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RESUMEN 

 

Los impactos de la minería de oro (MO) son devastadores, incluido el cambio de paisaje y 

la deforestación, la pérdida de servicios ecosistémicos y especies nativas, la reducción de 

la calidad del agua y la contaminación del suelo y el aire. El rápido aumento de esta 

actividad en la cuenca del Amazonas, la escasez de estudios, la difícil detección de 

impactos y el monitoreo requieren técnicas integradas que puedan evaluar los impactos de 

la MO en este importante ecosistema. Este estudio busca utilizar una técnica de 

teledetección para evaluar la dinámica de cambios de cobertura y uso de la tierra y los 

impactos derivados de la actividad de MO durante un período de 6 años en la Amazonía 

ecuatoriana y asociarlos con datos auxiliares de calidad de agua y contaminación por 

metales en agua y sedimentos para comprender el grado de contaminación y sus riesgos 

para la salud ambiental. La MO duplicó su extensión de 0.15% (651 ha) a 0.30% (1317 ha) 

del área total de estudio, degradando áreas principalmente boscosas. La asociación de 

información ha hecho posible evaluar el impacto de la MO de manera integradora en 9 

sitios, mostrando que los sitios con un rápido aumento de su extensión y degradación del 

paisaje tienen un efecto directo sobre la contaminación por metales en agua y en los 

parámetros fisicoquímicos, mientras que los lugares con menor incremento tienen mayor 

ocurrencia de metales en sedimentos y mayor cambio en su ubicación que en su 

extensión.  

 

Palabras clave: Minería de Oro, cambio de cobertura y uso del suelo, sensores remotos, 

Amazonía, Google Earth Engine. 
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ABSTRACT 

 

Gold mining (GM) impacts are devastating, including landscape change and deforestation, 

loss of ecosystem services and native species, contribution of carbon emission and 

sediment loads, reduced water quality, and soil and air contamination. The rapid increase 

in this activity across the Amazon basin, the scarcity of studies, the difficult detection of 

impacts and monitoring require integrated techniques that can assess the impact of GM 

on this important ecosystem. Google Earth Engine (GEE) is a useful tool for evaluating 

anthropic activities incidence on the dynamics of planetary coverage. Thus, this study 

seeks to use a remote sensing technique in GEE to assess land cover and land use changes 

dynamics and impacts derived from GM activity over a 6-year period in the Ecuadorian 

Amazon and to associate them with quality auxiliary data water and metal contamination 

in water and sediment to understand the degree of contamination and its risks to 

environmental health. GM doubled its extent from 0.15% (651 ha) to 0.30% (1317 ha) of 

the total study area, degrading mainly forested areas and leaving heterogeneous 

landscapes covered by grassy or bare soils. The combination of GM area change 

indicators with environmental quality data has made it possible to assess the mining 

activity impact in an integrative way in 9 GM sites, showing that sites with rapid increase 

of its extent and landscape degradation have a direct effect on metal contamination in 

water and physicochemical parameters, while places with lower increase have a higher 

occurrence of metals in sediments and a greater change in its location than in its 

extension.  

 

Key words: Gold Mining, land cover and land use change, remote sensing, Amazon, 

Google Earth Engine. 
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• La revista a la cual someteré mi artículo es Science of the Total Environment 

Spatial dynamics of gold mining and its effects on the loss of tropical forests and 

water resources affectation, applying remote sensors: case of the upper basin of the 

Napo River, Amazonia, Ecuador. 

Oscar Lucas-Solis1 

1. Facultad de Ciencias de La Tierra y Agua, Universidad Regional Amazónica Ikiam, Km 7 Vía Muyuna, 

Tena, Napo, Ecuador 

Highlights 

• Remote sensors have made it possible to identify and delimit gold mining areas 

and their change over time. 

• Gold mining has doubled in extent from 2015 to 2020 in the upper Napo River 

basin. 

• Gold mining has short- and long-term environmental quality effects and these can be 

analyzed by integrating remote sensing with in situ environmental data. 

1. Introduction 

The Amazon basin is a world biodiversity hotspot that provides diverse ecosystem 

services, for instance, global climate regulation and water provision for local communities 

(Delgado-Aguilar, Konold, & Schmitt, 2017). This region also has a dense river network 

that drains one of the most forested areas on Earth, from the Andes to the Amazon 

floodplain and its outlet in the Atlantic Ocean. However, anthropogenic activities such as 

gold mining (GM), oil extraction, agriculture, livestock, hydroelectric dams, and road 

construction, pose a risk to the health of this relevant and vulnerable freshwater ecosystem 

(Alexiades, Encalada, Lessmann, & Guayasamin, 2019; Capparelli et al., 2020; Galarza et 

al., 2021). Deforestation rates in the Amazon are associated primarily with agriculture, 

ranching, logging, and fire, but GM activities are also responsible for a large fraction of 

forest loss and disturbance (Potapov et al., 2017). Important GM activities started in the 

1950’s and currently, hundreds of thousands of people are directly involved in it due to the 

relatively high rise in gold prices and local government support in countries like Brazil, 

Peru and Ecuador in the last few years (Lobo, Costa, Novo, & Telmer, 2016; Vela-

Almeida, 2018; World Gold Council, 2021).  

In the developing countries of South America, Africa and Asia, artisanal and small-

scale are the main types of GM practice (Lobo et al., 2016). Artisanal GM is characterized 
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by making use of tools and simple and portable machines by individuals, families, or 

communities, while the categorization of industrialized GM (i.e. small, medium, large) 

varies by reason of the area of the concessions, volume of processing and production, 

amount of investments and technological conditions, but it is characterized by the use of 

heavy machinery (Ministerio del Ambiente y Agua, 2020b). GM impacts are severe 

compared to the other deforestation drivers, leaving a highly altered landscape, ecosystem 

services loss, water quality reduction and mercury contamination of water, soil and air, 

loss of native species, sediment loads, increased mortality in adjacent tropical forests, and 

carbon emissions from deforestation (Asner, Llactayo, Tupayachi, & Luna, 2013; 

Caballero Espejo et al., 2018). Those impacts increase with socioeconomic factors such as 

poverty, infrastructure, and illegal capital flow (Adler Miserendino et al., 2013). Land 

cover and landscape after GM activity are constituted of extensive areas of bare soil, 

sediment-laden ponds, and remnant or new vegetation (Caballero Espejo et al., 2018). 

These areas have a poorer regeneration potential compared to areas with different 

pressures like agriculture, due to the fact that soils after GM activity lose their structure 

with a high sand content and decreases their fertility with a low organic matter content and 

low cation exchange capacity (Román-Dañobeytia et al., 2015).  

