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Abstract 

 

Passive restauration is a common strategy for the recovery of the structure and 

functionality of forests throughout the world. The degree to which this has occurred is 

usually evaluated through the study of the plant and animal species present, and soil 

properties, while little attention has been paid to changes in the communities of soil 

microorganisms. In order to elucidate the influence of passive restoration in different 

terrestrial biomes on soil bacteria communities, microbial biomass, and the physical and 

chemical properties of soil, the present study undertook a meta-analysis of 82 articles to 

answer the following questions: (i) Does the resilience of soil microbiota and the physical 

and chemical properties of the soil after of a passive restoration process vary among 

terrestrial biomes? (ii) What are the levels of soil microbiota and the physical-chemical 

properties of restored forest compared with primary forest, within the different biomes? 

(iii) What are the most important soil properties contributing to the change on soil 

microbial biomass abundance in the passive restoration process? Our results showed that, 

in some biomes, the levels of soil properties, microbial biomass, and bacterial communities 

increased during the passive restoration process, but, even if the factors driving forest 

degradation are removed, the soil may not return to its original state. Moreover, we found 

that there are only moderate correlations between microbial C and N response ratios (RR) 

and SOC RR, in this restoration process. 

 

Keywords: passive restoration, soil microbial biomass, soil bacterial community, soil 

physical-chemical properties. 
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Resumen  

 

La restauración pasiva es una estrategia común para la recuperación de la estructura y 

funcionalidad de los bosques en todo el mundo. El grado en que esto ha ocurrido 

generalmente se evalúa mediante el estudio de las especies vegetales y animales presentes 

y las propiedades del suelo, mientras que se ha prestado poca atención a los cambios en 

las comunidades de microorganismos del suelo. Con el fin de dilucidar la influencia de la 

restauración pasiva sobre las comunidades de bacterias, la biomasa microbiana y las 

propiedades físicas y químicas del suelo, en diferentes biomas terrestres, el presente 

estudio realizó un metaanálisis de 82 artículos para responder a las siguientes preguntas: 

(i) ¿La resiliencia del microbiota del suelo y las propiedades físicas y químicas del suelo 

después de un proceso de restauración pasiva varían entre los biomas terrestres? (ii) 

¿Cuáles son los niveles de microbiota del suelo y las propiedades físico-químicas del bosque 

restaurado en comparación con el bosque primario, dentro de los diferentes biomas? (iii) 

¿Cuáles son las propiedades del suelo más importantes que contribuyen al cambio en la 

abundancia de la biomasa microbiana del suelo en el proceso de restauración pasiva? Los 

resultados mostraron que, en algunos biomas, los niveles de propiedades del suelo, 

biomasa microbiana y comunidades bacterianas aumentaron durante el proceso de 

restauración pasiva, pero, incluso si se eliminan los factores que impulsan la degradación 

forestal, es posible que el suelo no vuelva a su estado original. Además, se encontró que 

solo existen correlaciones moderadas entre los índices de respuesta (RR) de C y N 

microbianos y el RR de SOC, en este proceso de restauración. 

 

Palabras clave: restauración pasiva, biomasa microbiana del suelo, comunidad bacteriana 

del suelo, propiedades físico-químicas del suelo. 
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Abstract 

Passive restauration is a common strategy for the recovery of the structure and 

functionality of forests throughout the world. The degree to which this has occurred is 

usually evaluated through the study of the plant and animal species present, and soil 

properties, while little attention has been paid to changes in the communities of soil 

microorganisms. In order to elucidate the influence of passive restoration in different 

terrestrial biomes on soil bacteria communities, microbial biomass, and the physical and 

chemical properties of soil, the present study undertook a meta-analysis of 82 articles to 

answer the following questions: (i) Does the resilience of soil microbiota and the physical 

and chemical properties of the soil after of a passive restoration process vary among 

terrestrial biomes? (ii) What are the levels of soil microbiota and the physical-chemical 

properties of restored forest compared with primary forest, within the different biomes? 

