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RESUMEN GENERAL 

 

El aumento de la intensidad y recurrencia de las inundaciones repentinas es una creciente 

preocupación, especialmente en cuencas amazónicas con escasez de datos donde los sistemas 

de pronóstico y alerta temprana de crecidas suelen ser inexistentes. Es crucial comprender y 

modelar las condiciones que desencadenan las inundaciones repentinas, para así, planificar 

estrategias de mitigación. El presente estudio propone un sistema de pronóstico de inunda-

ciones basado en modelación atmosférica e hidrológica en 3 cuencas amazónicas del Ecuador 

con escasez de datos: Cuencas de los ríos Tena, Jatunyacu, y Napo (salida en Ahuano).  

Considerando la limitada información hidrometeorológica disponible en el área de estudio, 

la primera parte del estudio se enfocó en la generación de un producto espacial de precipi-

tación mediante la integración de múltiples productos satelitales de precipitation y humedad 

del suelo a través de machine learning. El producto espacial de precipitation propuesto (BC-

RFP) demostró capturar adecuadamente la intensidad, distribución y ocurrencia de los eventos 

de precipitation a escala horaria. De hecho, con la información derivada de BC-RFP se consiguió 

calibrar y validar el modelo lluvia-escorrentía GR4H para las tres cuencas de estudio, con 

rendimientos satisfactorios (KGE > 0.5).  

La segunda parte se enfocó en determinar las parametrizaciones físicas del modelo WRF 

que maximicen el rendimiento de los pronósticos de precipitation usando un enfoque de 

modelación por conjuntos. Para esto, se realizó un previo análisis de sensibilidad utilizando 

100 parametrizaciones del modelo WRF obtenidas de la variación de los esquemas físicos de 

convección (CU), microfísica (MP) y capa límite planetaria (PBL). Los resultados del pronóstico 

de precipitación por conjuntos (EPF) mostraron rendimientos aceptables, ya que los rendi-

mientos de las simulaciones de caudal forzadas con el EFP presentaron valores de KGE entre 

0.14 y 0.4. En general, los resultados brindaron suficiente evidencia para proponer al sistema 

de modelación atmosférica e hidrológica analizado como una herramienta preliminar para el 

pronóstico de inundaciones para las cuencas de estudio.  

Palabras clave: Modelo GR4H, modelo WRF, inundaciones, pronóstico, alerta temprana.  
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OVERALL ABSTRACT 
 

The increase in intensity and recurrence of flash floods, derived from heavy rainfalls linked 

to climate change, is a growing concern worldwide, particularly in data-scarce Andean-Amazon 

basins, where flood forecasting and early warning systems are usually inexistent. Thus, it is 

imperative to understand and model the hydrometeorological conditions that trigger the flash 

flood events for the effective planning of mitigation strategies. The present study aimed at 

proposing a flash-flood forecasting system based on atmospheric and hydrological modelling 

for three Ecuadorian data-scarce Andean-Amazon basins: Tena River Basin (TRB), Jatunyacu 

River Basin (JRB), and Upper Napo River Basin (UNRB, outlet at Ahuano).   

Given the limited hydrometeorological information available in the study area, the first part 

of this study focused on implementing a gridded-precipitation product by integrating multiple 

satellite-based precipitation and soil moisture products through machine learning techniques. 

The gridded-precipitation product (hereafter BC-RFP) showed a high ability to reproduce the 

intensity, distribution, and occurrence of the hourly precipitation events. Indeed, with the BC-

RFP, it was possible to calibrate and validate the rainfall-runoff GR4H model for the three study 

basins, with satisfactory performance (KGE > 0.5). 

The second part of the study focused on determining the physical parameterizations of the 

WRF model that maximize the performance of the precipitation forecasts using an ensemble 

modeling approach. For this, a prior sensitivity analysis was conducted using 100 parameter-

izations of the WRF model obtained from the variation of physical schemes, such as cumulus 

convection (CU), microphysics (MP) and planetary boundary layer (PBL). The ensemble 

precipitation forecasts (EPFs) showed acceptable performances, as the streamflow simulations 

forced with EPFs presented KGE values between 0.14 and 0.4. Altogether, results provided 

sufficient insights to propose the analyzed ensemble precipitation and streamflow forecasting 

as a preliminary tool for generating early warning systems in the study area. 

Keywords: GR4H model, WRF model, flash-flood, forecasting, early warning  
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PAPER I 
Published on Remote Sensing (MDPI). https://doi.org/10.3390/rs13214446 

Improving Hourly Precipitation Estimates for Flash Flood Modeling in Data-

Scarce Andean-Amazon Basins: An Integrative Framework Based on Machine 

Learning and Multiple Remotely Sensed Data 

Abstract  

Accurate estimation of spatiotemporal precipitation dynamics is crucial for flash flood 

forecasting; however, it is still a challenge in Andean-Amazon sub-basins due to the lack of 

suitable rain gauge networks. This study proposes a framework to improve hourly precipitation 

estimates by integrating multiple satellite-based precipitation and soil-moisture products 

using random forest modeling and bias correction techniques. The proposed framework is also 

used to force the GR4H model in three Andean-Amazon sub-basins that suffer frequent flash 

flood events: upper Napo River Basin (NRB), Jatunyacu River Basin (JRB), and Tena River Basin 

(TRB). Overall, precipitation estimates derived from the framework (BC-RFP) showed a high 

ability to reproduce the intensity, distribution, and occurrence of hourly events. In fact, the 

BC-RFP model improved the detection ability between 43% and 88%, reducing the estimation 

error between 72% and 93%, compared to the original satellite-based precipitation products 

(i.e., IMERG-E/L, GSMAP, and PERSIANN). Likewise, simulations of flash flood events by 

coupling the GR4H model with BC-RFP presented satisfactory performances (KGE* between 

0.56 and 0.94). The BC-RFP model not only contributes to the implementation of future flood 

forecast systems but also provides relevant insights to several water-related research fields 

and hence to integrated water resources management of the Andean-Amazon region. 

Keywords: IMERG, PERSIANN, GSMAP, SMAP, GR4H model, UNRB. 

1. Introduction 

Accurate estimation of spatiotemporal precipitation dynamics is crucial for several 

hydrological purposes, especially for operational flash flood forecasting [1,2]. Conventional 

approaches to estimate the precipitation patterns require rain gauge information. However, 

https://www.mdpi.com/2072-4292/13/21/4446/htm#B1-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B2-remotesensing-13-04446
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the spatial distribution of rain gauges strongly influences the uncertainty of precipitation 

estimates [3,4]. This implies important limitations over areas with complex topography, as in 

the case of the Andean-Amazon sub-basins, where implementing a suitable rain gauge density 

is often difficult and cost-prohibitive. In recent years, satellite-based precipitation products 

(hereafter SPPs) have been constituted as an alternative to overcome this limitation [5,6]. 

Nevertheless, SPPs present multiple sources of random and systematic errors associated with 

retrieval algorithms, sampling time steps, detection ability, among others [7,8]. 

In this regard, several studies have proposed different methods to improve the accuracy of 

SPPs and use them for forcing precipitation in hydrological models [9-12]. Most of these 

studies have focused on bias correction by statistical techniques and regression- based 

downscaling using land surface characteristics [13-20]. However, these correction methods 

still present several issues at high spatial (i.e., <10 km) and temporal (i.e., hourly) resolutions 

[21]. Thus, their applicability for hydrological modeling in fast-response basins is limited 

[22,23]. To address these issues, recent investigations have proposed various correction 

methods based on machine learning. For instance, Le et al. [24] developed a framework to 

correct daily and sub-daily SPPs by convolutional neural networks, obtaining higher 

performances than classical correction methods. Likewise, Chivers et al. [25] and Wolfen-

sberger et al. [26] suggested a combination of random forest modeling with classical bias 

correction methods to improve hourly precipitation estimates derived from SPPs. However, 

the latter method focuses on the individual correction of SPPs without considering the valuable 

information that could be better captured by other precipitation products. 

In contrast, Baez et al. [27] and Kolluru et al. [28] proposed merging multiples SPPs with rain 

gauge data and geographical features by random forest modeling. This method extracts the 

most relevant information from each SPP and combines it to maximize the accuracy of 

precipitation estimates. Results obtained with this method showed significant increases in 

performances of precipitation estimates (greater than 60%) compared to using isolated SPPs 

[27,28]. Further studies have indicated the combination of SPPs with satellite-based soil-

moisture products (hereafter SMPs) also provides relevant insights to improve the accuracy of 

https://www.mdpi.com/2072-4292/13/21/4446/htm#B3-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B4-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B5-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B6-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B7-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B8-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B9-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B12-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B13-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B20-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B21-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B22-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B23-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B24-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B25-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B26-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B27-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B28-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B27-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B28-remotesensing-13-04446
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precipitation estimates [29-32]. In fact, soil-moisture information has proven to be an excellent 

indicator of the precipitation occurrence, especially at high temporal scales [33]. 

Although the integration of multiple SPPs and SMPs by machine learning provides an 

unprecedented opportunity to better estimate the precipitation dynamics in data-scarce 

regions, its applicability has not been evaluated in the Andean-Amazon basins. A 

representative Andean-Amazon basin is the upper part of the Napo River Basin, as it presents 

a complex topography and fast hydrological responses. Given its characteristics, the upper 

Napo River Basin is prone to recurrent flash floods [34,35]. In spite of this, no operational 

hydrological modeling and hence flood forecasting systems have been implemented in the 

region due to the scarce rain gauge data and hence suitable spatiotemporal precipitation 

estimates. 

To address this problem, this study aims to propose an integrative framework for improving 

the estimation of spatiotemporal precipitation dynamics (i.e., intensity, distribution, and 

occurrence) at an hourly scale in the upper Napo River Basin. The framework combines 

multiple SPPs and SMPs with ground observed data and geographical features using random 

forest modeling and bias correction methods. The potential use of the framework as forcing 

precipitation inputs for hydrological modeling was illustrated in three gauged sub-basins 

within the upper Napo River Basin that suffer continuous flood risk. This study might not only 

contribute to the development of flood forecasting systems, but also to several water-related 

research fields and hence to integrated water resources management in the Andean-Amazon 

region. 

2. Study Area 

The Napo River is an important tributary of the Amazon Basin (Figure 1a) providing a mean 

annual discharge of about 6300 m3/s. It covers a drainage area of 100,500 km2, distributing 

among Ecuador (59.6%), Peru (40.0%), and Colombia (0.4%) (Figure 1b) [36]. This study focuses 

on the upper part of the Ecuadorian Napo River Basin (hereafter NRB), located between the 

Eastern Andes and the Amazonia foothills. The NRB covers 6095 km2 above the H1156 

https://www.mdpi.com/2072-4292/13/21/4446/htm#B29-remotesensing-13-04446
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https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f001
https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f001
https://www.mdpi.com/2072-4292/13/21/4446/htm#B36-remotesensing-13-04446
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hydrological station and presents steep slopes that descend from 5900 to 370 m.a.s.l. over 

only 100 km (Figure 1c) [37]. Due to this complex topography, the NRB presents a strong 

climate gradient. Along this climate gradient, several ecosystems can be found, from the higher 

to lower elevations: (i) paramo, (ii) mountain forest, and (iii) piedmont rainforest (Figure 1d). 

 

 

Figure 1. Study area. (a) Location of the Napo River Basin within the Amazon River Basin. (b) Location 

of the study area within the NRB. (c) Topography, drainage network, and gauge stations of the three 

Andean-Amazon sub-basins analyzed in this study: the upper Napo River Basin (NRB), Tena River Basin 

(TRB), and Jatunyacu River Basin (JRB). (d) Ecosystems of the NRB related to climate gradient and 

specific precipitation regime. 

The paramo is located in the western highlands of the NRB (above 3200 m.a.s.l.). It presents 

mean temperatures that range from 4 to 8 °C. The precipitation is influenced by moisture 

originated from both the Pacific and Atlantic oceans with annual accumulation that varies from 

500 to 2000 mm [38,39]. In the paramo, the precipitation occurs mainly as drizzle (~0.1 mm/h) 

[40], however, rainfall events with high-relative intensities (60 mm/h) have been reported [38]. 