Artisanal and small-scale GM in the Amazon could have severe negative 

environmental issues and social impacts on the population surrounding the mining projects 

because these are set near rivers and streams due to the conditions (i.e. placer and 

paleoplacer deposits) where gold is found in the area (Adler Miserendino et al., 2013; 

Agencia de Regulación y Control del Agua (ARCOM), 2019). Profits from GM could 

subserve the Amazon region to alleviate poverty, basic services and water security 

deficiencies, but that suppose native flora and fauna loss, contamination of water 

resources, soil and air, which also translates into economic losses in agriculture, fisheries, 

soil productivity, and tourism (Secretaría Nacional de Planificación y Desarrollo 

(SENPLADES), 2015; Adler Miserendino et al., 2013; Villa-Achupallas, Rosado, Aguilar, 

& Galindo-Riaño, 2018). The main concern with GM is that its short-term benefits to the 

state will not compensate for the permanent ecosystem damage, and long-term economic 

and ecosystem services affectation at the local and regional level (B. Roy et al., 2018).  As 

happened with oil exploitation, which implied a 44% primary forest reduction, loss of 

biodiversity and negative effects on human health in the Ecuadorian Amazonia (Barraza et 

al., 2018).  
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Environmental impact assessment and monitoring should be an integral part of GM 

operations because they can be used for long-term environmental management, as well as 

to know the recovery and rehabilitation of GM areas (Charou, Stefouli, Dimitrakopoulos, 

Vasiliou, & Mavrantza, 2010). GM areas in the Amazon usually are difficult to access or 

even dangerous by illegal activities (Elmes, Ipanaqué, Rogan, Cuba, & Bebbington, 2014). 

The exact location and evolution of the expansion of GM are difficult to evaluate or 

monitor accurately (Asner et al., 2013). For that reason, researchers have chosen to 

evaluate and monitor the tropical forest degradation by GM progress using remote sensing 

in other areas of Latin America like the Peruvian or Brazilian Amazonia (Anaya et al., 

2020; Asner & Tupayachi, 2017; Caballero Espejo et al., 2018; Lobo et al., 2016). One of 

the tools that has gained great relevance for monitoring, tracking, and managing the Earth's 

environment and resources is Google Earth Engine (GEE) which is a portal that provides 

free access to satellite and ancillary data, cloud computing, and algorithms for processing 

large amounts of data (Kumar & Mutanga, 2018). Remote sensing applications are diverse, 

for instance, in the Peruvian Amazonia, GM impacted areas monitoring combined with 

water quality information were key to understand land cover and land use (LCLU) change, 

water resources deterioration, and social and environmental impacts (Asner et al., 2013; 

Elmes et al., 2014; Lobo et al., 2016). These types of impacts could not be evaluated with 

water quality monitoring alone, since these give an idea of the state of water resources at a 

certain time, but these can also be affected by other social and economic factors (Lobo et 

al., 2016). 

Historically, the ecosystems on the eastern Andes of Ecuador, at the transitions 

with Amazonia, have been largely impacted by mining activities (Capparelli et al., 2020; 

Perez, 2015). Recently, the national territory of Ecuador destined for GM exploration and 

future exploitation drastically increased from 3% to 13% spread across the country, 

including many forests designated as "protected" (B. A. Roy et al., 2018). This increases 

concern in areas where GM is still incipient but is already having impacts on water quality 

and generating risks for human and environmental health., such as the Napo River upper 

basin (NRUB) (Capparelli et al., 2020; Galarza et al., 2021; Jiménez-Oyola et al., 2021). 

Even though artisanal mining (i.e. mining without heavy machinery and granted to small 

companies or local communities) is the most common concession authorized, industrial 

mining represents 98% of the total territory for the exploitation of gold at the Napo 

province (33,718 ha). Few risk assessments have been carried out in streams of this area 

using multiple lines of evidence that reported a low aquatic ecosystem quality, as well as 



4 

 

 

high human health risk (Capparelli et al., 2020; Galarza et al., 2021; Jiménez-Oyola et al., 

2021). These conclusions were based mainly on the elevated presence of potentially toxic 

elements such as Cd, Cu, Pb, and other metals in both water and sediments, but also 

macroinvertebrates absent which is a biological indicator of bad water quality, and 

bioassays with L. sativa that indicated water and sediment sample phytotoxicity related to 

GM activity (Capparelli et al., 2020; Galarza et al., 2021).  

In the Ecuadorian Amazonia, remote sensing has been used to monitor mountain 

humid forests, suspended sediment yield, and anthropogenic disturbance mapping, but 

relating GM activity as a factor of change in LCLU and/or landscape in the Ecuadorian 

Amazonia is still lacking (Goerner, Gloaguen, & Makeschin, 2007; Keating, 1997; Santos, 

Meneses, & Hostert, 2019; Tarras-Wahlberg & Lane, 2003). Despite the rapid increase in 

this activity in the NRUB and the entire Amazonia, its biological and hydrological 

importance, and the consequences for neighboring populations and communities, 

ecosystems and water and aquatic resources (Asner et al., 2013; Asner & Tupayachi, 2017; 

Brooks et al., 2006; Elmes et al., 2014). Therefore, this study seeks to (1) use a remote 

sensing technique to assess the dynamics and impacts in LCLU change derived from GM 

activity in a 6-year period in the NRUB, a vulnerable and biodiverse tropical landscape, 

and (2) associate them with ancillary data of gold price, national production and 

exportation, water quality and metal contamination in water and sediment to understand 

the contamination degree and its risks to environmental health. 

2. Methods 

2.1. Study area and sampling 

The Napo River is one of the main tributaries of the Amazon River, having a large 

number of natural resources and its landscapes range from the Andean foothills to the 

Amazon plain (Gobierno Autónomo Descentralizado Provincial de Napo (GADP Napo), 

2014). NRUB is home to about 116,700 inhabitants and has an area of approximately 

445595 ha (Gobierno Autónomo Descentralizado Provincial de Napo (GADP Napo), 2018; 

Instituto Nacional de Estadística y Censos (INEC), 2010). The region of the sub-Andean 

mountain ranges in the Napo province hosts important gold prospects, with deposits of the 

placer and paleoplacer type, which is why alluvial gold mining has occurred since colonial 

times on the banks of the Napo River (Carranco, 2017; Gobierno Autónomo 

Descentralizado Provincial de Napo (GADP Napo), 2014). 