(iii) What are the most important soil properties contributing to the change on soil 

microbial biomass abundance in the passive restoration process? Our results showed that, 

in some biomes, the levels of soil properties, microbial biomass, and bacterial communities 

increased during the passive restoration process, but, even if the factors driving forest 

degradation are removed, the soil may not return to its original state. Moreover, we found 

that there are only moderate correlations between microbial C and N response ratios (RR) 

and SOC RR, in this restoration process. 
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1. Introduction  
 

Land-use changes are the main causes of the loss of biodiversity and the structure of 

terrestrial ecosystems (Nepstad et al., 1999; Asner et al., 2009; Gibbs et al., 2010; Köhl et 

al., 2015). Restoration is an important strategy to recover the structure and functionality 

of ecosystems after disturbance (Benayas et al., 2009; Bullock et al., 2011) and passive 

restoration has been shown to be effective in the recovery of abandoned agricultural lands 

throughout the world (Cramer et al., 2008; Guariguata and Ostertag, 2011; Shimamoto et 

al., 2018), with benefits including maximizing biodiversity, provision of ecosystem services, 

landscape connectivity, and improving soil quality (Zhang, et al., 2011: Crouzeilles et al., 

2015). Assessment of the effectiveness of passive restoration to return an ecosystem to its 

original state has been mainly based on the study of plants, animals, and soil properties 

(Liu, 2003; Long, 2014; Chazdon and Guariguata, 2016; Deng et al., 2017; Meli et al., 2017). 

Its ability to restore communities of soil microorganisms, however, has received little 

attention and is still uncertain.   

 

Microbial biomass and community structure are vital in mediating biogeochemical cycles. 

Indeed, microbial biomass is the most active fraction of the soil organic matter. Bacteria 

are the major natural agents responsible for nitrogen fixation and transformation in forest 

ecosystems (Reed et al, 2011) and are considered to be highly important in decomposing 

dead fungal biomass and thus incorporate cellulose-derived organic matter into the soil 

(Štursová et al, 2012; Eichorst and Kuske, 2012; Brabcová et al. 2016; López-Mondéjar et 

al. 2016).  Within the domain Bacteria, the phylums Proteobacteria (copiotrophic), 

Actinobacteria (copiotrophic) and Acidobacteria (oligotrophic) play a vital role in the 

carbon cycle and have a function in recovering soils as beneficial to soil nutrient cycling 

(Aislabie et al., 2013; Fierer et al., 2007; Huang et al., 2015; Kielak et al., 2016).  

 

Therefore, understanding the changes in the soil microbial biomass and bacterial 

communities during passive restoration activity is essential to our comprehension of 

forests’ responses to perturbations and restoration activities. It is currently understood 

that changes in soil microbial communities during secondary succession are influenced by 

several factors, such as pH, concentrations of carbon (C), nitrogen (N), and phosphorus (P) 
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(Fierer and Jackson, 2006; Banning et al., 2011), land-use history (Jangid et al, 2011), and 

plant-microbe interactions (Tarlera et al., 2008). These also vary across different spatial 

scales and ecosystems (Fierer and Jackson, 2006; Tripathi et al., 2016; Zeng et al, 2017; Cai 

et al., 2018).  

 

Previous global analyses have examined changes in microbial communities and soil 

properties, according to types of disturbance, methods of restoration, types of ecosystems, 

and the state secondary succession (Zhao, et al., 2019, Zhou, 2020). For example, Zhao, et 

al., (2019) developed a global meta-analysis and found that soil microbial biomass, and soil 

bacterial and fungal abundance increased during the first 10 years, but decreased beyond 

30 years. Zhou, et al., (2017) showed that the proportion of fungi to bacteria was 

significantly higher in forest than in grasslands and Zhou et al. (2018) found a significant 

correlation between microbial C:N ratio and soil pH and C: N. Nonetheless, these studies 

did not distinguish between primary forests and restored forests, which is key to 

understanding the stability and resilience of terrestrial ecosystems. 