The mountain forest, instead, is a transitional region between the paramo and piedmont 

rainforest. Here, mean annual temperature varies from 12 to 20 °C and the annual 

precipitation ranges from 2000 to 4000 mm. In general, the precipitation mainly occurs by 

https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f001
https://www.mdpi.com/2072-4292/13/21/4446/htm#B37-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f001
https://www.mdpi.com/2072-4292/13/21/4446/htm#B38-remotesensing-13-04446
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https://www.mdpi.com/2072-4292/13/21/4446/htm#B38-remotesensing-13-04446
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orographic and convective events, reaching maximum intensities up to ~85 mm/h [41]. 

The piedmont rainforest is located in the eastern lowlands of the NRB (i.e., below 900 

m.a.s.l.). This region is dominated by a humid tropical climate with annual rainfall between 

3500 and 5000 mm, and mean temperatures from 20 to 27 °C [42]. Overall, precipitation 

presents intensities from 20 to 40 mm/h. However, extreme events above 95 mm/h have been 

recorded [35]. The piedmont rainforest is the most critical region within the NRB as its soil-

saturation conditions and strong precipitation regime generate frequent flooding. Indeed, nine 

flash floods with peak discharges above 6000 m3/s have been recorded near the NRB outlet 

during the last 12 years, affecting on average 8000 families per year [42-44]. 

In the NRB, there are two additional critical points that suffer recurrent flash floods, which 

are the outlets of the Tena River Basin (TRB) and Jatunyacu River Basin (JRB). The TRB drains 

239 km2 above the HI001 hydrological station in Tena City. The streamflow and baseflow 

average 24.4 m3/s and 8 m3/s, respectively [42]. In the last years, four flash floods have been 

registered in the TRB, reaching peak discharges above 1800 m3/s [35]. On the other hand, the 

JRB has a drainage area of 3128 km2 above the H0721 hydrological station. According to this 

station, discharge averages 290 m3/s [45]. Since 2010, three flash floods with peak discharges 

above 2500 m3/s have been recorded near the JRB outlet [45,46]. 

3. Datasets and Methods 

3.1. Data 

3.1.1. Ground-Observed Precipitation and Streamflow Data 

Hourly precipitation and streamflow data were obtained from 12 meteorological stations 

and 3 hydrological stations (Figure 1c) belonging to the Ikiam Hydrometeorological Service [42] 

and the National Institute of Meteorology and Hydrology of Ecuador [45,46]. The analysis 

period was from January 2016 to December 2020 (5 years). We chose this period due to the 

availability of hourly data within the study area. Prior to this study, a data quality analysis was 

performed to find and remove outliers using the graphical method described in Chebana et al. 

https://www.mdpi.com/2072-4292/13/21/4446/htm#B41-remotesensing-13-04446
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https://www.mdpi.com/2072-4292/13/21/4446/htm#B42-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B44-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B42-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B35-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B45-remotesensing-13-04446
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[47]. It consists in visualizing data by a rainbow plot and then identifying outliers using bagplots 

and highest-density region boxplots. 

3.1.2. Satellite-Based Data 

Satellite-based precipitation data were obtained from the Integrated Multi-Satellite 

Retrievals for GPM Early Run (IMERG-E) and Late Run (IMERG-L) [48,49], the Global Satellite 

Mapping of Precipitation (GSMAP) [50,51], and the Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks—Cloud Classification System (PERSIANN-

CCS) [52]. We focus on these products as they are widely used for flash flood analysis [53-56] 

due to their high spatiotemporal resolutions and low latency (Table 1). Likewise, soil moisture 

data at surface level (SM) and root zone (RM), as well their temporal variation (i.e., ΔSM and 

ΔRM), were derived from the Soil Moisture Active-Passive Satellite Mission (SMAP L4-SM 

product). 

Table 1. General information of satellite-based precipitation and soil-moisture data used in this study. 

 

3.2. Integration of Satellite-Based Products 

To achieve a new high-resolution and fitting precipitation product over the NRB, the 

proposed framework was implemented into three steps (Figure 2): (i) preprocessing, (ii) 

random forest precipitation modeling, and (iii) postprocessing or bias correction. Further 

details of the framework are described as follows. 

3.2.1. Preprocessing 

To ensure spatial consistency, the SPPs and SMPs were resampled to 4 km (the highest 

Satellite 
 Product 

Spatial 
Resolution 

Temporal 
Resolution 

Latency Download Website  

GPM IMERG-E 0.10° 0.5 h 6 h https://giovanni.gsfc.nasa.gov/giovanni/ 

GPM IMERG-L 0.10° 0.5 h 12 h https://giovanni.gsfc.nasa.gov/giovanni/ 

GSMAP 0.10° 1 h 1 h https://sharaku.eorc.jaxa.jp/GSMaP/ 

PERSIANN-CCS 0.04° 1 h 1 h https://chrsdata.eng.uci.edu/ 

SMAP L4-SM 0.09° 3 h 7 d https://nsidc.org/data/SPL4SMGP/versions/5 

https://www.mdpi.com/2072-4292/13/21/4446/htm#B47-remotesensing-13-04446
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resolution provided by the precipitation products) using the bilinear method, following 

recommendations presented in Baez et al. [27]. Temporal consistency was obtained by 

aggregating or disaggregating the satellite-based products to hourly intervals [57]. The SPPs 

were aggregated by simple sum, whereas SMPs were disaggregated using the proximal 

interpolation method [58]. 

Since topographic features and temporal variability play an important role in precipitation 

patterns [59], variables such as altitude (ALT), monthly variability (MON), and hourly variability 

(HOUR) were considered as ancillary covariates. Altitude was derived from the Shuttle Radar 

Topography Mission (SRTM v4.1 90m) which was previously resampled to 4 km. Once the 

covariates were on the same temporal and spatial scales, we generated a data matrix joining 

information from the SPPs and SMPs, ancillary covariates, and ground-observed precipitation 

of each meteorological station. Data extraction was performed by point-to-pixel scale (Figure 

2). 

3.2.2. Random Forest Precipitation (RFP) Modeling 

To integrate the SPPs and SMPs with ground-observed precipitation data and the ancillary 

covariates, we used a random forest (RF) model as the core of the framework. 

A RF model is a machine learning technique that combines a large number of regression 

trees [60]. Each tree is generated with random data subsets sampled independently. These 

random data subsets are permuted at each splitting node for each tree, which reduces 

overfitting and improves the strength of predictions [61]. Thus, the error converges to the 

minimum possible as the number of trees increases within the forest. Given that the RF model 

generates a prediction for each tree, the final output is the average of all predictions. 

We implemented the RF model using the R package “randomForest” [62]. With this 

package, the RF model requires two parameters: the number of regression trees (ntree) and 

the number of predictor variables at each node (ntry). We established ntree = 1000 and ntry = 

4, following recommendations presented in Wolfensberger et al. [26]. The k-fold cross-
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validation method (k = 10) was proposed for model training. For this, the input data was 

previously divided into training (70%) and testing (30%) subsets. 

 

Figure 2. Schematic diagram of the integration framework proposed in this study. The framework 

integrates multiples satellite-based precipitation and soil-moisture products by random forest 

modeling and bias correction to generate a new hourly fitting precipitation product. 
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Additionally, a variable importance analysis was simultaneously performed with the model 

training, calculating the percentage increase in mean square error (%IncMSE) for out-of-bag 

samples after permutating each covariate [59]. High %IncMSE values correspond to high 

importance and hence greatest influence on the precipitation prediction. Since the RF model 

generates a new gridded precipitation product, we called it random forest precipitation 

(hereafter RFP). 

3.2.3. Postprocessing: The Bias-Corrected Random Forest Precipitation (BC-RFP) 

Given the RFP model could present systematic bias due to the error associated with 

satellite-based covariates and the resampling process [59], we carried out a bias correction by 

the gamma quantile mapping method (GQM). This parametric method corrects precipitation 

assuming a gamma distribution. Thus, GQM nonlinearly corrects the mean, variance, 

intensities, and frequencies of wet hours [63]. A further description of this method is presented 

in Fang et al. [64]. The bias correction was performed considering the three main ecosystems 

of the study area. Note that each ecosystem presents a specific precipitation regime 

(see Section 2). 

3.3. Statistical Criteria for Performance Assessment 

Performance of precipitation estimates derived from the integration framework (i.e., RFP 

and BC-RFP) was assessed by comparison with observed precipitation data at a point-to-pixel 

scale. For this, we used three common continuous-statistic metrics: root mean square error 

(RMSE), correlation coefficient (R), and Kling–Gupta efficiency (KGE). Furthermore, three 

categorical statistics were used to assess the precipitation detection ability: probability of 

detection (POD), false alarm ratio (FAR), and critical success index (CSI). 

Likewise, the SPPs used as covariates in the integrative framework were previously assessed 

to determine a reference for the improvement reached by RFP and BC-RFP. Mathematical 

definitions and characteristics of the aforementioned statistical metrics are described in Table 

A1. 
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3.4. Hydrological Application 

The bias-corrected estimates derived from the integrative framework (i.e., BC-RFP) were 

used as forcing precipitation inputs for the GR4H model. This hydrological model has been 

widely used for flash floods modeling due to its simple structure, low computing needs, and 

ability to simulate hourly streamflow [65,66]. Previous studies, such as Llauca et al. [67] and 

Espitia et al. [68], showed that the GR4H model can satisfactorily simulate the hydrological 

processes over the Andean-Amazon sub-basins. Details of the hydrological modeling process 

are described as follows. 

3.4.1. Model Parameters and Inputs 

The GR4H model has four free parameters that characterize the storage processes and unit 

hydrograph: X1, maximum capacity of moisture store (mm); X2, groundwater exchange 

coefficient (mm/h); X3, maximum capacity of the routing store (mm); and X4, base time of the 

unit hydrograph (h). A complete description of the model structure and equations are shown 

in Mathevet [65] and Bennett et al. [66]. The GR4H model requires precipitation and potential 

evapotranspiration (ETP) data as inputs. As previously mentioned, precipitation data were 

derived from the BC-RFP. ETP was calculated using the modified FAO Penman-Monteith 

method at hourly steps using the R package “water” [69,70], and interpolated along the study 

area with the Kriging method. For this, we used the meteorological data (temperature, relative 

humidity, solar radiation, and wind speed) provided by stations located in the study area. 

3.4.2. Hydrological Modeling Setup 

The GR4H model was calibrated and validated for the three study sub-basins: TRB, JRB, and 

NRB (Figure 1). We used the R package “airGR” [65,66] following a semi-distributed setting as 

shown in Figure A1. 

Model calibration considered 40 months for the NRB and JRB (January 2016–March 2019), 

and 18 months for the TRB (July 2018–December 2019). Before this, we considered a warm-

up period of six months to reduce the uncertainty associated with initial moisture conditions 

of the model. Model parameters were automatically calibrated by the shuffled complex 

https://www.mdpi.com/2072-4292/13/21/4446/htm#B65-remotesensing-13-04446
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https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f0A1
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evolution algorithm [71], using the nonparametric variant of the Kling-Gupta efficiency (KGE*) 

as the objective function [72]. We chose this metric as it provides better agreement between 

simulated and observed streamflow at sub-daily and hourly steps compared to the Nash-

Sutcliffe efficiency [72,73]. The flow duration curve (FDC) and the percent bias (PBIAS) were 

also used to assess the model performance in term of streamflow distribution and model bias. 

The mathematical definition of the evaluation metrics is shown in Table A2. 

Model validation consisted of evaluating the GR4H outputs using the optimal parameters 

obtained in the calibration step. To perform the validation, we used 20 months for the NRB 

and JRB (April 2019–December 2020), and 12 months for the TRB (January 2020–December 

2020). 