The NRUB is a humid tropical zone with abundant rainfall (up to 4400 mm/year in 
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the south and east) and a high density of rivers and streams (Bravo-Medina et al., 2017; 

Prefectura de Napo, 2015) (Figure 1). The study area covers the southern Napo province, 

where gold mining concessions are concentrated to the south in the Anzu, Jatunyacu, and 

Napo river basins (formed from the union of the two previous ones), being these highly 

threatened by mining activity. NRUB land is covered by native forest (60.87%), 

agricultural land (36.30%), water bodies (1.88%), anthropic zone (0.72%), shrub and 

herbaceous vegetation (0.05%), and others (0.18%) (Hurtado Pidal, 2014; Ministerio del 

Ambiente y Agua, 2020a). There is a high concentration of towns, especially on the 

riverbanks, in addition to three of the most populated cantonal heads, Tena, Archidona, and 

Carlos Julio Arosemena Tola. 

 

Figure 1. Study area. Optical satellite image composite of the Napo River Upper Basin in 

the Ecuadorian Amazonia. 

2.2. LCLU classification and change analysis 

The methods used in this research for LCLU classification are summarized in a 

flowchart (Figure 2A). On the other hand, the data used for the classification and their 

descriptions are in Table 1. The first step consists of the building of six yearly GEE cloud 

and shadow masked composites from 2015 to 2020, which include Landsat 7 ETM+ 

(Enhanced Thematic Mapper Plus), Landsat 8 OLI-TIRS (Operational Land Imager - 
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Thermal Infrared Sensors), and Sentinel-1A atmospheric and orthorectified corrected 

surface reflection image collections. Each image collection was filtered by date (a whole 

year) and clipped with a shapefile of the study area, also optical image collections were 

cloud and shadow masked (Anaya et al., 2020). The bands used in the classification are in 

Table 1 for both optical and SAR image collections. Landsat 7 ETM+ images present gaps 

in the image since 2007, for that reason a method to fill those gaps was performed, which 

consisted in using a 8 x 8 pixels focal mean function (Coulter et al., 2016). Due to the 

prevalence of clouds in the tropical forest and to reduce the speckle of SAR images while 

removing noise (extreme backscattering values), it was necessary to statistically reduce the 

image collections to one single image, calculating the median of the pixels per year (Souza 

et al., 2020). Digital elevation model (DEM) data from Shuttle Radar Topography Mission 

(SRTM) available in GEE and a raster containing distance from rivers (DFR) derived from 

a shapefile of streams the Ecuadorian Geographic Military Institute were added to the 

composites and also used in classification (Anaya et al., 2020). The next step was the indices 

calculation from Landsat 7 ETM+ and 8 OLI image collections since they have been used 

to improve the classification accuracy (Capolupo, Monterisi, & Tarantino, 2020). All of 

the calculated spectral indices are presented in Table 2. 

 

Figure 2. Methods. A) Flowchart of data processing. B) Minimum points used for LCLU 

classification in all years. High density vegetation (HDV), Low density vegetation (LDV), 

Riparian zone (RZ), Anthropic zone (AZ), Bare soil (BS), Gold mining (GM) and Non 

observed (NO). 
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Table 1. Description of the used geographical database including type, bands, resolution, 

and the given use. 

Image collection Type Bands Resolution Use 

 

Landsat 7 ETM+ 

 

Optical 

B1, B2, B3, B4, 

B5, and B7 

 

30 m 
Classification input    data 

 

Landsat 8 OLI 

 

Optical 

B2, B3, B4, B5, 

B6, and B7 

 

30 m 

Classification input data 

 

Sentinel 1 A 

 

SAR 

VH and VV 

polarization 

 

10 m 

Classification input data 

 

Sentinel-2A MSI 

 

Optical 

B2, B3, B4, 

and B8 

 

10 m 

Training and validation 

data 

 

STRM 

 

DEM 

 

SRTM 

 

30 m 

Classification input data 

 

DFR 

 

Distance 

 

DFR 

 

10 m 

Classification input data 

 

Table 2. Spectral indices used in LCLU classification. Near Infrared (NIR), short wave 

infrared (SWIR), Red and Thermal Infrared (TIR) bands. 

Spectral index Equation 

Normalized Difference Vegetation 

Index (NDVI) 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

STRed index 𝑆𝑇𝑅𝑒𝑑 𝑖𝑛𝑑𝑒𝑥 =
𝑆𝑊𝐼𝑅1 + 𝑅𝑒𝑑 − 𝑇𝐼𝑅1

𝑆𝑊𝐼𝑅1 + 𝑅𝑒𝑑 + 𝑇𝐼𝑅1
 

Normalized Difference Bareness 

Index (version 2) (NDBaI2) 
𝑁𝐷𝐵𝑎𝐼2 =

𝑆𝑊𝐼𝑅1 − 𝑇𝐼𝑅1

𝑆𝑊𝐼𝑅1 + 𝑇𝐼𝑅1
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In QGIS, 500 random sampling points were distributed in all extensions of the 

study area. Yearly Sentinel-2A MSI (MultiSpectral Instrument) image collections available 

in GEE and google earth images were used for the interpretation of LCLU points. Nine 

LCLU classes were assigned to improve the classification (Table S1); however, the final 

LCLU classes were reclassified into six and they are shown in Figure 2B. LCLU classes 

were High density vegetation (HDV), Low density vegetation (LDV), Riparian zone (RZ), 

Anthropic zone (AZ), Bare soil (BS), and Gold mining (GM) which are more detailed in 

Table S1. Since most of the coverage is HDV or forested areas, additional points were 

established up to at least 25 points per LCLU class (Figure 2B). 70% of those points were 

destined for training the algorithm or classifier, and the remaining 30% for validation. The 

machine-learning algorithm for supervised LCLU classification used was Random Forest 

with 500 decision trees (Anaya et al., 2020; Belgiu & Drăgu, 2016; Souza et al., 2020). 

After training the algorithm for each year, the classification was performed and validated. 

Several combinations of input data were performed and the one with the highest average 

overall accuracy and kappa index was chosen. The classification was approved when the 

kappa index was equal to or above 0,75, which represents a moderate agreement 

(Caballero Espejo et al., 2018).  

Finally, to evaluate LCLU changes between 2015 and 2020, the results of the 

classification for those years were generally compared through a cross-tabulation matrix, 

which helps to evaluate the net change and the interchange as well as the gross losses and 

gains (Pontius & Santacruz, 2014). LCLU change by each class was also performed to 

identify the individual loss and gain area. This procedure and the reclassification were 

performed in R software, where the pixels affected with cloud and shadow even in only 

one year were excluded from the analysis (R Core Team, 2017). 

