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Heliconius butterflies are well-known for their colourful wing patterns, which
advertise distastefulness to potential predators and are used during mate
choice. However, the relative importance of different aspects of these signals
will depend on the visual abilities of Heliconius and their predators. Previous
studies have investigated colour sensitivity and neural anatomy, but visual
acuity (the ability to perceive detail) has not been studied in these butterflies.
Here, we provide the first estimate of visual acuity in Heliconius: from a
behavioural optomotor assay, we found that mean visual acuity = 0.49
cycles-per-degree (cpd), with higher acuity in males than females. We also
examined eye morphology and report more ommatidia in male eyes. Finally,
we estimated how visual acuity affects Heliconius visual perception com-
pared to a potential avian predator. Whereas the bird predator maintained
high resolving power, Heliconius lost the ability to resolve detail at greater
distances, though colours may remain salient. These results will inform
future studies of Heliconius wing pattern evolution, as well as other aspects
in these highly visual butterflies, which have emerged as an important
system in studies of adaptation and speciation.
1. Introduction
Since Bates [1] first described mimicry over 160 years ago, studies of Heliconius
butterflies have made an important contribution to our understanding of
adaptation and speciation [2]. These Neotropical butterflies are well known for
their diversity of bright colour patterns, which both advertise distastefulness to
potential predators [3–8] and are used during mate choice [9]. Because males dis-
tinguish between the warning colour patterns of con- and hetero-specific females
(and to some extent against con-specific females from populations with different
patterns), colour pattern contributes an important premating reproductive barrier,
e.g. [10–12].Heliconius also use visual cues during foraging andhost plant selection
[13,14]. Vision, therefore, plays a crucial role in Heliconius behaviour, and studies
of Heliconius have increasingly considered vision, especially with respect to
colour perception [15–19] and neuroanatomy [20,21]. However, a key element of
Heliconius visual ecology has not yet been studied, specifically visual acuity.

Visual acuity is the ability to perceive detail in a visual scene and is one of the
three fundamental parameters of visual systems (the others being spectral sensi-
tivity and temporal resolution [22,23]). Visual acuity is typically reported as the
number of black and white stripe pairs that an organism can discriminate
within a single degree of visual angle (cycles-per-degree; cpd) [23]. Across
animal taxa, acuity varies greatly. For example, human visual acuity is 72 cpd
[23,24], whereas fruit fly visual acuity is only 0.09 cpd [25]. This discrepancy is par-
ticularly relevant for researchers designing studies of visual signals, whereby
hypotheses about the form and function of a given trait may not consider the
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Figure 1. (a) The optomotor set up. Butterflies were contained at the centre of the fixed white PVC base in a clear Plexiglas cylinder (not pictured) while the visual
stimulus (alternating black and white lines) rotated (in both directions for 10 s at 3 rpm). All trials were illuminated with a LED ring lamp and video recorded from above
(see also electronic supplementary material, video S1). (b) Behavioural estimates of visual acuity were higher for males. For reference, males that were specifically tested
at ≥1.0 cpd are indicated by grey triangles. The adjusted mean male visual acuity is also presented in grey, representing the scenario where all four males from the
initial experimental group that responded positively at 1.0 cpd (but were not tested at higher levels) had visual acuity values of 1.4 cpd (the highest observed values
from follow-up experiments). Regardless, the means are similar, and the 95% confidence intervals overlap. (c) Male eyes contained more ommatidia than females. For
both figures, solid circles represent mean values, and error bars show 95% confidence intervals. *Indicates p < 0.05.
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visual capacity of the receiver [26]. Caves et al. [27] demon-
strated this principle empirically by showing that cleaner
shrimp visual acuity is too poor to resolve colour patterns pre-
viously believed to be used in intraspecific signalling. This
result nicely illustrates the potential downfalls of biassing
studies towards our own perceptual abilities.

A battery of studies have left little doubt that Heliconius
males can distinguish between potential mates with divergent
colour patterns [6,10–12,28–30]. However, visual acuity has
never been measured in these butterflies, so it is unclear how
well the butterflies can perceive these signals at different
distances, or what is the relative importance of colour versus
pattern at different points of courtship (e.g. long-range versus
short-range attraction). For other diurnal butterflies, visual
acuity has been reported from 0.66 cpd (Colias eurytheme [31])
to approximately 1.0 cpd (Morpho peleides [32]), and as body
size scales with eye size, visual acuity tends to increase
in larger butterflies [33]. Morpho peleides is larger than
Heliconius, so visual acuity values less than 1.0 cpd are expected
for Heliconius. If this is true, the ability of Heliconius to resolve
wing pattern details is questionable, particularly at greater dis-
tances. Avian predators, on the other hand, likely perceive the
same colour patterns clearly; the visual acuity ofHeliconius bird
predators is unknown, but studies in other insectivorous birds
suggest high visual acuity (e.g.Acanthiza chrysorrhoa = 25.6 cpd
[34]; Zosterops lateralis = 18.5 cpd [35]).