3.4.3. Flash Flood Event Analysis 

The five last flash flood events produced within the study area (Table 2) were used to assess 

the performance of the coupling of the BC-RFP and GR4H models during high flow conditions. 

These events were chosen based on: 

1. Records of the National Service for Risk Management of Ecuador [44]. 

2. Streamflow thresholds defined by Hurtado et al. [35] and Lapo et al. [34] for flood 

events in the TRB, JRB, and NRB (Table 2). 

For the event analysis, we focused on the differences between the simulated and observed 

behavior of four hydrograph aspects widely examined in flash flood modeling [74]: Streamflow 

dynamic or hydrograph shape, peak discharge, volume discharge, and peak timing. 
 

Table 2. Information of the last five flash flood events produced within the study area. 

Event Start (Datetime) Duration (h) 
Peak Discharge (m3/s) 

TRB JRB NRB 

1 2017-09-02 19:00 53 1896 1160 3570 

2 2018-07-22 01:00 51 657 2579 4574 

3 2019-05-25 20:00 28 242 1184 6407 

4 2019-06-20 00:00 72 250 2659 6338 

5 2020-05-01 00:00 80 593 896 8925 

Streamflow threshold for flood events 210 2200 4500 
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4. Results and Discussion 

4.1. Preliminary Evaluation of the SPPs 

The SPPs used as covariates in the integration framework showed non-satisfactory 

performances within the study area (Figure 3). In terms of the RMSE, the SPPs presented errors 

that ranged between 0.6 and 3.3 mm/h. Compared to previous studies [75-77], these values 

could be considered acceptable. However, CORR and KGE metrics were below 0.4, indicating 

a poor agreement between SPPs and observed precipitation data. Similarly, detection 

performances (POD < 0.6, FAR > 0.5, CSI < 0.4) suggested that SSPs cannot correctly capture 

the hourly precipitation occurrence. These results agreed with several authors [67-79] who 

previously found important limitations in precipitation estimates of SSPs at fine temporal 

scales over complex topography regions, as in the case of the study area. 

 

Figure 3. Performance assessment of the SPPs used as covariates within the integrative framework. 

The whisker-box plot shows the performance variation within the study area, considering each rain 

gauge as an individual data point. Red dashed line indicates the optimal value for each performance 
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metric: root mean square error (RMSE), correlation coefficient (CORR), Kling-Gupta efficiency (KGE), 

probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI).  

4.2. Variable Importance Analysis 

The variable importance analysis revealed that all covariates, except PERSIANN, strongly 

influenced the performance of the integration framework as %IncMSE values ranged from 0.25 

to 0.88 (Figure 4). The IMERG-E product and the soil-moisture change at root zone (ΔRM) were 

the most important covariates and hence those that contributed more information to 

precipitation estimates. Likewise, IMERG-L and soil moisture change at surface level (ΔSM) 

showed relatively high importance (%IncMSE > 50). These findings complied with those of 

Bhuiyan et al. [80,81], who discussed that the synergy among IMERG- and SMAP-derived soil-

moisture products provides relevant insights to improve the fitting of precipitation patterns. 
 

 

Figure 4. Variable importance analysis. The %IncMSE represents the percentage increase in mean 

square error. Covariates with high %IncMSE generate a strong influence on the RFP model. 

Monthly variability (MONTH) was the third most important predictor. However, its 

importance varied along the study area. Note that paramo does not present a strong 

precipitation seasonality [39,40], whereas the mountain forest and piedmont rainforest have 

the wettest season from March to July [82]. Altitude (ALT) and hourly variability (HOUR) 
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showed similar importance. Overall, both covariates are associated with the valley-mountain 

effect that generates convective precipitation events with high occurrence in the late 

afternoon and night along the study area [83]. 

As mentioned, PERSIANN was not a relevant covariate within the integration framework. 

This finding was consistent with the prior evaluation of SPPs (Figure 3), which indicated that 

PERSIANN was the worst performing product. In fact, this SPP presented no correlation with 

the observed data (CORR < 0.1) and the lowest detection skill (i.e., CSI < 0.12). As discussed 

Tan et al. [84], the low performance of PERSIANN is related to its low latency and hence lower 

processing compared to other SPPs. Note the PERSIANN product used in this study was derived 

from the cloud classification system that runs in real time. 

4.3. Integration Framework Performance 

The integration framework showed a high ability to capture the hourly precipitation within 

the study area (Figure 5). Precipitation estimates derived from RFP exhibited good 

performances for both training and testing periods (CORR ≈ 0.93, RMSE ≈ 0.77, and KGE ≈ 0.67). 

However, these preliminary results presented a systematic error, underestimating events with 

intensities greater than 15 mm/h (Figure 5a,c). As discussed by Zhang et al. [85], the RF 

algorithm uses the average of all prediction trees to generate model outputs. Therefore, it 

tends to underestimate extreme precipitation events. Nevertheless, this error was minimized 

in the postprocessing step by applying a bias correction using the GQM method (Figure 5b,d). 

As result, the corrected precipitation estimates (BC-RFP) showed notable improvements in 

accuracy and better captured the highest precipitation intensities (CORR > 0.95, RMSE < 0.65, 

and KGE > 0.83). 

While the aforementioned results provide information about precipitation intensity 

performances, they do not clearly denote the ability of the integration framework to capture 

the occurrence of precipitation events. Capturing the precipitation occurrence is important 

because even small amounts of rainfall can affect the initial soil moisture conditions in the 

study area with subsequent impacts on the flash flood generation [86]. 

https://www.mdpi.com/2072-4292/13/21/4446/htm#B83-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f003
https://www.mdpi.com/2072-4292/13/21/4446/htm#B84-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f005
https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f005
https://www.mdpi.com/2072-4292/13/21/4446/htm#B85-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f005
https://www.mdpi.com/2072-4292/13/21/4446/htm#B86-remotesensing-13-04446
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Figure 5. Scatter density plot for observed and simulated precipitation intensity at the hourly scale. (a) 

Training period without bias correction. (b) Training period with bias correction. (c) Testing period 

without bias correction. (d) Testing period with bias correction. 

The precipitation detection ability of the BC-RFP model diminishes as the intensity 

threshold decreases, meaning that the BC-RFP model is less able to capture the correct 

magnitude of low-intensity events (Figure 6). Within the study area, low-intensity events 

(below 0.2 mm/h) mainly occur on the paramo. This denoted the difficulty of estimating 

precipitation at fine temporal scales over high-elevation regions [87]. For intensities between 

2 and 50 mm/h, the precipitation detection ability (based on POD, FAR, and CSI) reaches the 

https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f006
https://www.mdpi.com/2072-4292/13/21/4446/htm#B87-remotesensing-13-04446


 

17 
 

highest performances, suggesting that the BC-RFP model correctly estimates both intensity 

and occurrence of precipitation events in this precipitation range. Above 50 mm/h, the 

detection performance decreases slightly compared to precipitation events below 50 mm/h. 

However, these results suggested that BC-RFP presents a high potential to detect flash flood 

caused by heavy rainfalls (i.e., 50-100 mm/h). 

 

 

Figure 6. Assessments of the ability to detect the precipitation occurrence for BC-RFP using POD, FAR, 

and CSI metrics at different intensity thresholds. The analysis was carried out considering both training 

and testing periods. Red dashed lines indicate the optimal value for each performance metric. 

Considering intensity thresholds altogether, the BC-RFP model showed satisfactory 

performances in detection metrics (POD = 0.67, FAR = 0.27, and CSI = 0.54). This indicates the 

proposed framework improved the detection ability between 43% and 88% compared to the 
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original SPPs (i.e., IMERG-E/L, GSMAP, and PERSIANN). In fact, general performances reached 

by the BC-RFP model were similar to those reported by more complex methods that use RF 

models to correct and downscale the hourly precipitation estimates [25,26]. 

4.4. Spatial Consistency Analysis 

As shown in Figure 7, the spatial distribution of annual precipitation obtained by the BC-RFP 

model was consistent with climate precipitation trends that characterize the Andean-Amazon 

region (see Section 2). No anomalous or out-of-trend pixels were found in the paramo and 

mountain forest regions. However, few pixels located in the lowest reaches of the NRB 

(piedmont rainforest) showed an important overestimation.  

 

Figure 7. Distribution of annual precipitation obtained with BC-RFP used for the spatial consistency 

analysis along the study area (NRB). 

While the long-term measurements in the aforementioned area indicate that annual 

precipitation does not exceed 5500 mm [88,89], the BC-RFP model showed values above 6500 

https://www.mdpi.com/2072-4292/13/21/4446/htm#B25-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B26-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f007
https://www.mdpi.com/2072-4292/13/21/4446/htm#sec2-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B88-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B89-remotesensing-13-04446
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mm/year. This can be explained by two reasons: (i) the SMAP-derived data exhibited the 

highest soil-moisture contents over the lowest reaches of the NRB, and (ii) the training of the 

integrative framework did not consider a rain gauge in this sector. Therefore, the BC-RFP 

model incorrectly interpreted these high moisture contents as more amounts of rainfall due 

to the lack of hourly precipitation data in the training set. Given that few pixels presented this 

problem, we considered they provided no significant impact in our hydrological modeling. 

4.5. Calibration and Validation of the GR4H Model 

The assessment of the BC-RFP model’s ability to force precipitation input for the GR4H 

model presented satisfactory performances (Figure 8). Overall, KGE* values between 

simulated and observed streamflows were above the acceptable threshold (KGE* > 0.5) [72]. 

Likewise, PBIAS showed scores below ±20%, indicating a good fitting [90]. The visual 

assessment based on the flow duration curve (FDC) revealed that the combination of the BC-

RFP and GR4H models correctly captured the cumulative frequency of the streamflow 

distribution, except above the 95th percentile where the streamflow was underestimated. 

In the TRB, the GR4H model showed the highest performances, reaching KGE* of 0.87 and 

0.79 for calibration and validation, respectively (Figure 8a). These yields were higher than 

those reported by Espitia et al. [68], who previously implemented the GR4H model in the TRB. 

The main limitation faced by previous hydrological studies in the TRB was the lack of spatial 

precipitation data [35,68]. Our results partially overcame this limitation and corroborated that 

streamflow simulations of the TRB can be improved by the spatialization of the precipitation. 

Regarding the JRB, streamflow simulations showed ~30% lower performance than that 

shown by the TRB, reaching KGE* values of 0.65 and 0.54 for calibration and validation, 

respectively (Figure 8b). FDCs revealed a high underestimation of streamflow distribution 

above 300 m3/s that was corroborated by PBIAS that shows a value of −18.2% for the validation 

period. This notable reduction in model performance is explained by the larger hydrological 

heterogeneity of the JRB produced by its complex topography and the transition between the 

paramo and the mountain forest. In fact, various studies such as Du et al. [91] and Liu et al. 

https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f008
https://www.mdpi.com/2072-4292/13/21/4446/htm#B72-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B90-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f008
https://www.mdpi.com/2072-4292/13/21/4446/htm#B68-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B35-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B68-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f008
https://www.mdpi.com/2072-4292/13/21/4446/htm#B91-remotesensing-13-04446
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[92] have discussed that uncertainty on the parameter estimation increases considerably 

under these conditions. The error associated with low-intensity precipitation estimates 

produced in the paramo was another driver performance reduction in the JRB (see Section 

4.3). Given the low ability of the BC-RFP model to detect drizzle events (>0.2 mm/h), the 

humidity conditions of the JRB may have been underestimated during most of the simulation 

time which affected the runoff generation [93]. 