2.3. Gold mining area change indicators 

Nine sites located downstream areas directly affected by industrial-size mining 

were sampled in December of 2020, in order to evaluate physicochemical parameters, 

metal contamination in water and sediment, and relate them to GM area change indicators. 

All the sites were located within gold mining concession territories (Figure 1, Table S2). 

Surface water (100 mL) and sediment (150 g) samples were taken; water samples were 

acidified (to pH 2) in the field with HCl for metal analysis. Bottles for water were rinsed 

thrice with the samples and sediments were collected with a plastic hand trowel and stored 

in plastic bags. 
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Once the GM areas had been identified and delimited through the supervised 

classification in the NRUB, the affected areas for the 9 sampling sites for each year from 

2015 to 2020 and for the 6-year period by overlapping them. Then those areas were 

measured using QGIS 3.10.14 (QGIS Development Team, 2021). In order to know the 

affected areas over the whole 6-year period, the overlapping was necessary due to the fast 

GM dynamics in which it can move to other LCLU classes like HDV and BS but 

maintaining the effects of GM activity on water quality and soil fertility (Caballero Espejo et 

al., 2018; Román-Dañobeytia et al., 2015). In addition, the affected area of each site in 2015 

and 2020 were used to compare whether the areas were increasing or decreasing and to see 

how they interfere with the water parameters and the concentration of metals in the water 

and sediments. This was calculated through the percentage of area currently affected with 

respect to the GM area in 2015 and with the 6-year period impacted area (Table 3). 

Table 3. Indicators of GM area dynamics. 

GM area change indicators Equation 

GM area change from 2015 to 2020 

(AC, %) 
𝐴𝐶 =

𝐺𝑀 𝑎𝑟𝑒𝑎 2020

𝐺𝑀 𝑎𝑟𝑒𝑎 2015
∗ 100 

Portion of GM affected area in 2020 

respect to the 6-year period (AP, %) 
𝐴𝑃 =

𝐺𝑀 𝑎𝑟𝑒𝑎 2020

𝐺𝑀 𝑎𝑟𝑒𝑎 6 − 𝑦𝑒𝑎𝑟 𝑝𝑒𝑟𝑖𝑜𝑑
∗ 100 

 

2.4. Measurements of physicochemical parameters 

Conductivity, pH, oxidation reduction potential (ORP), total dissolved solids (TDS) 

and dissolved oxygen (DO) were measured in situ using a professional plus 

multiparameter. Turbidity was also measured in situ with a HACH 2100 Q turbidimeter. 

The equipment was previously calibrated with  standard solutions. In the laboratory, 

dissolved organic carbon (DOC) concentrations were measured using a total organic 

carbon analyzer (TOC-L Shimadzu, Japan). The total suspended solids (TSS) were 

analyzed according to APHA (2018). 

2.5. Metal analyses 

Metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) analysis in water and sediment samples 

were performed at the Laboratory of the University of Cuenca, Ecuador after acid 

digestion using 8 ml of ultra-pure nitric acid and 2 ml of hydrochloric acid (Merck trend). 

The samples were analyzed using a Perkin Elmer 350X ICP-MS. For the reading of 
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metallic analytes, an adaptation of Method 200.8 EPA (United States Environmental 

Protection Agency) was used (United States Environmental Protection Agency (US EPA), 

2014). Calibration curves were created from a multi-element standard Inorganic Venture, 

at concentration from 0.1 to 0.0005 mg L−1. Quality control for trace elements analysis 

was implemented using certified reference water (CRM 1640a) and sediment (CRM 

1646a) (NIST, Gaithersburg, Maryland) every 10 samples, as well as at the beginning and 

at the end of each sample batch. Recovery percentages were calculated to determine 

possible matrix effects and method accuracy. All trace metal concentrations were corrected 

based on the recovery percentages obtained in each analysis, which ranged from 91% to 

100% for water, and 69% to 93% for sediments. 

2.6. Data analysis 

National legislation (TULSMA, Ministerio del Ambiente, 2015), the 

Environmental Protection Agency of the United States(United States Environmental 

Protection Agency (US EPA), 1996) and the Environmental Quality Guidelines of Canada 

(Canadian Council of Ministers of the Environment (CCME), 2002), were contrasted with 

metal concentrations in water samples. The CCME (2002) and national legislation 

(TULSMA, Ministerio del Ambiente de Ecuador, 2015) of  stream sediments and soil 

quality standard, respectively, were used for sediment samples. Those comparisons allow 

to know if metals concentrations can have negative effects on aquatic life (Long, 

Macdonald, Smith, & Calder, 1995). 

Principal Component Analysis (PCA) was used to summarize LCLU change data, 

physicochemical parameters of water samples and As, Cd, Co, Cr, Cu, Ni, Pb and Zn 

concentrations in water and sediments samples. All variables were normalized by z-score 

normalization. The first two principal components (PCs) were investigated and their 

correlations to each variable were tested through the Pearson's correlation test.  

Hierarchical cluster analyses were used to assess the presence of natural clusters 

among sampling sites by an iterative process that defined clusters based on the 

(dis)similarities of two sites. Dissimilarities between sites were calculated by Euclidean 

distances for normalized variables; the Group Average Link was used as the agglomeration 

method in the classification. All statistical analyses were performed using the R software 

(R Core Team, 2017). 

3. Results and discussion 
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3.1. LCLU classification for GM area identification and accuracy assessment 

Six annual LCLU maps for NRUB with supervised classification from 2015 to 

2020 using Google Earth Engine at 30 m pixel resolution were generated, using 

multisource data. A combination of optical and Synthetic Aperture Radar (SAR) satellite 

data such as Landsat and Sentinel-1 collections have been shown a great performance in 

identifying land use and land cover changes, especially in tropical forest landscapes where 

high cloud cover is the main concern (Anaya et al., 2020; De Alban, Connette, Oswald, & 

Webb, 2018). The combination of inputs used for classification in this study that had the 

highest average overall accuracy and kappa index (88.5% and 0.818, respectively) for the 

6-year period was optical and SAR image collection, indices derived from them (NDVI, 

NDBaI2 and STRedindex) and the terrain information (DEM, and DFR) (Table S3). 

NDBaI2 has been shown to be useful in classifying mining, water, urban area, HDV and 

LDV, while STRedindex index just mining, water, HDV and LDV (Capolupo et al., 2020). 

The standard error of the overall accuracy was less than 1%, which means that it did not 

vary over the time series from 2015 to 2020. On the other hand, the combination with the 

lowest performance was optical image collection and DFR with an overall accuracy of 

86.9% and a kappa index of 0.787.  