 

This meta-analysis aims to elucidate the influence of secondary succession on soil bacteria 

communities, microbial biomass, and the physical and chemical properties of the soil, in 

different terrestrial biomes. Thus, the following questions were addressed: (i) Does the 

resilience of soil microbiota and the physical and chemical properties of the soil after of a 

passive restauration process vary among terrestrial biomes? (ii) What are the levels of soil 

microbiota and the physical-chemical properties of restored forests compared with primary 

forest, within the different biomes? (iii) What are the most important soil properties 

contributing to the change on soil microbial biomass abundance in the passive restoration 

process? The goal is to contribute to understanding the responses of soil properties, 

microbial biomass, and soil bacterial communities to the passive restoration process, 

beyond the microhabitat scale, and the degree to which forest soils can recover after 

disturbance. This research will also provide information on soil bacterial communities' 

stability and resilience in major terrestrial biomes. 
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2. Materials and methods  

 

2.1. Searching literature and data extraction 

 

2.1.1. Literature search 

 

We conducted an extensive literature survey through the ISI Web of Science and Google 

Scholar, using the following search term combinations: secondary succession, succession 

forest, restored and primary forest, natural succession, following agricultural 

abandonment, cropland, secondary forest regeneration, chrono sequence forest and soil 

microbial, microbial community, microbial biomass, soil bacterial and soil microorganisms.  

 

We looked for the following variables: (a) soil properties, including soil pH, soil organic 

carbon (SOC), soil total nitrogen (TN) and soil carbon to nitrogen ratio (C:N  ratio); (b) 

microbial biomass properties, namely microbial biomass carbon (MBC), microbial biomass 

nitrogen (MBN) and microbial C:N ratio (microbial C:N); (c) and six variables representing 

bacterial community compositions: relative abundances of Acidobacteria (AcidoB), 

Actinobacteria (ActinoB) and Proteobacteria (ProteoB), in the studies that met the 

following  criteria: 

 

Selection criteria: 

- 30-45-year-old forests whit passive restoration (restored forest) that were 

recovering from farmland or logging (degraded lands), with comparable data 

from forest in which no disturbance has ever been reported (primary forest), 

in the same abiotic and biotic conditions. 

- Data of the chosen variables (means, observation numbers, and standard 

deviations or standard error), reported directly in the papers assessed.  

- Data of the A horizon or a topsoil layer (0–10, or 0–15 cm), no others. 

-  Restored forests reported in the same article but with different 

environmental variables (e.g. passive restoration conducted under several 

geographical locations), were considered as independent studies.  
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2.1.2. Data extraction 

- We mapped location of studies using QGIS 10.2.   

- We chose the Terrestrial Biomes represented at least by three data points in 

each analysis variable (n > 3).    

-    We digitized figures with means and errors using PlotDigitizer 2.6.2 

(http://plotdigitizer.sourceforge.net). 

- We transformed standard errors (SEs) to SDs, when necessary, using the 

formula: SD = SE (n1/2). 

 

We included 82 papers in this synthesis (Appendix), 39 grouped in “Degraded lands vs. 

Restored forest”, and 43 in “Primary forest vs. Restored forest”. These papers represent 

three terrestrial biomes: Temperate broadleaf & mixed forest, Tropical & subtropical moist 

broadleaf forest, and Montane grasslands & shrublands, adapted from Olson et al. (2001). 

 

 

Figure 1. Spatial distribution of the present meta-analysis carried out on a global scale for 
the period 1997-2020. 
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2.2. Meta-analysis 

 

2.2.1 Response ratios 

We used the response ratio (RR) (Gurevitch and Hedges, 1999; Hedges et al., 1999) to 

determine the effect of secondary succession (data: Degraded lands vs. Restored forest) 

and forest degradation (data: Primary forest vs. Restored forest) on which variable, and 

calculated by Eq. (1). 

  (1) 

Where Xe and Xc are the means of the concerned variable in the experimental group 

(restored forest) and control group (degraded lands or primary forest) respectively.  We 

calculated the variance (v) associated with each lnRR using the means, replicate numbers, 

and SDs of both experimental and control groups.   