 

Figure 8. Performances of the GR4H model for calibration and validation periods, using the BC-RFP 

method as forcing precipitation input. (a) Tena River Basin, TRB. (b) Jatunyacu River Basin, JRB. (c) 

Upper Napo River Basin, NRB 

Considering the whole study basin (NRB), the GR4H model showed KGE* values of about 

0.54 ± 0.03. The streamflow was overestimated during calibration (PBIAS = 3.1%) and 

underestimated during the validation (PBIAS = −16.2%). Although this basin presented the 

lowest performances (Figure 8c), the FDC analysis indicated that high streamflows were better 

https://www.mdpi.com/2072-4292/13/21/4446/htm#B92-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#sec4dot3-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#sec4dot3-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#B93-remotesensing-13-04446
https://www.mdpi.com/2072-4292/13/21/4446/htm#fig_body_display_remotesensing-13-04446-f008
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simulated compared to the JRB. This confirms that regardless of the overestimation problem 

occurring in lowest reaches of the NRB (see Section 4.4), the BC-RFP model better captured 

the high precipitation events in the piedmont rainforest compared to other regions within the 

study area. Note the piedmont rain forest presented the highest precipitation intensities and 

hence produced more runoff within the NRB [37]. 

4.6. Flood Event Analysis 

As discussed in the previous section, streamflow simulations of the GR4H model 

underestimated high discharges. For the last five flash flood events that occurred in the TRB, 

JRB, and NRB (Figure 9), simulated peak flows were 3.8% to 47.8% lower than observed peak 

flows (Table 3). Similarly, runoff volume was underestimated by 8.1% to 48.9% in most cases, 

especially during events 2, 3, and 4. Despite this, hydrograph shapes of the analyzed events 

were suitably simulated. Note that KGE* values ranged from 0.56 to 0.94. Moreover, the visual 

inspection of hourly precipitation pulses (i.e., hyetograph) revealed high similarities with the 

observed streamflow, meaning that the BC-RFP model properly captured the temporal 

distribution of precipitation over the study sub-basins. 

Time differences between observed and simulated peak flows were no greater than ±3 h, 

except for event 3 in the JRB (Figure 9c) and event 4 in the TRB (Figure 9d) where the peak 

timing difference was above ±6 h (Table 3). In both cases, the peak precipitation pulses derived 

from the BC-RFP model presented better agreements with the observed peak flows contrasted 

to simulations (Figure 9). Considering the latter, errors in peak timing may be explained by the 

routing routine used in the semi-distributed GR4H model (i.e., the lag routing method; Table 

A3 and Table A4). Bentura et al. [94] highlighted that the lag routing method does not consider 

physical features of the channel, which may produce limitations in the propagation and routing 

of hydrographs over complex topography areas [95]. In spite of this, altogether, results 

provided sufficient evidence to propose the coupling of the BC-RFP and the GR4H models as a 

preliminary tool to recreate streamflow dynamics and flood events. 

https://www.mdpi.com/2072-4292/13/21/4446/htm#sec4dot4-remotesensing-13-04446
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Figure 9. Observed and simulated hydrographs of the last five flash flood events that occurred in Tena 

River Basin (TRB), Jatunyacu River Basin (JRB), and upper Napo River Basin at Ahuano (NRB). (a) Event 

1, September 2017. (b) Event 2, July 2018. (c) Event 3, May 2019. (d) Event 4, June 2019. (e) Event 5, 

May 2020. 
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Table 3. Results of the event analysis considering the last five floods that occurred in the Tena River 

Basin (TRB), Jatunyacu River Basin (JRB), and upper Napo River Basin (NRB). 

Event Basin 
Peak Flow (m3/s) Runoff Volume (Hm3) Difference in 

Peak Timing (h) Obs. Sim. Diff. (%) Obs. Sim. Diff. (%) 

1 TRB 1896 1379 −27.2 33.8 29.9 −11.5 0 

 JRB 1160 2117 82.4 109.4 160.8 46.9 −3 

 NRB 3570 3231 −9.5 245.5 333.7 35.9 2 

         

2 TRB 657 365 −44.4 30.1 23.0 −23.6 0 

 JRB 2579 1344 −47.8 270.3 198.0 −26.2 1 

 NRB 4574 3614 −20.9 390.5 359.0 −8.1 1 

         

3 TRB 242 258 6.5 8.7 5.8 −33.3 0 

 JRB 1184 877 −25.9 60.2 73.0 21.2 12 

 NRB 6407 5661 −11.6 276.2 240.4 −13.0 −1 

         

4 TRB 250 241 −3.8 17.2 16.6 −3.5 −3 

 JRB 2659 1573 −40.8 294.3 150.4 −48.9 0 

 NRB 6338 5952 −6.1 733.4 605.5 −17.4 −6 

         

5 TRB 593 486 −18.0 19.7 21.3 8.12 0 

 JRB 896 640 −28.6 100.1 69.4 −44.2 2 

 NRB 8925 7980 −10.6 668.9 453.9 −47.4 −1 

 

5. Future Perspectives and Final Remarks 

Precipitation estimates derived from the integration framework (i.e., BC-RFP) showed a high 

ability to reproduce the intensity, distribution, and occurrence of rainfall events on hourly 

scales over the study area. Indeed, the BC-RFP model improved the detection ability between 

43% and 88%, reducing the estimation error between 72% and 93% compared to the IMERG, 

GSMAP, and PERSIANN products. This contributes new evidence to corroborate that the 

combination of soil-moisture products (SMPs) with satellite-based precipitation products 

(SPPs) significantly improves the spatiotemporal precipitation estimates over complex 

topography areas, such as the Andean-Amazon region. 
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Overall, the latency of the BC-RFP model depends on the soil-moisture products used as 

predictors within the integration framework (~7 days; Table 1). Thus, the use of the BC-RFP 

model in real-time forecasting systems is limited. However, as we discussed in previous 

sections, the BC-RFP model provides suitable information to improve the parameterization of 

hydrological models that are indispensable components of flood-forecasting systems. In fact, 

our results show that the combination of the BC-RFP and the GR4H models better simulate the 

fast-hydrological responses of the TRB, JRB, and NRB. However, simulations still present some 

limitations, such as the underestimation of peak streamflows, that could be addressed by 

testing other rainfall-runoff models. Physics-based distributed models (e.g., SWAT, TESTIS) are 

alternatives to reduce the uncertainties produced by the high hydrological heterogeneity of 

the study sub-basins. 

Given that the proposed framework offers a robust way to estimate hourly precipitation 

dynamics, it opens up new opportunities for the physical parameterization of numerical 

weather models (e.g., WRF) over the Ecuadorian Andean-Amazon region. These models are 

essential for flood forecasting and early warning systems, as they provide valuable information 

on the future atmospheric state that could produce heavy rainfalls. However, there are no 

studies that determine the optimal physical schemes of the WRF model in the Ecuadorian 

Andean-Amazon region. Thus, we consider that future studies should focus on this 

underexplored issue. 

The information generated in this study not only contributes to flood forecast or weather 

prediction but also to new research avenues on environmental modelling, providing relevant 

insight in different research fields such as ecology, ecohydrology, hydrogeology, water quality, 

and hence integrated water resources management over the Andean-Amazon region. 
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6. Appendix 

Table A1. Statistical criteria used to evaluate the performance of the integrative framework that 

combine multiples SPPs and SMPs with observed precipitation data and spatio-temporal covariates. 

Metric Definition Optimum value Range Unit 

RMSE 𝑅𝑀𝑆𝐸 =  √
∑ (𝑆𝑖 −  𝑂𝑖)2𝑛

𝑖=1

𝑛
 0 (0, Inf) mm/h 

CORR 𝐶𝑂𝑅𝑅 =  
𝑐𝑜𝑣 (𝑆, 𝑂)

√𝑣𝑎𝑟(𝑆)  √𝑣𝑎𝑟(𝑂)
 1 (-1, 1) - 

KGE 𝐾𝐺𝐸 =  1 − √(𝛼 − 1)2 + (𝛽 − 1)2 + (𝑟 − 1)2 1 (-Inf, 1) - 

POD 𝑃𝑂𝐷 =  
𝐴

𝐴 + 𝐵
 1 (0, 1) - 

FAR 𝐹𝐴𝑅 =  
𝐶

𝐴 + 𝐶
 0 (0, 1) - 

CSI 𝐶𝑆𝐼 =  
𝐴

𝐴 + 𝐵 +  𝐶
 1 (0, 1) - 

 

Where, n is the total number of observations, Si is the i-th simulated element, Oi is the i-th observed 

element, cov() is the covariance, var() is the variance, α is the ratio between simulated and observed 

mean, β is the ratio between simulated and observed standard deviation, r = CORR, A is the number of 

hits (Si > 0 and Oi > 0), B is the number of misses (Si = 0 and Oi > 0), C is the number of false positive (Si 

> 0 and Oi = 0)      

 

Table A2. Statistical criteria used to evaluate the performance of the GR4H model.  

Metric Definition 
Optimum 

value 
Range Unit 

KGE* 𝐾𝐺𝐸∗ =  1 − √(𝛼 − 1)2 + (𝛽𝑁𝑃 − 1)2 + (𝑟𝑁𝑃 − 1)2  1 (-Inf, 1) - 

PBIAS 𝑃𝐵𝐼𝐴𝑆 =   
∑ (𝑆𝑖 −  𝑂𝑖) 𝑛

𝑖=1

∑ ( 𝑂𝑖)
 𝑛

𝑖=1

 0 (-1, 1) - 

 

For KGE*, the variability and dynamic terms (i.e. β and r, see Table A1) are expressed in non-parametric 

way using the flow duration curve (βNP) and the Spearman rank correlation (rNP), respectively. 

Mathematical definitions are show in equations A1 and A2.    

 

𝛽𝑁𝑃 = 1 −
1

2
∑ |

𝑄𝑠𝑖𝑚(𝐼𝑘) − 𝑄𝑜𝑏𝑠(𝐽𝑘)

𝑛
 | 𝑛

𝑘=1      (A1)   
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𝑟𝑁𝑃 =  
∑ (𝑅𝑜𝑏𝑠(𝑖)− 𝑅̅𝑜𝑏𝑠) (𝑅𝑠𝑖𝑚(𝑖)− 𝑅̅𝑠𝑖𝑚)𝑛

𝑖=1

√(∑ (𝑅𝑜𝑏𝑠(𝑖)− 𝑅̅𝑜𝑏𝑠)2𝑛
𝑖=1 )  (∑ (𝑅𝑠𝑖𝑚(𝑖)− 𝑅̅𝑠𝑖𝑚)2𝑛

𝑖=1 ) 

    (A2)   

Where, Ik and Jk represent the time steps when the kth largest flow occurs within the simulated (Qsim) 

and observed (Qobs) time series, respectively. Robs and Rsim are the ranks of the observed and simulated 

streamflow, respectively. 

Table A3. Optimal parameter of the GR4H model for each hydrological unit. 

Hydrological 
Unit 

Drainage area 
(km2) 

X1 (mm) X2 (mm/h) X3 (mm) X4 (h) 

1 328.39 372.531 3.545 91.785 1.457 

2 466.98 798.960 2.912 203.279 5.888 

3 369.02 1427.643 -0.616 381.813 6.067 

4 423.61 372.098 4.673 208.614 3.718 

5 319.81 862.500 -3.369 25.443 4.300 

6 377.84 1655.687 -2.707 37.678 5.290 

7 397.35 637.224 -2.467 42.853 11.838 

8 443.70 1525.332 -1.473 95.359 4.400 

9 290.62 7793.437 5.571 11.600 46.452 

10 250.62 3343.290 0.395 376.779 20.223 

11 342.42 1965.463 2.554 306.836 16.395 

12 317.35 7165.090 -3.850 672.142 22.799 

13 239.31 1764.858 0.237 9.706 4.586 

14 230.22 2624.721 9.469 929.230 6.712 

15 423.28 195.575 1.922 657.576 11.714 

16 312.19 10.933 -0.507 98.951 1.902 

17 319.57 24.993 4.878 45.301 4.939 

18 240.08 10.734 6.262 66.297 13.210 

 

To transfer the volume of runoff generated in each hydrological unit (Figure B1), the semi-distributed 

GR4H model uses the Lag Routing Method. For this method is required to know the travel time (or lag 

time). This parameter represents the time that the inflow hydrograph will be translated as it moves 

through the reach. Calibrated lag times are presented as follows. 
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Table A4. Calibrated lag times for each connection among the hydrological units.  