The user and producer accuracy estimates were summarized by averaging them 

over the 6 years timespan of this study (Table S4). This allowed to break down the overall 

accuracy for the NRUB into LCLU class levels. LCLU classes user accuracies from 

highest to lowest were NO (97.62%), AZ, RZ, HDV, GM (89.53%), beaches, LDV, BS 

and roads (49.94%). The lower user accuracy in roads may be related to their small width 

with respect to the spatial resolution of the classification, which is 30 m and generates 

spectral mixture (Song, 2004). Producer accuracies from highest to lowest were HDV 

(98.34%), beaches, RZ, NO, roads, AZ, GM (77.67%), LDV, and BS (47.71%).The 

highest standard error value for user accuracy was 8.33% in BS and for producer accuracy 

was the same percentage in NO, denoting high variability in the 6-year period. The LCLU 

class with the worst overall accuracy was BS. The lower accuracy and precision of BS 

could have consequences in GM classification since GM operations can also result in 

barren lands after vegetation remotion and generate confusion or misclassification (Anaya 

et al., 2020). In Figure 3, LCLU classification for 2015 (a) and 2020 (b) are shown and in 

the example areas for these years (c and d) a misclassification of AZ (black) can be 

appreciated around GM (red) sites and also GM (red) is misclassified near RZ (light blue). 
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This can be explained by the similarity of the spectral signature that mining has with 

anthropic zones and riparian zones, which STRedindex that was included helps to 

differentiate (Capolupo et al., 2020). The GM area change for the same example area from 

2015 to 2020 can be appreciated in Figure S1. 

 

Figure 3. LCLU classification for A) 2015 and B) 2020. Example areas where GM area 

change can be observed for C) 2015 and D) 2020. High density vegetation (HDV), Low 

density vegetation (LDV), Riparian zone (RZ), Anthropic zone (AZ), Bare soil (BS), Gold 

mining (GM) and Non observed (NO). 

3.2. LCLU spatial and temporal trends and change analysis in NRUB 

Temporal trends of the six studied LCLU classes including HDV, LDV, RZ, AZ, 

BS and GM area from 2015 to 2020 are presented in Figure 4. In 2015, the HDV class 

covered 87.12% of the NRUB, with 388224 ha while LDV covered 8.78% with 39158 ha. 

The remaining LCLU classes represented 1.34% (6008 ha) for RZ, 1.08% (4831 ha) for 

AZ, 1.50% (6721 ha) for BS and 0.14% (651 ha) for GM. In 2020, the HDV class was 

reduced to 78.87% of NRUB, with 351449 ha while LDV increased to almost double 

16.16% with 72025 ha. RZ, AZ, BS and GM classes reached 1.48% (6605 ha), 1.21% 

(5378 ha), 1.97% (8820 ha) and 0.29% (1316 ha), respectively. GM class was the one 

which doubled its extent in the 6-year period, followed by LDV which increased in 1.8 
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times, RZ had a minimum change (almost 1:1 ratio) and HDV class was the only one 

which decreased. 

 

Figure 4. Evolution of LCLU classes from 2015 to 2020 in study area percentage. A) High 

density vegetation B) Low density vegetation C) Riparian zone D) Anthropic zone E) Bare 

soil and F) Gold mining. 

In the Ecuadorian Amazonia, the presence of mining began about 50 years ago in 

the south and nowadays, the most important large-scale gold exploitation projects are 

settled there becoming an important income source as well as a disturbing contamination 

source (Adler Miserendino et al., 2013). However, those large-scale GM projects just 

began to occur in 2020, so before that, 100% of GM in the country was artisanal (22%) and 

small-scale (78%). Contrary to the international scenario where 82% of production is 

attributed to large-scale projects, 10% to medium-scale and only 8% to artisanal and small-
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scale GM (Banco Central del Ecuador (BCE), 2017). Gold mining in NRUB is still rising 

(~0.7% of national gold production) compared to other areas in the country, since currently 

a larger amount of gold production (84.3%) clearly comes from small and artisanal GM in 

the Oro, Azuay, Zamora Chinchipe, and Imbabura provinces (Larenas, Fierro, & Fierro, 

2017; Ministerio del Ambiente y Agua, 2020b). In the NRUB, gold exploitation 

concessions have reached the number of 152 distributed along the Napo river tributaries, 

being almost 60% for artisanal GM, leaving the remainder for industrial GM in small and 

medium scales (Ministerio del Ambiente y Agua, 2020b). Larger-scale GM areas play a 

secondary role compared to small-scale and artisanal; the latters are determinants of the 

patterns and rate of degradation of highly biodiverse tropical forests (Asner et al., 2013). 

Thus, the large number of artisanal GM concessions and the extensive area of industrial 

mining concessions (98,3% of the total area) may pose a risk in the NRUB land 

degradation. 

In order to analyze a relation between spatio-temporal extent of GM with national 

gold production and exportation and international gold price, Figure 5 was generated. GM 

areas and gold price have increased along the 6-year period from 651 to 1317 ha and 1158 

to 1774 USD/Onz, respectively. National gold mining production decreased from 7723 to 

6293 kg and gold exportation from 20801 to 7283 kg, showing a weak rise in 2018 for 

production and 2019 for exportation. The year with highest national gold production 

matches the year with the highest GM extent in NRUB, but this is not a clear relation due 

to the gold production value is at national scale. However, GM areas have shown to 

increase like the gold price. If the values of the export of Gold from Ecuador are compared 

with the production values in 2015, the great difference between these variables is evident, 

which would be explained by the illegality and informality of artisanal and small-scale 

mining (Banco Central del Ecuador (BCE), 2017). A special regime regulation for small 

mining and artisanal mining was promulgated in November 2009 due to the relevance of 

these mining types (Frækaland Vangsnes, 2018). The Ministry of Mining and these 

regulations, position small mining and artisanal mining as a priority for the economic 

development of the country and together with medium and large-scale mining are 

administered, regulated, controlled and managed by the institutional structure that defines 

the Law (Adler Miserendino et al., 2013). Since 2016 the export and production values are 

more similar, which shows the effort of Mining Regulation and Control Agency (ARCOM) 

in the containment of illegal mining and smuggling, mainly to Peru (Agencia de 

Regulación y Control del Agua (ARCOM), 2018; Banco Central del Ecuador (BCE), 
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2020). The actions of ARCOM could also influence the reduction of the mining area in 

2019 (Figure 5). 

 

Figure 5. GM extent for the whole study area from 2015 to 2020, along national gold 

production from 2015 - 2019 (data for 2020 was not available yet; BCE, 2021), national 

gold exportation from 2015 to 2020 (BCE, 2021) and international gold price (World Gold 

Council, 2020). 