Because we considered subgroups (terrestrial biome types) in the meta-analysis and these 

subgroups were not randomly chosen, but represent fixed levels of a chosen characteristic 

to assess (Borenstein and Higgins 2013), we employed a fixed-effects-model and calculated 

the weighted mean of the natural logarithm of the response ratio (ln RR++) (Eq. 2). 

(2) 

where k is the number of observations and w is the equals the reciprocal of the variance 

(1/v). 

Also, we transformed the lnRR++ into the change percentage (A) to estimates the recovery 

percentage of the analyzed variables in the passive restoration process (Degraded land vs. 

Restored forest), and the percentage changes of the same variables concerning reference 

forest (Primary forest vs. Restored forest) (Eq. 3).  

The recovery effect was considered significant when the confidence interval (CI) of the 

change percentage at the 95% level did not overlap with zero, (Koricheva et al., 2013). 

 

  (3) 
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Therefore, in this meta-analysis, A+ represents a result that favors the experimental group 

(restored forest), while A- shows a result that favors the control group (degraded lands or 

primary forest). 

 

2.2.2. Subgroup analysis and publication bias 

We identified whether microbial biomass, bacterial community composition and soil 

properties change percentages differed among the subgroup (terrestrial biomes) by using 

a one-way analysis of variance (ANOVA or MetaAnova). Then, we estimated a linear 

regression analysis to examine the relationships between the RRs of microbial biomass and 

the RRs of soil properties for the two data: “Degraded lands vs. Restored forest” and 

“Primary forest vs. Restored forest”. We used the Egger test to check for publication bias 

(p 0.01).  

Meta-analysis was conducted with Rstudio software. 

3. Results 

 

3.1. Effect of passive restoration on soil microbial biomass, bacterial 

communities and soil properties recovery  

 

Degraded lands vs. Restored forest  

Microbial biomass, bacterial diversity, and soil properties levels were greater in restored 

forest than in degraded lands (Figure 2). Subgroup analysis and ANOVA revealed that 

microbial biomass carbon increments, as an effect of passive restoration, were different 

among the three biomes (p<0.05), in the following descending order: temperate broadleaf 

& mixed forest (29%); tropical & subtropical moist broadleaf forest (11%); montane 

grasslands & shrublands (4%). Microbial biomass nitrogen, microbial C:N ratio, bacterial 

communities and soil properties were only analyzed for temperate broadleaf and mixed 

forest, due to the lack of published data for other biomes.  

 

Within bacterial phyla, forest restoration consistently increased the relative abundances of 

Acidobacteria, Actinobacteria, and Proteobacteria in the temperate broadleaf and mixed 

forest (<40%) (Figure 2). Moreover, restored forest of temperate broadleaf and mixed 

biome had 70% more SOC, 70% more TN, 60% greater C: N, and 37% higher pH than 
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comparable degraded lands. Similarly, the passive restoration of montane grasslands and 

shrublands biome also increased soil TN amount (60%) (Figure 3).  

 

                                                           

Figure 2. Effects of passive restoration on microbial composition (Microbial biomass C: 

microbial biomass carbon, Microbial biomass N: microbial biomass nitrogen and Microbial C: N: 

microbial C:N ratio), and bacterial community (AdcidoB: Acidobacteria, ActinoB: Actinobacteria, 

ProteoB: Proteobacteria) with respect to degraded lands (Degraded lands Vs. Restored forest) and 

reference forest (Primary forest Vs. Restored forest). The bars represent the 95% confidence 

intervals (CIs). The vertical dashed lines are the reference of a response ratio of zero and the 

numbers in parentheses are sample sizes. 
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Primary forest vs. Restored forest  

 

Microbial biomass carbon was higher in restored forest when compared to primary forest 

in temperate broadleaf and mixed forest biome (Figure 2). In contrast, microbial biomass 

nitrogen was 25% lower in restored montane grasslands and shrublands soils, while in 

tropical and subtropical forests the soil microbial biomass differences between primary 

forest and restored forest were not significantly different (p>0.05) (Figure 2).  On the other 

hand, Acidobacteria and Proteobacteria showed about 10% more in primary forest, 

compared to restored forest in temperate broadleaf and mixed forest, and tropical and 

subtropical forests. Conversely, Actinobacteria abundance depended on the biome 

(p<0.001), with 20% fewer in restored tropical and subtropical moist broadleaf forests, but 

75% more in restored temperate forests, compared to examples of primary forest. 