Hydrological Unit Lag time (h) 
Upstream Downstream 

1 2 0.81 

2 3 2.84 

4 5 3.09 

3 5 3.53 

6 7 2.33 

7 8 4.01 

9 10 5.54 

10 11 0.97 

12 13 3.15 

11 14 6.89 

13 14 5.96 

15 16 3.94 

16 17 10.84 

8 17 10.47 

17 18 7.10 

 

 

Figure A1. Disaggregation of the study sub-basins (TRB, JRB, and NRB) into 18 hydrological units for the 

semi-distributed setting of the GR4H model.   
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A multi-physics ensemble approach for high-resolution heavy-rainfall and 

flash-flood forecasting in data-scarce Andean-Amazon basins  

Abstract  

The increase in intensity and recurrence of flash floods, derived from heavy rainfalls linked 

to climate change, is a growing concern over data-scarce Andean-Amazon basins, where flood 

forecasting and early warning systems are usually inexistent. In this regard, the present study 

aimed at testing a multi-physics ensemble modeling approach to forecast heavy rainfall and 

flash flood events on hourly scales in a representative data-scarce Andean-Amazon basin: the 

Upper Napo River Basin (UNRB). A sensitive analysis by using 100 WRF parameterizations was 

prior conducted to determine suitable combinations of the CU, MP, and PBL schemes for 

ensemble precipitation forecasts (EPFs). The potential use of EPFs as forcing inputs for flash 

flood forecasting was then illustrated by using the rainfall-runoff GR4H model. The ensemble 

flash-flood forecasting showed acceptable performances (KGE: 0.24 – 0.40), considering the 

limitations that imply the high-resolution hydrometeorological simulations. Altogether, results 

provided sufficient insights to propose the analyzed ensemble modeling approach as a 

preliminary tool for generating early warning systems in the study area. 

Keywords: WRF model, GR4H model, flash-flood, Napo River Basin, early warning.  

1. Introduction 

Flash floods are among the most common and costliest natural disasters worldwide (Sun et 

al., 2020; Tanaka et al., 2020; Unduche et al., 2018). On average, 72 million people are annually 

affected by flash flood events, representing economic losses above 40 billion USD (CRED, 

2019). In tropical regions, particularly in headwaters of the Amazon River Basin, the effects of 

flash floods are expected to worsen during the next decades due to the increased intensity of 

extreme precipitations linked to climate change (Barichivich et al., 2018; Espinoza Villar et al., 

2009a; Gloor et al., 2013; Hoch et al., 2017; Sena et al., 2012; Winsemius et al., 2016). In this 
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regard, it is imperative to understand and model the hydrometeorological conditions that 

trigger flash floods for the effective planning of mitigation strategies (Dubey et al., 2021; Kim 

et al., 2019), especially over data-scarce regions where flood forecasting and early warning 

systems are usually inexistent (Hurtado et al., 2020).  

Flash floods are characterized by heavy rainfall events that present sudden occurrences and 

uneven spatiotemporal distributions (Liu et al., 2020). Thus, the quantitative forecast of heavy 

rainfalls is crucial for early warning systems as it extends the lead time of flash flood forecasting 

(Tsuboki and Luo, 2021). However, despite the continuous improvement of numerical weather 

prediction (NWP) models, the quantitative precipitation forecast (QPF) is still a challenge due 

to the nonlinear and chaotic properties of the atmosphere (Morrison et al., 2020; Tian et al., 

2019). Likewise, the high computational costs -required by NWP models- often make it difficult 

that QPFs present suitable resolutions to capture the whole spatiotemporal variability of the 

precipitation (Li et al., 2016; Sikder and Hossain, 2016). For instance, the Global Forecasting 

System (GFS) provides gridded 0.25º precipitation forecasts with a 3-hourly resolution (NCEP, 

2015). In complex topography areas, such as the Andean-Amazon region, QPFs with coarse 

spatiotemporal resolutions (e.g., GFS) are not adequately to force flood forecasting systems as 

most river basins present fast hydrological responses and a strong precipitation variability 

(Rogelis and Werner, 2018). 

In recent years, dynamical downscaling has been widely used to increase the 

spatiotemporal resolutions of QPFs and thus improve flood forecasting in complex topography 

regions (Dubey et al., 2021; Kim et al., 2021; Wang et al., 2021). Nowadays, the Weather 

Research and Forecasting (WRF) model is the most used tool for the dynamical downscaling, 

as it provides a computationally-efficient platform with robust physical schemes (Duzenli et 

al., 2021; Khansalari et al., 2021; Kim et al., 2021; Mori et al., 2021; Tu et al., 2021). These 

physical schemes represent detailed processes of the land-atmosphere continuum, such as 

cloud microphysics (MP), longwave (LW) and shortwave (SW) radiation, cumulus convection 

(CU), surface layer (SL), land surface model (LSM), and planetary boundary layer (PBL).  

Although all physical schemes are relevant to simulate the precipitation, most authors have 
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recommended focusing on the parameterization of CU, MP, and PBL since they strongly 

influence the uncertainty of the simulated precipitation (Chawla et al., 2018; Gsella et al., 2014; 

Patel et al., 2019). The CU scheme captures the subgrid-scale effects of the vertical transport 

of heat, moisture, and momentum by turbulent eddies, updrafts, and downdrafts (Arakawa, 

2004). The MP scheme, instead, describes the physical processes occurring within clouds, such 

as the nucleation of cloud particles, diffusional growth from water vapor, collision and 

coalescence, freezing, melting, evaporation, among others (Morrison et al., 2020). The PBL 

scheme represents the structure of the lower troposphere, where the surface processes affect 

the behavior of hydrometeors. Indeed, the PBL directly influence the vertical profiles of 

temperature and moisture, as well the turbulent mixing of air, which interact with the 

remained physical schemes and usually trigger convection (Comin et al., 2021; Qian et al., 

2016). 

Selecting the suitable set of physical scheme parameterizations is a challenge as the 

atmospheric processes involved in heavy rainfalls are subject to chaotic variations (Ruiz et al., 

2010; Sikder and Hossain, 2016). Conclusions on the optimal set of physical parameterizations 

are diverse and mismatched over different regions worldwide, even for different rainfall 

events in the same region (Meynadier et al., 2015; Tian et al., 2019). For most cases, there is 

no unique set of physical parameterizations that is consistently better than any other (Pervin 

and Gan, 2021; Ruiz et al., 2010). For instance, Jeworrek et al. (2021) found that winter 

precipitations of British Columbia are better simulated when Kain-Fritsch is used as the CU 

scheme; whereas, summer precipitations are better simulated using the Grell-Freitas CU 

scheme. In Mu et al. (2019), four type of precipitation events over northwestern China were 

simulated using different set of physical parameterizations. They found that even for the same 

type of precipitation, two or more sets of physical parameterizations were suitable.  

To overcome discrepancies derived from the selection of a single set of physical 

parameterizations, multi-physics ensemble modeling approaches have been widely used in 

heavy rainfall and flash flood forecasting (Gharamti et al., 2021; Kirthiga et al., 2021). For 

instance, Yang et al. (2021) simulated five heavy rainfall events in Eastern China using a multi-
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physics ensemble of 18 members. Their results showed that the mean ensemble better 

simulate the analyzed events compared to single physical parameterizations. Likewise, Calvetti 

et al. (2014) evaluated a multi-physics ensemble of 11 members for 32 heavy rainfall events in 

south Brazil. Their results indicated the ensemble yielded up to 20% better skill than single 

physical parameterizations. 

Although the multi-physics ensemble approach provides new avenues to better predict 

heavy rainfall and flash flood events, its applicability has not been explored in the Ecuadorian 

Andean-Amazon region. In fact, there is no operational hydrometeorological forecasting 

system over this region, despite it being prone to frequent flash floods (Chancay and Espitia, 

2021). To address this issue, the present study aimed at testing a multi-physics ensemble 

modeling approach in order to forecast heavy rainfall and flash flood events in a representative 

data-scarce Andean-Amazon basin: The Upper Napo River Basin (UNRB). For this, we assessed 

100 physical parameterizations of the WRF model to determine suitable combinations of CU, 

MP, and PBL schemes, which providing relevant insights to maximize the performance of 

ensemble precipitation forecasting. The potential use of ensemble precipitation forecasts as 

forcing inputs for flash flood forecasting was then illustrated by hydrological modelling, using 

three gauged subbasins within the UNRB that suffer continuous flood risk.   

2. Study area  

The UNRB is an important headwater tributary basin of the Amazon River (Fig. 1a). It is 

located at the transition between the Eastern Andes and Amazonia foothills in Ecuador, 

covering a drainage area of about 6095 km2 above the H1156 hydrological station (Fig. 1b). It 

presents a mean discharge of about 632 m3/s (Chancay and Espitia, 2021). The UNRB is 

characterized by a complex topography with steep slopes that descend from 5900 to 370 masl 

over 100 km (Laraque et al., 2009). As consequence, the UNRB presents a strong climate 

gradient described by three ecoregions, from the higher to lower elevations: (i) paramo, (ii) 

mountain forest, and (iii) piedmont rainforest (Fig. 1c). In the paramo, temperature ranges 

from 4 to 8 °C and precipitation varies from 500 to 2000 mm per year (Muñoz et al., 2018; 

Padrón et al., 2015). In the mountain forest, instead, temperature ranges from 12 to 20 °C and 
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annual precipitation varies between 2000 to 4000 mm (Laraque et al., 2007). The piedmont 

rainforest presents a humid tropical climate with annual precipitation between 3500 and 5000 

mm, and mean temperatures from 20 to 27°C (Espinoza Villar et al., 2009b; UNESCO, 2010).  

 

Figure 1. Study area. (a) Location of the Napo River Basin within the Amazon River Basin and WRF 

domains. (b) Topography, drainage network, and gauge stations of the three study subbasins: Upper 

Napo River Basin, Tena River Basin, and Jatunyacu River Basin. (c) Ecosystems within the study area 

related to climate gradient and hence specific precipitation regime.     

 

Given its continuous soil-saturation conditions, strong precipitation regimen, and steep 

slopes, the UNRB is prone to frequent flash-flood events, especially in the lowest reaches (i.e., 

piedmont rainforest) where most of the urban settlements are located (Chancay and Espitia, 

2021). In fact, there are three critical points along the lowest reaches of the UNRB where more 

than 16 flash-flood events have been recorded during the last 12 years (Fig. 1b), affecting on 

average 8000 families per year over locations such as Tena, Misahuallí, and Ahuano (Cruz 

Cueva, 2016; SNGRE, 2020), which will be beneficiaries of this study. In addition to outlet of 

the UNRB, these critical points include outlets of the Tena River Basin (TRB) and Jatunyacu 

River Basin (JRB). The TRB drains 239 km2 and presents a mean discharge of about 25 m3/s; 

however, its peak discharges reach 1800 m3/s during flash-flood events (Hurtado et al., 2020). 
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The JRB covers 3128 km2 and generates a mean discharge of 290 m3/s. Flash-flood events in 

the JRB have shown peak discharges above 2100 m3/s, whereas, peak discharges in the outlet 

of the UNRB exceed 5000 m3/s (Lapo, 2017).  

3. Data and methods 

3.1. Precipitation and streamflow data  

Hourly precipitation and streamflow data were obtained from 12 meteorological and 3 

hydrological stations (Fig. 1b; Table A1) belonging to the Ikiam Hydrometeorological Service 

(IHS, 2020) and the National Institute of Meteorology and Hydrology of Ecuador (INAMHI, 

2020, 2019). Since the distribution of meteorological stations is not sufficient to capture all 

spatiotemporal precipitation dynamics, we used the BC-RFP gridded-precipitation product as 

reference rainfall data. It covers the whole UNRB with high spatiotemporal resolutions (4 km, 

1 hour), presenting correlation coefficients above 0.9 and root mean square errors below 0.7 

mm/h regarding to observed precipitation data (Chancay and Espitia, 2021). Currently, the BC-

RFP is supported by the Ikiam Hydrometeorological Service (IHS, 2020).  

