGCGTGTC

https://doi.org/10.1371/journal.pone.0290836.t001

Table 2. Summary of the vertebrate roadkill samples analyzed in this study.
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Mammalia 100 1 4 3 2 0 2 2 4 2 2 122

Aves 114 21 19 26 21 3 5 0 19 2 0 230

Amphibia 116 1 3 2 3 0 6 0 1 0 0 132

Reptilia 136 25 31 26 27 0 57 5 15 4 2 328

TOTAL 466 48 57 57 53 3 70 7 39 8 4 812

Number of samples collected from different tissues of roadkill specimens collected in the Napo province of Ecuador. Data are separated by the four taxonomic classes of

vertebrates represented in this study. Detailed dataset available as S1 File.

https://doi.org/10.1371/journal.pone.0290836.t002
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was obtained after extraction for four individuals with single tissue samples. In addition, no

DNA was obtained from the brain sample from one specimen, but extractions were successful

for the five other tissues obtained from that individual. Table 2 summarizes the samples

analyzed.

Effect of time since death on DNA quantity and purity

We obtained DNA from specimens of all sampled taxonomic classes including animals esti-

mated to have died 120 hours before collection. The four specimens from which no DNA was

obtained were estimated to have died between 12 and 72 hours before collection. DNA quan-

tity and purity were similar among birds, mammals and reptiles, but Amphibia specimens

returned significantly lower amounts and less pure DNA (Fig 1 and Table 3).

DNA quantity was significantly and negatively associated with the estimated time since

death in birds but not in other taxonomic classes (Fig 2 and Table 3). DNA purity was not

affected by the estimated time since death (Table 3).

DNA quantity and purity from different tissues

We collected 703 samples from five different tissues represented at least by 50 samples: muscle

(n = 466), blood vessels (n = 70), heart (n = 57), liver (n = 57), and intestine (n = 53); (see

Table 2). DNA quantity varied among the compared tissues, with liver returning significantly

more and muscle generally less (Fig 3 and Table 4). There were no differences in DNA purity

among tissues (Table 4).

Fig 1. DNA quantification by taxonomic class. Variation in the amount of DNA extracted from 817 tissue samples

obtained from specimens of four vertebrate classes collected during roadkill surveys in the Napo region of Ecuador

from 2020 to 2021. Different letters above the plot indicate significant differences between the groups.

https://doi.org/10.1371/journal.pone.0290836.g001
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DNA integrity

DNA quantity ranged from 0.2 to 665 ng/μL among the 53 intestine samples analyzed, with a

non-significant tendency for DNA to be more degraded in samples with longer times since

death (Fig 4A), probably due to exposure to environmental conditions such as rain or high

temperatures. Samples scored as high level of degradation yield significantly lower quantities

of DNA (Fig 4B).

Successful amplification of specific targets by PCR

We successfully amplified the targeted region of cytochrome C oxidase subunit 1 (COI). in the

eight tested samples from reptile and amphibian specimens (Fig 5B) despite the variability in

the integrity of the extracted genomic DNA (Fig 5A and Table 5). All cover values were >95%,

but identity values were lower potentially due to lack of existing sequences in for these species

in the NCBI repository. Tentatively, we have used identity values� 85% to assign the speci-

men to genera (Table 6).

Amplification was successful for Leishmania spp. in nine of the 57 liver samples (Fig 6 and

Table 7). The match to the Leishmania genus had high certainty with cover� 98% and

identity� 99%. Samples were best matched to the species L. amazonensis, in agreement with

previous records from Ecuador [37–39].

While additional testing of the potential for using roadkill species for taxonomic identifica-

tion and parasitology is needed, our results are promising. We were able to amplify gene

Table 3. Linear regression models testing how DNA quantity and purity varied by class and time since death.

Predictor Marginal means SE 95% CI

Quantity of DNA (log10) (N = 586, R2 = 0.18)
Amphibia 1.010 0.0544 0.906–1.120

Reptilia 1.610 0.0408 1.531–1.690

Aves 1.640 0.0494 1.542–1.740

Mammalia 1.720 0.0574 1.604–1.830

Amphibia TimeDeath -0.002 0.0028 -0.0072–0.0038

Reptilia TimeDeath -0.001 0.0015 -0.0031–0.00263

Aves TimeDeath -0.009 0.0023 -0.0136 –-0.0047

Mammalia TimeDeath -0.004 0.0023 -0.0081–0.00091

Purity of DNA (log10) (N = 586, R2 = 0.02)
Amphibia 0.217 0.0067 0.204–0.230

Reptilia 0.245 0.0050 0.235–0.255

Aves 0.243 0.0061 0.231–0.255

Mammalia 0.245 0.0070 0.231–0.259

TimeDeath -0.0002 0.0001 -0.0005–0.00001

Linear regression results show how the amount and purity of DNA (log10 scale) were influenced by the estimated