For the LCLU change analysis, a cross-tabulation matrix between 2015 and 2020 

classifications can be found in Table S5 and information about the change per each class is 

in Table S6. Table S5 shows that HDV for 2015 was the LCLU class that transitioned the 

most for 2020 principally to LDV and BS. That transition could be associated with 

agricultural activities and GM which are the main drivers that leave LDV and BS as a 

result (Souza et al., 2020). GM was the LCLU that transitioned the least from 2015 to 

2020, and it passed mainly to AZ and LDV. The LCLU classes which transitioned the most 

to GM were AZ and HDV, followed by RZ, LDV and BS. The leading of AZ may be 

influenced by the misclassification of GM in AZ discussed in section 3.3.1, but HDV may 

suggest deforestation (HDV) due to GM activities, which has been also discussed by other 

authors in the Amazon basin (Anaya et al., 2020; Asner et al., 2013; Asner & Tupayachi, 

2017; Caballero Espejo et al., 2018). LDV was the class that most of the other classes 

transitioned to, while RZ is the one that became the least. Most anthropic activities result 

in BS and LDV, especially GM, which has a very heterogeneous landscape after its 

operations (Caballero Espejo et al., 2018). From Table S6, it is observed that HDV was the 
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LCLU that lost more of its extent (~36.775 ha), while LDV, AZ, BS and GM (~665 ha) are 

gaining area in the NRUB. RZ showed more persistence than gain or loss. The overall 

change of LCLU in the NRUB was 15.57% of its territory, 7.78% were quantity changes 

which refers to changes from one class directly to another and 7.80% were allocation 

changes. Allocation changes were 7.45% of exchange and 0.34% of shift which refers to 

spatial distribution of the transitions. HDV and LDV had more quantity changes and RZ, 

AZ, BS and GM had more exchange. The last two are the most dynamic in terms of 

transition and their changing rate is irregular (Lobo et al., 2016). BS had the highest shift 

changes, HDV and GM had no shift changes. 

3.3. Environmental impact of GM sites 

The evaluation of the impact of GM activities in the 9 sampling sites consisted in 

collection of physicochemical parameters (pH, Conductivity, Temperature, Turbidity, OD, 

ORP, TDS, Salinity, Color, TSS and DOC) of water and metals (As, Cd, Co, Cr, Cu, Ni, 

Pb and Zn) concentrations in water and sediment of streams located right after the GM site 

and relate these to indicators of area change (AC and AP). GM sites area range from 121.5 

to 0.81 ha and they are ordered in descending order as follows: 

P5>P8>P1>P6>P4>P3>P7>P9>P2 (Table S7). GM area change from 2015 to 2020 for 

each site ranged from 2.62% to 1680%, sites which increased their area were P1, P3, P4, 

P5 and P8 while GM area for sites P2, P6, P7 and P9 decreased. The portion of the GM 

affected area during the 6-year period that the area of GM sites for 2020 occupied ranged 

from 1.78% to 68.19%, sites P1, P2 P3, P4, P5, P6 were above 10% percent and sites P7 

and P9 were under 10%. These results suggest the points P1, P3, P4, P5 and P6 are having 

recent activity because they are increasing over time and its actual extent occupies a higher 

percentage of the total affected area. P6, P7 and P9 show to be reducing its extent and its 

actual extent is less than 10% of what it has been in the whole 6-year period. 

Regarding physicochemical parameters, water temperature and TSS exceed the 

CCME, TULSMA and EPA normatives, while OD was under the minimum allowed. Sites 

P4, P5 and P7 were above 28°C, all sites (except P1 and P2) were under 80% of OD and 

all sites (except P2, P4, P6 and P7) were above 130 mg/L of TSS (Table S7). Conductivity 

went from 25 to 194.1 μs/cm, turbidity from 10.20 to 1690 NTU, TDS were between 14.95 

and 122 mg/L. ORP ranged from 67.3 to 172.7 mV, salinity from 0.006 to 0.090 g/L, color 

was between 63 and 5250 Pt-Co units and DOC between 1.74 and 8.01 mg/L. Most of 

these parameters tend to increase due to reduction of vegetation cover, the increment of 
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erosion, sediment discharges and runoff which are associated with GM activities (Lewis, 

Garcia-Chevesich, Wildeman, & Sharp, 2020). Also, high turbid waters can affect the 

photosynthesis of submerged plants, impacting primary productivity and DO production. 

Five of eight metals in water were above the maximum allowed limit by CCME, 

TULSMA and EPA normatives, these were As in site P3, Cd in site P7, Cu in all sites, Pb 

in all sites but P4 and Zn in all sites (Table S8). Waste from GM is known to contain high 

Pb, Cu and Cd concentrations, but also other toxic metals like As and Zn making them 

easily available in the environment (Amoakwah et al., 2020; Appleton, Williams, Orbea, & 

Carrasco, 2001; Betancourt, Narváez, & Roulet, 2005; Tarras-Wahlber et al., 2000; 

Wasserman, Campos, Hacon, Farias, & Caires, 2007). Only Cu concentration in P5 

sediment was above the national and international normative (Table S9). Enrichment of Cu 

in stream sediment has been reported before and associated with GM (Obaje, Ogunyele, 

Adeola, & Akingboye, 2019). Site P5 was the most contaminated site by metals in water 

and sediment samples, while P4 was the least contaminated site by metals in water and P7 

in sediment samples. Sites ordered from the most contaminated by metals in water to the 

least were P5 > P1 > P3 > P7 > P8 > P2 > P9 > P6 > P4 and in sediment were P5 > P2 > 

P8 > P4 > P6 > P3 > P9 > P1 > P7. The highest metal concentration detected in water was 

Zn and in sediment was Cr. The occurrence of metals in decreasing order was Zn > Cu > 

Pb > Ni > As > Cr > Co > Cd for water and Cr > Zn > Cu > Ni > Co > As > Pb > Cd for 

sediment samples. 

For water samples, Dim1 (PC1) explained 33.7% of data variance and Dim2 (PC2) 

20.7%. P2 and P4 were highly correlated with OD; P3 and P1 were correlated with GM 

area and their change indicators (AC and AP) and metals like Pb and Zn while P6, P7 and 

P8 were related with physicochemical parameters. Sampling (P1, P2, P3, P4, P5) sites that 

were geographically closer to each other were found to be in the same cluster for water 

samples. For sediment samples, PC1 explained 72.7% of data variance and separated the 

samples mostly by metal concentration while PC2 (17.2% of variance) separated sampling 

sites by GM area change indicators. P5 was the site mostly associated with metal 

concentrations while P1 and P3 with AC and AP indicators.  