3.2. Ensemble precipitation modeling 

3.2.1. Model setup and parameterization    

The Weather Research and Forecasting (WRF) model version 4.0 (Skamarock et al., 2019) 

was used to simulate the precipitation, which is crucial to force hydrological models. The WRF 

model was set up with three nested domains, using two-way communication without 

smoothing (Fig. 1a). The coarsest domain (D01) covered the whole Ecuadorian territory and 

the Napo River Basin with a spatial resolution of 27 km. The intermediate domain (D02) was 

located at the transition Andean-Amazon region with a resolution of 9 km. The finest domain 

(D03) covered the UNRB with a 3-km resolution. Initial and lateral conditions were forced with 

0.25° GFS analysis data (NCEP, 2015), using a vertical discretization of 32 levels up to 50 hPa. 

Physical parameterizations of the WRF model (Table 1) were derived from the operational 

weather forecast system of INAMHI (Iza, 2020), except for cumulus (CU), microphysics (MP), 
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and planetary boundary layer (PBL) schemes, with which, a sensitivity analysis was prior 

conducted.  

 

Table 1. Physical schemes used to parameterize the WRF model.  

Schemes Parameterization Acronym References 

Land surface  Unified Noah land-surface model Noah (Chen and Dudhia, 2001) 

Surface layer Monin-Obukhov similarity MOS (Monin and Obukhov, 1954) 

Shortwave radiation New Goddard shortwave   Goddard (Zhong et al., 2016) 

Longwave radiation Rapid radiative transfer model RRTMG (Thompson et al., 2016) 

Planetary boundary layer Yonsei University PBL YSU (Hong et al., 2006) 

 Mellor-Yamada-Janjić  MYJ (Janjić, 2001, 1990) 

Cumulus convection Grell-Devenyi GD (Grell and Dévényi, 2002) 

 Grell-Freitas GF (Grell and Freitas, 2014) 

 Grell 3D G3D (Grell and Dévényi, 2002) 

 Kain-Fritsch KF (Kain, 2004) 

 Betts-Miller-Janjić BMJ (Janjić, 2000, 1994) 

Microphysics Two-moment six-class Morrison Morrison (Morrison et al., 2005) 

 Lin et al Lin (Lin et al., 1983) 

 WRF single-moment 6-class graupel WSM6 (Hong et al., 2006) 

 WRF double-moment 5-class WDM5 (Lim and Hong, 2010) 

 Eta Ferrier Ferrier (Ferrier et al., 2002) 

 

We assessed 50 model parameterizations (hereafter experiments) derived from 

combinations of 5 MP, 5 CU, and 2 PBL schemes (Table 1).  Each combination was evaluated 

with and without CU parameterization at the finest domain, i.e., 100 experiments in total. The 

MP, CU, and PBL parameterizations were selected based on previous studies carried out in the 

Andean-Amazon region (Beck et al., 2013; Langenbrunner et al., 2019; Martínez et al., 2019; 

Moya-Álvarez et al., 2018b; Moya et al., 2020; Rogelis and Werner, 2018; Wang et al., 2020). 

Overall, 32 heavy-rainfall events were simulated. The events were selected based on the 

99.9th percentile of maximum precipitation intensities recorded over the TRB, JRB, and UNRB 

between 2016 and 2021; i.e., 48.9 mm/h (Chancay and Espitia, 2021). 

 

3.2.2. Evaluation metrics    

The performance of the WRF experiments was evaluated by comparison of the simulated 
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precipitation with the BC-RFP precipitation product. For this, we used three recommended 

statistical metrics: root mean square error (RMSE), correlation coefficient (CORR), and percent 

bias (BIAS). Likewise, three categorical statistics were used to assess the detection ability of 

the simulations: probability of detection (POD), false alarm ratio (FAR), and critical success 

index (CSI). Mathematical definitions and details of the used metrics are shown in Appendix A. 

To summarize and compare the model performance of the experiments, we modified and 

computed the comparative model skill score (MSS) developed by Gbode et al. (2019). For this, 

the sum of the normalized statistical metrics (Xn) was calculated as shown in equations 1-2.   

𝑋𝑛 =  
𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
          (Eq. 1) 

𝑀𝑆𝑆 =
1

√𝑀
(𝐶𝑂𝑅𝑅𝑛 + (1 − 𝑅𝑀𝑆𝐸𝑛) + (1 − |𝑃𝐵𝐼𝐴𝑆|𝑛) + 𝑃𝑂𝐷𝑛 + (1 − 𝐹𝐴𝑅𝑛) + 𝐶𝑆𝐼𝑛)     (Eq. 2) 

Where, X could be either averaged statistical metric; M is the number of metrics (in this 

study N=6). Model experiments with higher MSS values perform better while those with lower 

values have poorer performance.  

3.2.3. Selection of ensemble members    

The optimal set of WRF parameterizations for ensemble precipitation forecasting was 

selected by using the analysis framework proposed by Wang et al. (2021b). Note that 

parameterizations with the best individual performances are not necessarily those that 

maximize the performance of ensemble precipitation forecast (Carlberg et al., 2018). First, we 

computed the main effect of each physical scheme (i.e., CU, MP, and PBL) and the interaction 

effect among them on the performance of precipitation forecast (i.e., on MSS) to reduce the 

physical schemes on which we should focus. For this, we used the modified multi-way ANOVA 

method (Wang et al., 2021b), as follows: 

For each experiment, the deviation of its performance was calculated using the equation 3. 

deviation = individual performance – overall mean    | (Eq. 3) 
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The “total sum of squares” (TSS) was then calculated by squaring each deviation and summing 

them.  

The effect of a physical scheme on the performance (main effect) and the effect of one physical 

scheme on another physical scheme (interaction effect) were calculated using equations 4-6.  

𝑀𝑎𝑖𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 (𝐴) =  
𝑇𝑆𝑆 (𝐴)

𝑑𝑓𝐴−1
         (Eq. 4) 

𝑀𝑎𝑖𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 (𝐵) =  
𝑇𝑆𝑆 (𝐵)

𝑑𝑓𝐵−1
         (Eq. 5) 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 (𝐴, 𝐵) =  
𝑇𝑆𝑆 (𝐴,𝐵)

(𝑑𝑓𝐴−1) (𝑑𝑓𝐵−1)
      (Eq. 6) 

Where, A and B can be any of the analyzed physical schemes (i.e., CU, MP, PBL) and df is their 

respective degree of freedom.  

Once the most sensitive physical schemes were determined, we used their respective 

parameterization options to generate different sets of parameterizations (or members) for the 

ensemble precipitation forecast. The set of members that maximize the performance of the 

mean ensemble precipitation forecast (hereafter “optimal ensemble parameterization”) was 

selected for next steps. To determine the optimal ensemble parameterization, we used a 

Monte Carlo approach by varying the members and the number of members in the ensemble.    

3.2.4. Bias correction and ensemble precipitation forecasts 

The optimal ensemble parameterization was used to generate continuous simulations of 

precipitation from January 2016 to December 2020 (5 years). For these simulations, initial and 

lateral conditions were forced with the 0.25° GFS forecast data initialized on 00Z, 06Z, 12Z, and 

18Z (NCEP, 2015). The simulations were subsequently bias-corrected using three methods 

recommended for the Andean-Amazon region: (i) potential transformation, (ii) gamma 

quantile mapping, and (iii) empirical quantile mapping (Campozano et al., 2016; Heredia et al., 

2018; Velasquez et al., 2020). A further description of these bias-correction methods is 

presented in Fang et al. (2015).  
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3.3. Ensemble flash flood modeling 

The bias-corrected ensemble precipitation forecast was used to force the semi-distributed 

GR4H model for generating continuous streamflow simulations and subsequently predict flash 

flood events over the three study subbasins (TRB, JRB, and UNRB). Further details are shown 

in the following sections. 

3.3.1. Model description and parameterization     

GR4H is a conceptual rainfall-runoff model that has been widely used for flash flood 

modeling due to its simple structure, low computing needs, and ability to simulate hourly 

streamflows (Bennett et al., 2014; Mathevet, 2005). Previous studies showed that the GR4H 

model can satisfactorily simulate the hydrological processes over the Andean-Amazon basins 

(Chancay and Espitia, 2021; Espitia et al., 2020; Llauca et al., 2021). In general, the GR4H model 

has four free parameters that characterize the storage processes and unit hydrograph: X1, 

maximum capacity of moisture store (mm); X2, groundwater exchange coefficient (mm/h); X3, 

maximum capacity of the routing store (mm); and X4, base time of the unit hydrograph (h). A 

complete description of the model structure and equations are shown in Mathevet (2005). For 

this study, we adopted the semi-distributed model configuration and parameterization 

previously described in Chancay and Espitia (2021).  

3.3.2. General assessment of streamflow simulations    

Streamflow simulations forced by bias-corrected ensemble precipitation forecasting were 

assessed using the Kling-Gupta Efficiency (KGE), Peak Flow Criterion (PFC), and Probability of 

Flood Detection (PFD). In general, KGE captures the streamflow dynamics over the time, 

whereas, PFC and PFD quantify the error in magnitude and occurrence of peak flows (Pool et 

al., 2018; Wijayarathne et al, 2020). Mathematical definitions and further details of the used 

metrics are shown in Appendix A. 

3.3.3. Flash flood event analysis    

The five last flash floods occurred in the three study subbasins (Table 2) were used to assess 
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the performance of streamflow simulations at an event-scale. These flash flood events were 

chosen based on records of the National Service for Risk Management of Ecuador  (SNGRE, 

2020) and streamflow thresholds defined by Hurtado et al. (2020) and Lapo (2017) for flood 

events in the TRB, JRB, and UNRB. 

Table 2. Information of the last five flash flood events produced within the study subbasins.   

Event Start (Datetime) Duration (h) 
Peak Discharge (m3/s) 

TRB JRB UNRB 

1 2017-09-02 19:00 53 1896 1160 3570 

2 2018-07-22 01:00 51 657 2579 4574 

3 2019-05-25 20:00 28 242 1184 6407 

4 2019-06-20 00:00 72 250 2659 6338 

5 2020-05-01 00:00 80 593 896 8925 

Streamflow threshold for flood events 210 2200 4500 

 

4. Results and discussion  

4.1. Sensitivity analysis of WRF physical schemes 

The sensitivity analysis showed that cumulus convection (CU) is the most relevant physical 

scheme for precipitation simulations over the UNRB (Fig 2). The effect on the simulated 

precipitation performance by shifting CU parameterizations was higher than effects reached 

by varying microphysics (MP) and planetary boundary layer (PBL) parameterizations (Fig. 2a). 

This result is related to the complex topography of the Andean-Amazon region and its 

circulation patterns, which induce the orographic lifting of humid originated from the lower 

Amazon, favoring the convection processes on storm-scales over headwaters of the Amazon 

River Basin, where the UNRB is located (Espinoza et al., 2020; Insel et al., 2010; Laraque et al., 

2007). 

Despite previous studies indicated that PBL strongly influences the performance of the 

simulated precipitation (e.g., Comin et al., 2021; Ulate et al., 2014; Argüeso et al., 2011), our 

results suggested that PBL is practically insensitive. In fact, the interaction effect of PBL on CU 

and MP was no significant compared to the interaction effect between CU and MP (Fig. 2a). 

These results agree with those reported by Wang et al. (2021b) for the whole Amazon River 

Basin and Moya-Álvarez et al. (2018) for the Peruvian Andean-Amazon region. Qian et al. 
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(2016), instead, argued that the behavior of the PBL scheme has a close relationship with the 

parameterization of the surface layer (SL) scheme. Note that SL describes the effects of the 

surface sensible and latent heat, the basis to estimate moisture fluxes between land-surface 

model (LSM) and PBL (Bright and Mullen, 2002; Qian et al., 2016). In this study, however, the 

variation of SL and LSM parameterizations were not analyzed, which could partially explain the 

low sensitivity of PBL. Further studies that include the sensitive analysis of SL and LSM are 

required to contrast the aforementioned idea.  