Here, we measure visual acuity inHeliconius butterflies for
the first time. First, we used a behavioural assay to measure
optomotor responses, where animals turn in the direction of
a rotating stimulus so as to minimize displacement of the
moving image [25]. Second, we quantified the number of
ommatidia in male versus female eyes. By more thoroughly
investigating the potential mismatch between the visual abil-
ities of Heliconius and their predators, our results shed light
on the evolution and function of the warning patterns.
2. Methods
(a) Study species
We established a stock of Heliconius erato cyrbia from wild individ-
uals caught in forests near Balsas (3°430600 0 S, 79°500450 0 W) in
Southern Ecuador. These were maintained at the Universidad
Regional Amazónica IKIAM in Tena, Ecuador, and replenished
with wild individuals intermittently over the course of the exper-
iment. All butterflies were maintained under common garden
conditions in outdoor insectaries in 2 × 2 × 2.3 m cages, where
they were provided with 20% sugar solution, and Lantana sp. and
Psiguria sp. flowers as a source of pollen. Eggs were collected regu-
larly from the host plants, Passiflora punctata, provided in the
insectaries. The larvae were reared individually in pots and fed
with fresh leaves from the host plants. All butterflies were marked
with unique identification codes on their wings after eclosion.

(b) Behavioural estimates of visual acuity
An optomotor device (figure 1a) was built following Caves et al.
[36], which permits a non-invasive and reliable behavioural
assay for studying visual acuity across taxa. Briefly, the device
consisted of interchangeable visual stimuli of alternating vertical
black and white stripes printed on waterproof paper (145 µm,
Premium NeverTear, Xerox, CT, USA) on a rotating wheel
around a fixed white PVC base (33 cm diameter). The width
of one cycle (a set of alternating black and white stripes) was
calculated as cycle width (mm) = [(C/360)/a], where ‘C’ is the cir-
cumference of the experimental arena and ‘a’ is the intended
visual acuity in cycles-per-degree (cpd) [36]. We used stimuli
with spatial frequencies of 0.3 cpd (cycle width = 9.95 mm) to
1.0 cpd (cycle width = 2.98 mm). In pilot trials, butterflies consist-
ently responded to cpd levels greater than 0.3. As visual acuity
depends on the distance between the stimulus and the perceiver,
all butterflies were restrained in a clear Plexiglas cylinder (4 cm
radius; 15 cm height) at the centre of the base. A blank stimulus
was used to confirm that responsiveness was due the moving
stripes and no other external cues.

All assays were conducted inside (mean temperature ±
standard deviation: 23.14 ± 1.14°C) at IKIAM University, illumi-
nated by an overhead LED ring lamp, and video recorded from
above (figure 1a). Butterflies (10 + days post eclosion) were tested
only when they stopped crawling on the cylinder, followed by 3–
4 rotations of the stimulus (alternating between clockwise and
anti-clockwise for 10 s each, at 3 rpm). A positive response was
scored only if the butterfly changed the orientation of its head/
antenna in the direction of the moving stimulus in two consecutive
stimuli rotation reversals (see electronic supplementary material,
video S1). All positive responses were confirmed from videos,
and butterflies with unclear responses were excluded from the
experiment. We tested 26 males and 23 females (two butterflies



Table 1. Visual acuity estimates (mean cycles-per-degree ± standard error) and
ommatidia counts (mean ± standard error) for H. e. cyrbia males and females.

visual acuity ommatidia count

male 0.547 ± 0.043 14 089 ± 332

female 0.427 ± 0.023 13 245 ± 186
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were excluded for unclear responses) at cpd levels between 0.3
and 1.0.

In our initial optomotor assays, four males responded posi-
tively to the highest cpd level (1.0), so we performed an
additional set of experiments to specifically explore visual
acuity levels ≥ 1.0 cpd. We tested 20 new males at 0.3 cpd (to
confirm responsiveness), followed by tests at 1.0, 1.2, 1.4 and
1.6 cpd. Two butterflies were excluded for unclear responses.