time since death (TimeDeath) and the taxonomic class. Samples were collected during roadkill surveys in the Napo

region of Ecuador from 2020 to 2021. We report estimated marginal means for each predictor and the interaction

term (when interactions were significant), their standard error (SE), and their 95% confidence intervals (95% CI).

For each model, we also report the number of specimens (N) for which data were available and the adjusted R2 of the

model. Results were qualitatively the same when accounting for evolutionary relationships in random effects models

and when considering the mean of DNA amount per specimen (when multiple tissues were analyzed) instead of the

best value (S1 Table).

https://doi.org/10.1371/journal.pone.0290836.t003
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Fig 2. Variation in the obtained quantity DNA from roadkill specimens at different estimated times since death

across the four studied taxonomic classes. Symbols represent the observed data with the line and shaded area

representing the estimated relationship and 95% CI respectively from a linear regression model (Table 3). Samples

were collected during a roadkill survey in the Napo region of Ecuador from 2020 to 2021.

https://doi.org/10.1371/journal.pone.0290836.g002

Fig 3. DNA quantification by tissue. Variation in the amount of DNA extracted from different tissues collected from

roadkill vertebrates during surveys in the Napo region of Ecuador from 2020 to 2021. Different letters above the plot

indicate significant differences between the groups.

https://doi.org/10.1371/journal.pone.0290836.g003
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Table 4. Linear regression models testing how DNA quantity and purity varied by tissue.

Predictor Marginal means SE 95% CI

Quantity of DNA (log10) (N = 703, conditional R2 = 0.51, marginal R2 = 0.21)
Amphibia 1.27 0.066 1.14–1.40

Reptilia 1.70 0.045 1.61–1.78

Aves 1.80 0.054 1.69–1.90

Mammalia 1.92 0.069 1.79–2.06

Blood vessel 1.58 0.070 1.44–1.72

Heart 1.66 0.075 1.51–1.81

Intestine 1.72 0.077 1.56–1.87

Liver 2.00* 0.075 1.86–2.15

Muscle 1.39* 0.027 1.34–1.44

Purity of DNA (log10) (N = 703, conditional R2 = 0.10, marginal R2 = 0.03)
Amphibia 0.22 0.009 0.204–0.240

Reptilia 0.25 0.006 0.235–0.259

Aves 0.24 0.007 0.229–0.257

Mammalia 0.25 0.010 0.228–0.267

Blood vessel 0.24 0.011 0.222–0.265

Heart 0.27 0.012 0.242–0.288

Intestine 0.22 0.012 0.192–0.240

Liver 0.24 0.012 0.217–0.263

Muscle 0.24 0.004 0.227–0.243

Linear mixed effect regression results show how the amount and purity of DNA (log10 scale) extracted from

roadkilled specimens were influenced by the analyzed tissue and taxonomic class. Samples were collected during

roadkill surveys in the Napo region of Ecuador completed in 2020–2021. We report estimated marginal means for

each predictor and the interaction term (when interactions were significant), and their 95% confidence intervals

(95% CI). For each model, we also report the number of specimens (N) for which data were available and the

conditional and marginal R2 of the model.

https://doi.org/10.1371/journal.pone.0290836.t004

Fig 4. DNA integrity. Variation in the degradation of DNA extracted from intestine tissues collected at varying times time since death (A) and that yield

different quantities of DNA (B). Samples were obtained from roadkill vertebrates during surveys in the Napo region of Ecuador completed in 2020–2021.

Different letters above the plot indicate significant differences between the groups.

https://doi.org/10.1371/journal.pone.0290836.g004
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fragments from DNA samples with concentration as low as 7.1 ng/μL (sample 209, Fig 6 and

Table 8), and with high degradation (samples 391 and 683, Fig 5; samples 209 and 819, Fig 6).