 

Figure 2. Sensitivity analysis of the physical schemes. (a) Effect of each physical scheme on the 

performance of simulated precipitation (main effect), and effect of one physical scheme on another 

physical scheme (interaction effect). The larger radius (size) of the circle means larger relative 

importance, while the thicker line connecting two physical schemes means a larger contribution from 

interactions. (b) Main effect of physical schemes with and without CU parameterization in the finest 

domain (d03): cumulus parameterized (CP) and cumulus resolved (CR), respectively. 

The sensibility analysis also revealed that cumulus resolved (CR) experiments presented no 

significant variation on the precipitation performance by shifting parameterizations compared 

to cumulus parameterized (CP) experiments (Fig. 2b). Likewise, the CP experiments showed 

significantly better performance than CR experiments (p < 0.05) in terms of the RMSE, CORR, 

BIAS, and POD (Fig. 3). According to several studies, the explicit resolution of CU at spatial 

resolutions below 5 km (convective-permitting scales) better capture the complex processes 

of the rainfall formation (Hsiao et al., 2013; Pennelly et al., 2014; Zheng et al., 2016). In this 
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study, the finest domain was configured with a spatial resolution of 3 km, however, 

precipitation was better simulated by parameterization and not by explicit CU resolution. 

Studies such as Moya-Álvarez et al. (2018) and Martínez et al. (2019) discussed similar results 

and suggested that convective-permitting scales for the Andean-Amazon region could be on 

spatial resolutions below 1 km. The results showed in this study provide new insights that 

support the latter hypothesis.  

 

Figure 3. Performances of the simulated precipitation considering cumulus parameterized (CP) and 

cumulus resolved (CR) experiments. Each box plot represents the performance variability over the 

UNRB at pixel-to-pixel scale. Symbology: (**) and (***) mean significant differences, i.e., p < 0.05 and 

p < 0.005, respectively.  

4.2. Model performances and suitable parameterizations of CU and MP  

As discussed in section 4.1, the PBL scheme was practically insensitive. Ergo, the selection 

of Yonsei University (YSU) or Mellor-Yamada-Janjić (MYJ) schemes as the PBL parameterization 

does not influence the performance of the simulated precipitation over the UNRB. However, 

we decided to use the YSU configuration as previous studies have recommended it for humid 

regions (Moya-Álvarez et al., 2018b; Sikder and Hossain, 2016; Ulate et al., 2014). Also, we 
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decided to use the CP experiments as they presented better performances than CR 

experiments (Fig. 3). In this regard, from the initial 100 experiments, the analysis was reduced 

to 25 experiments derived from 5 MP and 5 CU (Fig. 4). 

 

Figure 4. Performance of the 25 experiments derived from combinations of 5 CU and 5 MP 

parameterizations. Box plots considers the performance variability over the UNRB using a pixel-to-pixel 

comparison. The metrics used were Root Mean Square Error (RMSE), Correlation Coefficient (CORR), 

Bias Error (BIAS), and Probability of Detection (POD).  
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Overall, experiments that were configured with the Grell 3D scheme as the CU 

parameterization showed the best precipitation performances in averaged terms of RMSE (2.3 

mm/h), CORR (0.20), and BIAS (-4.3 %). Previous studies such as Li et al. (2018)  and Grell and 

Dévényi (2002) highlighted that Grell 3D usually has high performances at high spatial 

resolutions, as in the case of this study. Other works such as Jeworrek et al. (2019) and Gao et 

al. (2017), instead, indicated that Grell-Freitas scheme better captures the distribution and 

occurrence of precipitation at gray-zone resolutions (i.e., 3 km). However, in this study, the 

Grell-Freitas scheme was the worst performed CU parameterization (Fig. 4), showing the 

highest mean RMSE (3.8 mm/h), the lowest mean CORR (0.12), and the lowest mean POD 

(0.42). Based on the POD, the Kain-Fritsch scheme was the best performed CU 

parameterization, reaching a mean performance of 0.60. Pennelly et al. (2014) and Yang et al. 

(2021) pointed out the conservation mass algorithm for convective updrafts and downdrafts 

of the Kain-Fritsch scheme allows for better capture of the occurrence of convective 

precipitation events. Nevertheless, the precipitation intensity is often overestimated with this 

scheme (Wang et al., 2021b), which could explain the largest BIAS presented by the Kain-

Fritsch scheme. 

The performance assessment, considering both MP and CU (Fig. 4), revealed that MP 

parameterizations such Ferrier and Morrison works better in combination with Grell 3D and 

Grell-Devenyi CU parameterizations. Based on the MSS, the aforementioned CU and MP 

parameterizations maximized the performance of the simulated precipitation over the UNRB 

(Table 2). These results are in line with previous works conducted in the Andean-Amazon 

region (Martínez et al., 2019; Moya et al., 2020; Sierra et al., 2020). According to Wang et al. 

(2021b), the simulation of land-atmosphere interactions over the whole Amazon region can 

be improved using the Morrison (MP) scheme in combination with Grell 3D or Grell-Devenyi 

(CU) schemes. Although the results presented in Wang et al. (2021b) are applicable on a 

regional scale, our results suggest that their conclusions are even applicable to Andean-

Amazon headwaters on convective permitting scales. 
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Table 3. Performance of analyzed experiments considering the Model Skill Score (MSS). The 

experiments were order from the best-performed to the worst-performed.    

Order Microphysics (MP) Cumulus (CU) MSS 

1 Morrison Grell 3D ensemble 1.294 

2 Ferrier Grell 3D ensemble 1.287 

3 Ferrier Grell-Devenyi 1.244 

4 Morrison Grell-Devenyi 1.242 

5 Lin et al Grell 3D ensemble 1.214 

6 WSM 6 Grell 3D ensemble 1.188 

7 WSM 5 Grell 3D ensemble 1.181 

8 Ferrier Betts-Miller-Janjić 1.176 

9 Lin et al Grell-Devenyi 1.166 

10 WSM 6 Grell-Devenyi 1.133 

11 WSM 5 Grell-Devenyi 1.127 

12 Morrison Betts-Miller-Janjić 1.105 

13 WSM 6 Betts-Miller-Janjić 1.033 

14 WSM 5 Betts-Miller-Janjić 1.021 

15 Morrison Grell-Freitas 0.999 

16 Lin et al Betts-Miller-Janjić 0.998 

17 Ferrier Grell-Freitas 0.993 

18 Lin et al Grell-Freitas 0.935 

19 Ferrier Kain-Fritsch 0.929 

20 Morrison Kain-Fritsch 0.863 

21 WSM 6 Grell-Freitas 0.851 

22 WSM 6 Kain-Fritsch 0.837 

23 WSM 5 Kain-Fritsch 0.827 

24 Lin et al Kain-Fritsch 0.821 

25 WSM 5 Grell-Freitas 0.801 
 

4.3. Optimal ensemble parameterization   

The Monte Carlo analysis indicated the combination of five WRF parameterizations 

(hereafter members) minimize the RMSE, whereas combination of eight members maximize 

the CORR (Fig. 5). Considering BIAS, however, no combination improved the ensemble 

precipitation performance. In fact, as the number of the ensemble members increases, the 

BIAS increases. The POD and FAR showed a high increase up to combinations of four members. 

As the higher the POD and the lower the FAR, the better the performance of the simulated 

precipitation. However, given the POD increase is higher than the FAR increase, the 

combination of five or more members are suitable to maximize the detection ability of the 
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ensemble precipitation forecasts.  

 

 

Figure 5. Performance of the simulated precipitation considering the variation on the number of 

ensemble members. The used metrics were: Root Mean Square Error (RMSE), Correlation Coefficient 

(CORR), Bias Error (BIAS), Probability of Detection (POD), False Alarm Ratio (FAR), and Model Skill Score 

(MSS). 

Summarizing the statistical metrics by MSS, results suggested the set of five members is the 

most suitable for the ensemble precipitation simulation in the UNRB (Fig. 5). The optimal set 

of ensemble members was composed by the following CU-MP combinations: (i) Grell 3D + 

Ferrier, (ii) Grell 3D + Morrison, (iii) Betts-Miller-Janjić + Ferrier, (iv) Grell-Devenyi + Ferrier, 

and (v) Grell-Devenyi + Morrison. Note the third member of the ensemble (i.e., Betts-Miller-

Janjić + Ferrier) was individually ranked as the eighth best-performed experiment (Table 2). As 

concluded in previous studies, combinations of members that individually present the best 

performances are not necessarily those that maximize the performance of the ensemble 

precipitation forecasts (Athukorala et al., 2021; Lee, 2012).  

4.4. Ensemble precipitation forecasting 

Results showed in previous sections (sensitivity analysis and ensemble parameterization) 
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were generated using precipitation simulations forced with the 0.25° GFS analysis data. In the 

following sections, instead, the bias-corrected ensemble precipitation forecasts forced with 

the 0.25° GFS forecast data (hereafter EPFs) are evaluated considering a simulation period of 

5 years (January 2016 to December 2020) on different lead times (3 to 72 hours).  

4.4.1. Impact of the lead time on the performance  

In general, the EPFs with lead times beyond 36 hours showed a notable performance 

improvement in mean terms of RMSE and BIAS compared to simulations used for the ensemble 

parameterization (Fig. 6). Note that a bias correction process was prior applied to the EPFs. 

Given the bias correction only reduce the systematic errors and cannot significantly improve 

the precipitation dynamics, the performance reduction observed in CORR was expected. 

Considering the analyzed categorical metrics (i.e., POD, FAR, and CSI), the EPFs presented 

worsened performances than simulations used for ensemble parameterization. These results 

were also expected due to uncertainties derived from the 0.25° GFS forecast data, which are 

higher that uncertainties provided by the 0.25° GFS analysis data (Sikder and Hossain, 2016). 

As shown in Fig. 6, the performance of the EPFs decreases as the lead time increases, 

reaching the highest reduction rates in lead times greater than 36 hours. Previous studies such 

as Li et al. (2017) and Rogelis and Werner (2018) discussed similar results. Due to the chaotic 

properties of the atmosphere, small errors in the current simulated-state of the atmospheric 

system could be exponentially magnified toward future previsions (Saedi et al., 2020). 

Although the precipitation forecasts derived from small ensembles -as in the case of this study- 

have potential for various limitations on large lead times, previous studies (e.g., Carlberg et al., 

2018; Evans et al., 2013) indicated that even a small number of ensemble members (4-10 

member) are sufficient to improve short-term precipitation forecasting (lead times < 48h). Our 

results complied with the latter idea and suggested that parameterization used for EPFs are 

suitable for lead times up to 36 hours (Fig. 6).  
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Figure 6. Impact of the lead time on the performance of the bias-corrected ensemble precipitation 

forecast (EPFs), considering a continuous simulation period of five years: from January 2016 to 

December 2020. The black line represents the mean performance, whereas the ribbon represents the 

performance variation over the UNRB. The used metrics were: Root Mean Square Error (RMSE), 

Correlation Coefficient (CORR), Bias Error (BIAS), Probability of Detection (POD), False Alarm Ratio 

(FAR), and Critical Success Index (CSI). The letter “C” in the x-axis represents the performance of the 

simulated precipitation used for the ensemble parameterizations, i.e., simulations forced with the 0.25° 

GFS analysis data.  