Male butterflies tend to have larger eyes than females [33], so
we explored how visual acuity differs between male versus
female H. e. cyrbia, while accounting for the time-of-day butter-
flies were tested (10.00∼16.00), potential observer biases and
outside weather effects (all trials were conducted indoors, but
the butterflies were kept in outdoor insectaries) using general-
ized linear mixed models implemented in the lme4 package in
R [37]. The generalized linear mixed model (family = gamma)
was as follows: glmer(visual acuity)∼ sex + time + (1|observer) +
(1|weather). The significance of fixed effect parameters (sex and
time) was determined by likelihood ratio tests via the drop1 func-
tion and minimum adequate models (MAM) were selected using
statistical significance [38,39]. Model assumptions were con-
firmed via visual inspection (residual versus fitted and normal
Q-Q plots). We used the Anova function in the car package [40]
to estimate the parameters of significant fixed effects.

(c) Eye morphology
The insect compound eye consists of numerous independent
photosensitive units, ommatidia, each of which receives visual
information and transfers it to the brain. Variation in ommatidial
number per field of view directly affects visual acuity [25,41,42].

Specimens from the stock population were preserved in
DMSO/EDTA/NaCl [43] and stored at −20° C. Following pre-
viously published methods [44], frozen specimens were thawed
at room temperature and both eyes were removed and placed
in 20% sodium hydroxide (NaOH) for 18–24 h to loosen the tis-
sues behind the cuticular cornea. The following day, the cuticle
was cleaned of excess tissue, mounted on a microscope slide in
Euparal (Carl Roth GmbH, Germany), and left to dry overnight.

We used ImageJ/Fiji [45] to analyse each mounted cornea for
the total number of ommatidia. All slides were imaged at 7.5× on a
Leica M80 stereomicroscope fitted with a Leica Flexacam C1
camera and the Leica Application Suite X (LAS X) software. Each
image contained a 1 mm scale bar to calibrate the measurements.
Ommatidia counts were measured via image thresholding and
the Analyze particles function (see electronic supplementary
materials, methods). To account for differences in body size, the
hind legs of each butterfly were also removed and imaged; hind
tibia length was measured using the Straight line and Measure
options. In total, we measured the eye morphology of seven
males and seven females. Based on the strong correlation between
the left and right eye ommatidial counts (r = 0.949, t = 8.01, d.f. = 7,
p < 0.001), only one eye from each individual was used in sub-
sequent analyses. For uniformity, we always used the left eye
unless it was damaged or imaged poorly, in which case the right
eye was substituted.

We used a linear model to investigate sex-specific differences
in eye morphology as lm(log10(ommatidia count∼ sex + log10(tibia
length)). Log10-transformations were used to normalize the
residuals around the allometric relationship between ommatidia
count and tibia length [46]. Model simplification and parameter
estimates were as detailed above.

(d) Bird-butterfly comparison
We used the AcuityView package in R [26] to estimate how the
mean male, mean female and maximum visual acuity values
reported here influence H. e. cyrbia perception of a visual scene
(photo taken at a distance of approx. 6 cm). We also modelled
how bird predators may view the same visual scene. The full
range of bird species that prey upon Heliconius are unknown,
as are their visual acuity values, but prior studies (e.g. [47])
have used insectivorous passerines as representative predators.
Thus, we used the mean acuity value (22.05 cpd) of two insecti-
vorous passerines (Acanthiza chrysorrhoa and Zosterops lateralis
[34,35]) as a proxy. Colour perception is not included in these
analyses, so we present all images in greyscale (see electronic
supplementary material, figure S1 for colour images).
3. Results
(a) Behavioural estimates of visual acuity
Based on our initial experiments, the mean behavioural visual
acuity (± standard error) for H. e. cyrbia was 0.491 ± 0.027 cpd.
Mean male visual acuity was 0.547 ± 0.043 cpd, which was sig-
nificantly higher than the mean value for females (0.427 ±
0.023; χ2 = 5.35, d.f. = 1, p= 0.021; figure 1b, table 1). The time
of day the butterflies were tested did not influence the results
(p > 0.4). Of the 20 additional males tested for visual acuity
≥1.0 cpd, three responded positively at 1.4 cpd, and four
responded positively at 1.0 cpd (responses were negative at
higher levels). No butterflies responded at 1.6 cpd. The remain-
ingmales (13/20) had positive responses at 0.3 cpd but negative
responses at 1.0 cpd. Correcting for the possibility that males
responding at 1.0 cpd in the initial experiments had higher
visual acuity (i.e. setting the value for these individuals to
1.4 cpd) increases the mean visual acuity only a little
(i.e. 0.608 ± 0.07 cpd versus 0.547 ± 0.043 cpd) and there is
considerable overlap in the 95% confidence intervals (figure 1b).