Discussion

Our results show that tissues samples collected from roadkill wildlife can offer a valuable

source of genetic data and thus, contribute to our understanding of biodiversity. Samples can

help identify vertebrate species and be use for detection, and potentially monitoring, of micro-

organisms including those that can pose risks to human health. While the necessary genetic

analyses can be costly (even if rapidly becoming more affordable), sampling roadkill is a sim-

ple, relatively low cost, low risk, and low impact (not requiring capturing of wildlife) method

to gather tissue from wildlife. While not all animals cross roads or become roadkill, we know

that many species are susceptible [40–42] and thus, this sampling approach can provide access

to a large diversity of species. The resulting data could contribute to gain much needed under-

standing of existing biodiversity in less-studied areas and could be used in combination with

other approaches such as environmental DNA (eDNA) and metabarcoding [43, 44].

In our study region, a tropical environment with relatively high humidity and non-extreme

temperatures (from 4.63 to 23.7˚C), we were able to extract DNA from nearly all samples

(DNA was not obtained from only five, < 1%, of samples) and even from specimens estimated

Fig 5. Amplification of the targeted COI region for vertebrate taxonomic identification. DNA electrophoresis from the eight tested vertebrate samples containing

isolated genomic DNA (A) and the amplified COI (B). Molecular weight (MW); Negative control (CN). The identification number of each sample (ID) is shown in

the top line.

https://doi.org/10.1371/journal.pone.0290836.g005

Table 5. Qualitative assignment of DNA degradation in vertebrate samples used for molecular taxonomic identification.

Sample ID 391 464 465 467 468 682 683 684

DNA (ng/μl) 11.7 17.7 230.6 23.8 10.8 112.0 15.2 191.0

A260/A280 1.82 1.98 1.86 1.79 1.67 1.81 1.72 1.82

Degradation level 3 2 1 2 1 2 3 2

Hours from death 24 0 12 24 0 36 24 24

For the eight samples amplified to test molecular taxonomic identification we show the concentration (ng/μL), purity (A260/A280), and degradation level of the obtained

DNA and the estimated time since death of the specimen.

https://doi.org/10.1371/journal.pone.0290836.t005
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to have been on the road for 120 hours (5 days). These results suggest this method could be

implemented without intensive daily road surveys and still provide a high return of genetic

material from collected tissues. While promising, the potential to obtain good quality and pure

DNA may vary across regions depending on environmental conditions, mainly temperature

and humidity, but also soil acidity and UV exposure [45]. Traffic levels may also be relevant as

high numbers of vehicles will contribute to a faster deterioration of roadkill specimens.

We obtained DNA from specimens in all four sampled vertebrate groups, but amphibian

samples returned less and lower quality DNA. While we are not sure why, it is possible that the

highly permeable dermis of amphibians [46, 47] allows substances present in the environment

Table 6. Local alignment of COI sequences amplified from seven reptilian and one amphibian samples.

ID Class Query

(bp)

Query cover

(%)

Identity

(%)

Accession N˚ Reference Match length

(bp)

391 Reptilia 664 99 87.18 AB079597.1 Rena humilis mitochondrial DNA 1548

464 Reptilia 671 97 93.12 MH140069.1 Atractus imperfectus voucher CH:9399 cytochrome oxidase subunit 1
(COI) gene, partial.

671

465 Reptilia 656 98 92.39 MH140069.1 Atractus imperfectus voucher CH:9399 cytochrome oxidase subunit 1
(COI) gene, partial.

654

467 Reptilia 656 99 89.08 MH140069.1 Atractus imperfectus voucher CH:9399 cytochrome oxidase subunit 1
(COI) gene, partial.

654

468 Amphibia 670 100 84.33 KF540146.1 Caecilia tentaculata mitochondrion 1553

682 Reptilia 661 97 92.37 MH140069.1 Atractus imperfectus voucher CH:9399 cytochrome oxidase subunit 1
(COI) gene, partial.

654

683 Reptilia 663 98 93.24 MH140069.1 Atractus imperfectus voucher CH:9399 cytochrome oxidase subunit 1
(COI) gene, partial.

654

684 Reptilia 661 97 92.52 MH140069.1 Atractus imperfectus voucher CH:9399 cytochrome oxidase subunit 1
(COI) gene, partial.