4.4.2. Spatial performance analysis 

According to the spatial analysis (Fig. 7), the paramo and mountain forest regions (i.e., 

western UNRB; Fig. 2) presented the worst performed forecasts. Despite the paramo showed 

low RMSE values (> 1.5 mm/h), it also presented a large precipitation overestimation (BIAS > 

40 %). Note the paramo has the lowest rainfall intensities in the study area (Ochoa-Sánchez et 

al., 2018), which might explain the relative low RMSE values. Likewise, note the WRF model 

presents limitations for simulating the low intensity precipitation and usually tend to 

overestimate it  (Velasquez et al., 2020; Yang et al., 2019), explaining the largest BIAS in the 

paramo.  
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Figure 7. Spatial performance of the bias-corrected ensemble precipitation forecast within the UNRB 

(lead time 3h), considering a continuous simulation period of five years: January 2016 to December 

2020. The used metrics were: Root Mean Square Error (RMSE), Correlation Coefficient (CORR), Bias 

Error (BIAS), Probability of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI).  

Otherwise, the lowest CORR over the UNRB were obtained in the transition between the 

paramo and mountain forests (Fig. 7b). This result may be related to the high heterogeneity 

and steep slopes of this region, which difficult capture and simulate the spatiotemporal 

precipitation dynamics (Chancay and Espitia, 2021). Although high POD values were reached 

in the highest zones of the paramo, this region also presented the highest FAR values, 

indicating that EFPs could overestimate the frequency of wet hours over the paramo. However, 

other precipitation types such as horizontal rainfall and drizzle that occur in the paramo 

(Ochoa-Sánchez et al., 2018) were excluded for the analysis, as the reference precipitation data 

(i.e., BC-RFP) cannot capture them. This could explain the high FAR values and even the low 

CORR values. 



 

56 
 

In the lower reaches of the UNRB (i.e., the piedmont rainforest; Fig. 2), high RMSE values 

were obtained (Fig. 7a). Conversely to the paramo, the piedmont rainforest presented the 

strongest precipitation regimen (Chancay and Espitia, 2021), and hence the high magnitude 

errors were expected. Correlation coefficients reached in the piedmont rainforest improved 

respect to those obtained in the paramo and the mountain forest, however, they were still 

unsatisfactory (CORR < 0.2). In general, results suggested the EFPs poorly capture the 

precipitation occurrence, demonstrating the difficulty of simulating precipitation on high 

spatiotemporal scales over complex topography regions such as headwaters of the Amazon 

Basin (Bulovic et al., 2020; Hobouchian et al., 2017; Manz et al., 2017). 

4.5. Ensemble streamflow forecasting 

The general assessment of bias-corrected ensemble precipitation forecasts (EPFs) as forcing 

input for the GR4H model (Fig. 8) yielded acceptable KGE performances (0.24 - 0.40), 

considering the hourly resolution of precipitation and streamflow simulations (Camera et al., 

2020; Knoben et al., 2019). Considering the Probability of Flow Detection (PFD), the ensemble 

streamflow forecasts (ESFs) captured between 60% and 78% of the flood events. However, the 

Peak Flow Criterion (PFC) indicated that simulated peak discharges presented intensity errors 

between 28% and 32%. Although the PFC cannot reveal overestimation or underestimation, 

the non-exceedance curve (Fig. 8) confirmed that streamflow simulations above the 90th 

percentile were underestimated, showing BIAS values between -69.4 and -34.8 %. As Chancay 

and Espitia (2021) discussed, the underestimation of peak flows is mainly related to the 

underestimation of the simulated precipitation, particularly over the lower reaches of the 

UNRB (i.e., in the piedmont rainforest; Fig. 2).  
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Figure 8. Performance of the ensemble streamflow forecasting for (a) Tena River Basin, TRB; (b) 

Jatunyacu River Basin, JRB; and (c) Upper Napo River Basin, UNRB. Scatter density plot for observed 

and simulated data at the hourly scale (left side). The non-exceedance probability curve for observed 

data and ensemble streamflow forecast (right side).  
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On balance, streamflow simulations of the TRB presented the lowest performances, 

whereas streamflow simulations of the UNRB yielded the highest performance. These trends 

are in accordance with previous studies, which indicated the smaller basins, the more difficult 

it is to adequately predict the precipitation and hence the streamflow dynamics over them 

(Camera et al., 2020; Tsegaw et al., 2019). In fact, other studies such as Rogelis and Werner 

(2018), Rogelis et al. (2016), and Galanaki et al. (2021) highlighted that, with larger river basins, 

it is possible to minimize errors derived from the spatiotemporal lag of simulated precipitation. 

Note the TRB is the basin with the smallest drainage area, while UNBR has the largest drainage 

area. 

The event-based analysis, considering the last five flash floods occurred in the study area, 

suggested that the ensemble streamflow forecast has a limited skill to reproduce the 

streamflow dynamic during flood processes. As shown in Fig. 9, the KGE on the event scale 

ranged from -0.47 to 0.49. For the events occurred in September 2017 (Fig. 9a), May 2019 (Fig. 

9c), and June 2019 (Fig. 9d), the peak discharge was captured with underestimation, but also 

with a temporal lag of about ± 3h. Although the uncertainty derived from EPFs is the main 

source of errors for the ensemble flash flood forecasting (Rogelis et al., 2016), numerous works 

discussed that initial moisture conditions have significant impact on the simulated streamflow 

dynamics (Hurtado et al., 2020; Lee et al., 2011; Wood et al., 2016). Thus, it is not enough to 

adequately simulate extreme rainfall events, but also the previous precipitation conditions. To 

reduce the effect of initial conditions, data assimilation techniques (e.g., Kalman Filter, Particle 

Filter) have been widely used in recent years (Piazzi et al., 2021). However, no data assimilation 

techniques were included in this study.  
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Figure 9. Observed and simulated (ensemble forecast) hydrographs of the last five flash flood events 

that occurred in the Tena River Basin (TRB), Jatunyacu River Basin (JRB), and Upper Napo River Basin 

(UNRB). (a) Event 1, September 2017. (b) Event 2, July 2018. (c) Event 3, May 2019. (d) Event 4, June 

2019. (e) Event 5, May 2020. 
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 5. Future perspectives and final remarks  

The multi-physics ensemble modeling approach used in the present study to forecast heavy 

rainfall and flash flood events over the Upper Napo River Basin (UNRB) showed acceptable 

performances, considering the limitations that imply the high-resolution hydrometeorological 

simulations. Altogether, results provided sufficient insights to propose the analyzed ensemble 

precipitation and streamflow forecasting as a preliminary tool for generating early warning 

systems in the study area. However, to improve the operability of the proposed tool it is 

necessary to explore further modeling aspects. For instance, data used to force the WRF model 

was obtained only from the Global Forecasting System (GFS), limiting the weather simulations 

to a single initial boundary condition. In fact, most WRF studies conducted in the Andean-

Amazon region have only used GFS data. Other alternatives that could be considered in future 

studies are the ensemble products derived from the European Centre for Medium-Range 

Weather Forecasts (ECMWF).   

Although the small ensemble (5 member) used to forecast precipitation and streamflow 

provided acceptable short-term predictions with lead times below 36 hours, deeper sensitivity 

analysis considering all physical WRF schemes might reveal new parameterizations suitable for 

increasing lead times and improving prediction performances. Likewise, future sensitivity 

analyses should consider the effect of the topography data resolution on the simulation 

performances. Note that for the Andean-Amazon region, the topography has a close 

relationship with the convective processes on subgrid scale, the most relevant physical scheme 

for precipitation prediction over the UNRB.  

Since the streamflow simulations were only generated by forcing the semi-distributed GR4H 

model with precipitation forecasts derived from the proposed WRF ensemble 

parameterization, the uncertainties linked to the structure and parameterization of the 

hydrological model were not quantified. To address this, future studies should evaluate the 

proposed WRF ensemble parameterization with other hydrological models, such as TETIS or 

SWAT. The trends observed between the streamflow simulation performance and the drainage 

area confirmed that, for small basins (e.g., the TRB), errors derived from the spatiotemporal 
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lag of simulated precipitation produce a strong impact on the initial moisture conditions, 

affecting the streamflow dynamics and their respective peak discharges. In this regard, the 

improvement and expansion of the hydrometeorological monitoring network is essential to 

make high-quality real-time data available for data assimilation processes, and thus obtain 

more reliable forecasts.  

This study not only contributes to the flash flood predictions, but also improves our general 

understanding of hydrometeorological processes of the Andean-Amazon region, that despite 

its importance and direct impact on the whole Amazon, and hence the world, it is still a poorly 

documented region. In fact, the information generated in this study could be applied to other 

water-related research fields, such as fluvial hydraulics, hydrogeology, and even integrated 

water resources management over the UNRB. 

6. Appendix 

Table A1. Description of the meteorological and hydrological stations used in this study. 

Code Name Type Latitude Longitude 

M004 Rumipamba Meteorological -1.0200 -78.5946 

M0008 Puyo Meteorological -1.5057 -77.9560 

M0118 Papallacta Meteorological -0.3806 -78.1413 

M0258 Querochaca Meteorological -1.3671 -78.6050 

M1124 Sierra Azul Meteorological -0.6708 -77.9241 

M1219 Chaupishungo Meteorological -0.9169 -77.8191 

M5010 Narupa Meteorological -0.7319 -77.7830 

M5147 Universidad Meteorological -0.9522 -77.8612 

M5148 Chalupas Meteorological -0.8205 -78.2693 

MI001 Colonso Meteorological -0.9378 -77.9405 

MI002 Alto Tena Meteorological -0.9369 -77.8809 

MI003 Cavernas Jumandy Meteorological -0.8751 -77.7906 

HI001 Puente Tena Hydrological -0.9922 -77.8150 

H0721 Jatunyacu Iloculin Hydrological -1.0872 -77.9188 

H1156 Napo-Ahuano Hydrological -1.0509 -77.5452 
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Table A2. Statistical criteria used to evaluate the ensemble precipitation and streamflow simulations 

derive from the WRF and GR4H models. 

Metric Definition Optimum 
value 

Range Unit 

RMSE 𝑅𝑀𝑆𝐸 =  √
∑ (𝑆𝑖 −  𝑂𝑖)2𝑛

𝑖=1

𝑛
 0 (0, Inf) mm/h 

CORR 𝐶𝑂𝑅𝑅 =  
𝑐𝑜𝑣 (𝑆, 𝑂)

√𝑣𝑎𝑟(𝑆)  √𝑣𝑎𝑟(𝑂)
 1 (-1, 1) - 

BIAS 𝐵𝐼𝐴𝑆 =  100 ∗  
∑ (𝑆𝑖 −  𝑂𝑖)2𝑛

𝑖=1

∑ ( 𝑂𝑖)2𝑛
𝑖=1

 0 (-Inf, Inf) % 

KGE 𝐾𝐺𝐸 =  1 − √(𝛼 − 1)2 + (𝛽 − 1)2 + (𝑟 − 1)2 1 (-Inf, 1) - 

POD 𝑃𝑂𝐷 =  
𝐴

𝐴 + 𝐵
 1 (0, 1) - 

FAR 𝐹𝐴𝑅 =  
𝐶

𝐴 + 𝐶
 0 (0, 1) - 

CSI 𝐶𝑆𝐼 =  
𝐴

𝐴 + 𝐵 +  𝐶
 1 (0, 1) - 

PFC 𝑃𝐹𝐶 =  
∑ (𝑄𝑆𝑖 −  𝑄𝑂𝑖)2𝑛

𝑖=1

∑ ( 𝑄𝑂𝑖)2𝑛
𝑖=1

 0 (-Inf, Inf) % 

PFD 𝑃𝐹𝐷 =  
𝐷𝑃𝐾

𝐷𝑃𝐾 + 𝑛𝐷𝑃𝐾
 1 (0, 1) - 

 

Where, n is the total number of observations, Si is the i-th simulated element, Oi is the i-th observed 

element, cov() is the covariance, var() is the variance, α is the ratio between simulated and observed 

mean, β is the ratio between simulated and observed standard deviation, r = CORR, A is the number of 

hits (Si > 0 and Oi > 0), B is the number of misses (Si = 0 and Oi > 0), C is the number of false positive (Si 

> 0 and Oi = 0), Qs is the peak flow simulated, Qo is the peak flow observed, DPK is detected peak flow, 

and DPK is the no detected peak flow.  
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