(b) Eye morphology
Males had significantly more ommatidia than females (F1,12 =
4.93, p = 0.046; figure 1c, table 1), despite no difference in
body size (using hind tibia length as a proxy; p > 0.7).

(c) Bird–butterfly comparison
Using the visual acuity values from the optomotor assay, we
found thatH. e. cyrbia has relatively poor visual resolution, par-
ticularly at larger distances (figure 2). By contrast, our proxy
bird predator maintained high resolution at all distances.
4. Discussion
There are three fundamental parameters of visual systems:
spectral sensitivity, temporal resolution and visual acuity
[22,26]. For Heliconius butterflies, spectral sensitivity is well
characterized, (colour discrimination ranges from UV to red
wavelengths; [15–19]), but temporal resolution and visual
acuity are undocumented. Here, we report the first measure-
ment of visual acuity in Heliconius: mean visual acuity was
0.49 cpd. We also report higher visual acuity in males, which



viewing distance

5 cm 25 cm 50 cm

male (mean)
1.828/0.547

female (mean)
2.341/0.427

bird (mean)
0.045/22.05

male (max)
0.714/1.40

Figure 2. Perceptual estimates of H. e. cyrbia males (first row: maximum visual acuity; second row: mean visual acuity) and females (third row: mean visual acuity)
viewing the same vision scene (generated with the AcuityView R package [26]). For comparison, the fourth row presents the perceptual estimate of a hypothetical bird
predator viewing the same scene. The visual acuity of Heliconius bird predators are unknown, so we used the mean visual acuity value of two insectivorous passerines
(Acanthiza chrysorrhoa and Zosterops lateralis [34,35]). Values on the left side represent the minimum resolvable angle in degrees/visual acuity in cycles-per-degree. Note:
greyscale images are presented as colour perception is not considered in these analyses (see electronic supplementary material figure S1 for colour images).
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correspondswithmore ommatidia inmale eyes, as observed in
other butterflies [33]. Ecological differences between the sexes
might explain this sexual dimorphism; males actively search
for and identify conspecific mates [48,49]. Finally, from
targeted follow-up experiments to specifically explore maxi-
mum visual acuity levels for H. e. cyrbia males, we report a
maximum value of 1.4 cpd. This suggests that Heliconius may
have higher visual acuity than other Nymphalidae butterflies
with apposition eyes [50]. The ecological and fitness-related
consequences of high visual acuity in Heliconius males is
unresolved and deserves further exploration.

Heliconius wing patterns warn potential predators that
these butterflies are unprofitable prey and are also used
during mate choice. Previous studies have repeatedly demon-
strated that Heliconius males can distinguish between
potential mates with divergent colour patterns both between
[10,11,29], and to a lesser extent, within species [6,12,28,30].
However, our results suggest that these signals may not be
viewed equally by conspecifics and predators. Although
visual acuity will always determine what information can
and cannot be perceived [26], our visual representations
(figure 2) are of course only approximations informed by
acuity measurements and cannot depict what the animals
actually see. Other factors, such as neural image enhance-
ment and motion detection are involved, but these
processes cannot add information to the visual image [26].
Nevertheless, our recreation of how the butterflies and a
potential avian predator may view the same visual scene
highlight that while potential predators maintain high
visual resolving power at all tested distances, Heliconius will
quickly lose the ability to resolve pattern detail as distances
increase.
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In contrast to specific fine-scale patterns, colour elements
may remain salient for the butterflies across a broader range
of distances, suggesting that colour may be more useful for
e.g. long-range attraction. This is consistent with experimental
work showing thatHeliconius colours likely have a greater influ-
ence than patterning for both predators and conspecifics [6],
and that more prominent shifts in male preference are often
associated with major colour differences (e.g. white to yellow,
or white to red shifts in forewing coloration [51]). Such differ-
ences between avian and Heliconius perceptive abilities may
help to inform future studies of Heliconius wing pattern evol-
ution. While we can never fully appreciate the perceptive
abilities of our study animals, our results highlight differences
that our own perceptual biases may have otherwise missed in
an important model of adaptation and speciation, which
relies heavily on visual information to survive and reproduce.
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