654

For the eight samples amplified to test molecular taxonomic identification we show the sample ID, taxonomic class, query length, percentage of the query sequence

length that is included in the alignment, percentage identity reflecting the percentage of bases that are identical between the query and the reference genome (match),

and details of the match sequences (detected using BLAST) in the NCBI repository.

https://doi.org/10.1371/journal.pone.0290836.t006

Fig 6. Amplification of molecular target from Leishmania spp. DNA electrophoresis from eight samples of vertebrate liver obtained from roadkilled specimens,

containing isolated genomic DNA (A), or the amplified 18S SSU rRNA of Leishmania spp. (B).

https://doi.org/10.1371/journal.pone.0290836.g006
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to penetrate tissues and cells degrading DNA. In addition, we also found that older (longer

times since death) bird samples produced lower quantities of DNA, but this trend was not

detected in other taxonomic groups. We are not sure why bird samples were more affected by

time since death, but it would be interesting to explore if this pattern is also observed in other

regions.

We were also able to obtain DNA from all types of tissues sampled. Liver samples produced

higher DNA quantities while muscle generally yield less. Previous studies have also reported

higher DNA concentrations from liver [48, 49] which may be linked to regenerating hepato-

cytes being tetraploids, and thus, containing more DNA [50]. Differences among tissues may

be related to differences in cellular structure, cell density, and also different reactions when

exposed to environmental conditions [45]. These aspects should be further study, but our ini-

tial results suggest that sampling liver, if possible, is ideal.

Not surprisingly, DNA degraded over time (since death). DNA fragmentation can interfere

with the amplification of complete target genes and result in sequencing errors [51]. In our

study, the observed levels of degradation did not affect amplification for vertebrate identifica-

tion, but may have affected our ability to amplify parasite DNA. DNA from microorganisms is

found in lower quantities within the host tissue and may be more susceptible to degradation

affecting amplification [52]. To minimize this risk we used a nested PCR, a technique with

high sensibility and specificity for diagnostic of visceral leishmaniasis for samples with low

parasitaemia [53]. While we show this technique can be successful, we cannot rule out the pos-

sibility that parasites were present in other specimens but we could not detect them.

Table 7. Results from local alignment of 18S SSU-rRNA sequences amplified from liver samples using BLAST.

ID Query

(bp)

Query cover

(%)

Identity

(%)

Accession N˚ Reference Match length

(bp)

209 915 99 100 GQ332354.1 Leishmania amazonensis 18S ribosomal RNA gene, complete sequence; and internal

transcribed spacer 1, partial sequence

2191

218 908 99 99.89 GQ332354.1

466 925 98 100 GQ332354.1

499 919 99 100 GQ332354.1

652 908 99 99.89 GQ332354.1

775 911 99 100 GQ332354.1

788 914 99 100 GQ332354.1

819 913 99 100 GQ332354.1

831 914 99 99.89 GQ332354.1

For the 57 liver samples amplified to explore the molecular detection of Leishmania spp. we show the sample ID, query length, percentage of the query sequence length

that is included in the alignment, percentage identity reflecting the percentage of bases that are identical between the query and the reference genome (match), and

details of the match sequences (detected using BLAST) in the NCBI repository.

https://doi.org/10.1371/journal.pone.0290836.t007

Table 8. Qualitative assignment of DNA degradation from liver samples.

Sample ID 209 218 466 499 652 775 788 819 831

DNA (ng/μl) 7.1 188.5 11.7 35.9 125.9 123.8 55.3 38.1 261.2

A260/A280 1.52 1.85 1.87 1.66 1.71 1.80 1.76 1.68 1.77

Degradation level 3 2 1 1 3 2 2 3 2

Hours from death 0 24 6 0 6 12 12 1 24

For the 57 liver samples amplified to explore the molecular detection of Leishmania spp. we show the concentration (ng/μL), purity (A260/A280), and degradation level of

the obtained DNA and the estimated time since death of the specimen.

https://doi.org/10.1371/journal.pone.0290836.t008
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Overall, our study shows that DNA extracted from carcasses of roadkill animals can be of

sufficient quality for downstream applications. Our findings are consistent with conclusions

from studies considering postmortem DNA degradation in forensic samples, for example to

identify missing people or sequence museum samples [5, 25]. Biobanks of tissues and DNA

can be generated from samples collected from roadkill animals without adding an impact on

wildlife. These data can help us answer questions about species distributions, diseases, taxon-

omy, and generally contribute to preserve biological information. Although it is crucial to

reduce the negative impacts of roads on wildlife [54], roads are necessary and roadkill will

never be completely avoidable. Making the most of a bad situation, roadkill carcasses should

be collected and treated as precious samples that can help us gain a better understanding of

local biodiversity, especially in countries like Ecuador that have high diversity and rates of

endemism, but where much is yet to be learned.
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