In general, P5 was the most impacted by GM presenting the highest metal 

contamination in both water and sediment, the biggest area, and also the highest AP value, 

which means most of the area has been impacted in the last years with a rapid increase, 

despite it being impacted before 2015. However, more recently exploited sites like P1 and 



18 

 

 

P3 which had an abrupt growth since 2015 have similar metal contamination in water but a 

relatively lower metal contamination in sediments. P2, P4, P6 and P8, showed to be 

increasing but at a lower level than P1, P3 and P5, but showing a higher metal 

contamination in sediments and a lower metal contamination in water. Those points have a 

higher dynamic in its position than in its expansion. Otherwise, P7 seems to be reducing 

but still presenting GM activities near where the collection was done, showing a moderate 

metal contamination in water with Cd, Cr, Pb, Zn and temperature over the maximum 

permissible value and DO under the minimum. In P9, the AP value says that in 2020 the 

GM activities are reduced but metal contamination remains and other consequences like a 

low DO and the highest TSS value. 

 

Figure 6. PCA analysis for water and sediment. Dim1 and Dim2 axes are the first two 

principal components. Results of hierarchical cluster analysis for water and sediment are 

under its respective PCA plot. Sampling point location area shown in Figure 1 and its 

coordinates in Table S2. 

4. Conclusion 

Despite the importance of NRUB and other biodiversity hotspots in the Amazon 

which are under pressure due to GM activities, their severe consequences on LCLU change 

and environmental quality have not been addressed yet. We used remote sensing to 

determine the extent of GM areas from 2015 to 2020 and its relation with LCLU change 

during this 6-year period. The use of multisource data showed to increase classification 

accuracy, especially when spectral indices derived from optical image collection are 
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included. In order to reduce misclassification, the use of other spectral indices, lower 

resolution and automatization are recommended. LCLU change analysis helped to address 

the transition of each class determining a high loss of HDV, while GM and other 

degradative activities gained extent. GM doubled its extent from 0.15% (651 ha in 2015) to 

0.30% (1317 ha in 2020) of the total study area and post exploitation landscapes were 

mainly covered by AZ and LDV. There is no clear association of GM area change from 

2015 to 2020 with other variables like gold exploration and production, but it seems to 

increase with gold price and decrease when ARCOM increased its efforts to control mining 

in 2018 - 2019.  

The combination of GM area change indicators with environmental quality data 

have made it possible to evaluate the impact of the mining activity in an integrative way, 

showing that sites with higher increase of land cover and landscape degradation have an 

effect on water metal contamination and physicochemical parameters like TSS, DO and 

temperature, while sites with lower increase present a higher occurrence of metals in 

sediment and a major change of its location than its extent. Finally, sites where GM has 

reduced its activities showed a reduction in metal contamination but its consequences in 

physicochemical parameters like low DO and high TSS and turbidity remain long-term. 

These results are helpful to understand the impacts and dynamics of GM in LCLU change 

and environmental quality affectation in the period of study, and this integrative approach 

can be used in future environmental monitoring to avoid difficult access and the danger of 

mining sites, as well as prioritizing future sampling areas. While remote sensing is not a 

solution to the wave of illegal and/or environmentally damaging mining, it serves to have 

an image of the problem and thus readjust the policies or efforts of regulatory government 

entities. Future monitoring information will be key, because it can be used for long-term 

environmental management, as well as to know the recovery and rehabilitation of mining 

areas. These actions are essential to avoid or reduce negative impacts on communities, 

ecosystems, and water and aquatic resources. 
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ANEXOS (Supplementary Materials) 

 

Spatial dynamics of gold mining and its effects on the loss of tropical 

forests and water resources affectation, applying remote sensors: case of 

the upper basin of the Napo River, Amazonia, Ecuador. 

 
 
 

Table S1. Description of LCLU classes. 

LCLU classes Description Abbreviation 

High density 

vegetation 

Arboreal ecosystem, primary or 

secondary, regenerated by natural 

succession, or forest plantations 

HDV 

Low density 

vegetation 

Shrub or herbaceous vegetation that 

grows spontaneously or is planted for 

agricultural or pastoral purposes 

LDV 

Water of riparian 

zone 

Surface and associated volume of static 

or moving water 

RZ 

Anthropic zone Areas mainly occupied by homes and 

buildings intended for communities or 

public services 

AZ 

Bare soils Areas generally devoid of vegetation or 

degraded by human activity 

BS 

Gold mining Areas near rivers without vegetation 

cover where there is a constant removal 

of soil layers in search of gold 

GM 

Non observed Corresponds to areas that could not be 

classified due to clouds or shadows 

prevalence 

NO 

Roads Civil transport works It was reclassified 

into AZ 

Beaches Almost flat expanse of sand or rocks on 

the banks of a river 

It was reclassified 

into RZ 
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Table S2. Location of sampling sites. 

Sites Latitud Longitud 

P1 -1.108 -77.860 

P2 -1.138 -77.879 

P3 -1.137 -77.878 

P4 -1.115 -77.868 

P5 -1.102 -77.817 

P6 -0.987 -77.517 

P7 -0.972 -77.497 

P8 -1.036 -77.612 

P9 -1.050 -77.812 

 
 

 

Table S3. Overall accuracy and kappa statistics with different data combinations. 

 

Data combination 
Accuracy metrics 

Overall accuracy Kappa 

Optical 87.55% 0.797 

Optical + SAR 87.01% 0.793 

Optical + NDVI 87.11% 0.792 

Optical + SAR + NDVI 87.39% 0.799 

Optical + NDBaI2 87.68% 0.800 

Optical + SAR + NDBaI2 87.27% 0.797 

Optical + STRedindex 88.27% 0.810 

Optical + SAR + STRedindex 87.98% 0.809 

Optical + DEM 87.76% 0.801 

Optical + DFR 86.90% 0.787 

Optical + DEM + DFR 87.76% 0.801 

Optical + SAR + NDVI + NDBaI2 + 
STRedindex + DEM + DFR 

88.50% 0.818 
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Table S4. Accuracy and standard error of user and producer by classes. 

 

Classes 

User Producer 

Accuracy Standard Error Accuracy Standard Error 

HDV 92.81% 0.65% 98.34% 0.25% 

LDV 81.92% 1.64% 70.28% 4.16% 

RZ 95.12% 3.22% 91.90% 4.13% 

AZ 96.25% 2.60% 85.53% 2.61% 

BS 74.84% 8.33% 47.71% 7.69% 

GM 89.53% 2.72% 77.67% 4.33% 

NO 97.62% 2.38% 91.67% 8.33% 

Roads 49.94% 3.20% 90.00% 6.83% 

Beaches 89.37% 5.05% 95.54% 2.83% 

 
 

 

 

 

 

 
Figure S1. Gold mining land covers evolution from 2015 to 2020 in an example area. The 

background is a Sentinel-2A image for 2020. 
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Table S5. Cross-tabulation matrix between 2015 and 2020 classifications. 

 

 
Category 

2020 

HDV LDV RZ UA BS GM 

 

 

 

 

 
 

2015 

HDV 3803184 439475 14269 9654 44801 2668 

LDV 102243 242685 1396 11114 32219 1657 

RZ 4782 2447 58799 2710 133 1795 

AZ 5089 8083 2322 22833 4984 4495 

BS 16740 36418 1372 7004 12909 1208 

GM 535 1286 690 1795 547 1625 

 

 

 

 
 

Table S6. Changes between 2015 and 2020 classification per land cover class. 

Category Gain Persistence Loss Quantity Exchange Shift 

HDV 129389 3803184 510867 381478 258778 0 

LDV 487709 242685 148629 339080 290454 6804 

RZ 20049 58799 11867 8182 18646 5088 

AZ 32277 22833 24973 7304 44546 5400 

BS 82684 12909 62742 19942 109246 16238 

GM 11823 1625 4853 6970 9706 0 

Overall 763931 4142035 763931 381478 365688 16765 

(%) 15.57% 84.43% 15.57% 7.78% 7.46% 0.34% 
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Table S7. Gold mining area change indicators and water physicochemical parameters. 

 
Variable 

Sampling sites Normatives 

P1 P2 P3 P4 P5 P6 P7 P8 P9 CCME TULSMA EPA 

Area (ha) 75600 8100 40500 54900 992700 1215000 67500 13500 125100 - - - 

AC (%) 67.75 25 45.92 41.78 68.19 13.81 3.73 30.09 1.78 - - - 

AP (%) 1680 52.94 1500 179.41 490.91 74.26 34.88 248.21 2.62 - - - 

pH 6.91 6.70 6.55 6.67 6.80 7.75 8.06 7.18 7.79 6.5-8.5 6.5-9.0 6.5-9.0 

Conductivity (μS/cm) 
 

67.60 

 

25.30 

 

25 

 

53.80 

 

45.80 

 

194.10 

 

187.20 

 

152.30 

 

127.30 

 

500 

 

1000 

 

500 

Temperature (°C) 23.30 25.60 30 28.30 29.20 26.60 28.10 26.50 26.70 22.5-27.5 22.0-28.0 22.0-28.0 

Turbidity (NTU) 765 10.20 277 24 1457 12.90 28.20 339 1690 - 10 - 

OD (% sat) 80.60 81.50 75 76.20 76.60 77.30 76.90 56.50 50.80 >80 >80 >80 

ORP (mV) 90.60 147.30 86.30 142 67.30 172.70 86.60 71.30 89.40 - - - 

TDS (mg/L) 45.50 16.25 14.95 33.20 27.30 122 115 96.20 79.95 500 1000 500 

Salinity (g/L) 0.03 0.01 0.01 0.02 0.02 0.09 0.08 0.07 0.01 - - - 

Color (Pt-Co) 2800 82 375 63 3950 104 78 650 5250 - - - 

TSS (mg/L) 698.00 3 523.00 19 953.00 58 6 201.00 1024.00 - 130 - 

DOC (mg/L) 4.31 1.85 2.40 3.86 3.52 8.01 1.89 1.74 2.39 - - - 
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Table S8. Heavy metals concentration in water (μgL-1) and national and international normatives. 

 
Sampling sites CCME TULSMA EPA 

  

P1 

 

P2 

 

P3 

 

P4 

 

P5 

 

P6 

 

P7 

 

P8 

 

P9 
Short 

Term 

Long 

Term 

 

Freshwater 

 

Acute 

 

Chronic 

As 2.169 1.707 6.686 1.379 1.793 3.397 2.759 2.665 3.715 - 5.00 50.00 340.00 150.00 

Cd 0.487 0.733 0.176 0.191 0.434 0.176 0.783 0.347 0.266 1.00 0.09 1.00 1.80 0.72 

Co 2.145 0.506 1.944 0.451 4.486 0.389 0.610 1.714 4.518 - - 200.00 - - 

Cr <2.246 <2.247 2.593 <2.247 <2.247 <2.247 2.780 <2.247 2.306 
  

32.00 - - 

Cu 24.237 6.034 11.957 6.355 11.948 5.644 11.297 10.753 8.435 2.00 - 5.00 - - 

Ni 5.840 3.278 4.329 2.336 1.924 5.818 5.694 4.924 5.751 - 25.00 25.00 470.00 52.00 

Pb 6.108 10.538 5.693 0.716 14.500 1.651 1.674 2.420 5.494 - - 1.00 65.00 2.50 

Zn 88.404 30.047 43.411 9.256 144.194 18.943 50.845 50.643 23.301 37.00 7.00 180.00 120.00 120.00 
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Table S9. Heavy metals concentration in sediment (μgg-1) and national and international normatives. 

  

Sampling sites 

 

CCME 

 

TULSMA 

  

P1 

 

P2 

 

P3 

 

P4 

 

P5 

 

P6 

 

P7 

 

P8 

 

P9 
ISQG- 

TEL 

 

PEL 

 

Soil 

As 0.713 2.002 0.964 1.660 3.633 1.306 0.832 1.585 1.670 5.90 17.00 5.00 

Cd 0.013 0.011 0.010 0.021 0.037 0.023 0.020 0.028 0.024 0.60 3.50 0.50 

Co 1.698 3.789 2.269 3.511 6.292 2.234 0.895 3.949 2.841 - - 10.00 

Cr 4.755 19.095 11.364 10.120 36.729 9.949 4.321 11.896 7.105 37.30 90.00 20.00 

Cu 3.426 4.358 4.142 7.127 10.551 3.662 1.301 5.399 3.973 35.70 197.00 30.00 

Ni 2.550 4.886 4.062 5.061 8.715 5.714 2.002 4.336 3.395 - - 20.00 

Pb 0.387 1.201 0.856 1.011 2.169 0.968 0.342 1.141 1.050 35.00 91.30 25.00 

Zn 6.090 11.345 6.838 10.570 20.821 9.485 3.516 14.592 8.210 123.00 315.00 60.00 

 