Additionally, in the comparison of primary forest and restored forest, the metaANOVA 

showed that SOC and soil C: N levels were also influenced by biome type (p<0.05) (Figure 

3). On the other hand, soil pH did not differ significantly between primary forest and 

restored forest (<3%).  
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Figure 3.- Effects of passive restoration on soil properties (Soil N: soil nitrogen; SOC: soil 

organic carbon; soil C: N: soil carbon to nitrogen ratio) with respect to degraded lands (Degraded 

lands Vs. Restored forest) and reference forest (Primary forest Vs. Restored forest). The bars 

represent the 95% confidence intervals (CIs). The vertical dashed lines are the reference of a 

response ratio of zero and the numbers in parentheses are sample sizes  

 

3.2. Factors affecting soil microbial biomass in a passive restoration  

 

There were only moderate correlations between microbial C and N response ratios (RR) 

and SOC RR, in the restored forest from degraded lands (Figure 4). In contrast, microbial C 

RR between primary forest and restored forest was highly correlated with SOC (R = 0.75, p 

= 0.03).  
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Figure 4.- Relationships between the response ratios (RRs) of soil properties (soil C: N: soil 

C:N ratio; SOC: soil organic carbon) and the RRs of microbial composition (microbial C: microbial 

biomass carbon; microbial N: microbial biomass nitrogen; microbial C: N: microbial C:N ratio). Gray 

color: Primary forest vs. Restored forest; Green color: Degraded lands vs. Restored forest. 
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4. Discussion 

 

4.1. Effect of passive restoration on soil microbial biomass, bacterial 

communities and soil properties recovery. 

 

We found that the microbial biomass, soil bacterial communities and soil properties were 

affected by the passive restoration process (Figure 2). Compared with degraded lands 

(farmland or logging), soils of restored forest were significantly richer, which was consistent 

with other meta-analyses conducted at the global scale (Fierer et al., 2009; Lange et al., 

2015; Khlifa et al., 2017; Chen et al., 2019). Furthermore, we also found that increases in 

microbial biomass, soil bacterial communities and soil properties during regeneration 

depends on the geographic location of the restored soil. Thus, the trend for microbial 

biomass to return to natural levels also may depend on the biome analyzed (Figure 2). 

Our analysis showed that passive restoration successfully recovers the relative abundance 

of Acidobacteria, Actinobacteria, and Proteobacteria (Figure 2). Previous research 

suggested that there are competitive interactions between copiotrophs (Proteobacteria) 

and oligotrophs (Actinobacteria and Acidobacteria) during the restoration process (Ramirez 

et al., 2012; Guo et al., 2018; Chen et al, 2018). However, our results suggest that 

Acidobacteria, Actinobacteria, and Proteobacteria showed a similar percentage of relative 

abundance recovery in restored forest. Moreover, this study showed that different biomes 

influence the magnitude of soil bacterial communities’ recovery during regeneration.   

 

4.1.1 Degraded lands vs. Restored forest 

 

Montane grassland and shrublands biome 

 

Microbial biomass carbon recovery in restored forest of 4% compared to degraded lands 

was not significant in this biome, probably because the number of cases was low and 

therefore the 95% CI of MBC percentage of change was larger. However, this could be 

characteristic for this biome. Soil microorganisms of high-elevation ecosystems respond 

sensitively to changes in land use because low temperatures limit soil development, 

primary productivity, and nutrient cycling (Körner, 2003; Bühlmann et al., 2011). Moreover, 
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lower MBC recovery could be also associated with the forest revegetation direction, which 

can be affecting by restoration type (Zhang, et al., 2011; Cao, et al., 2017). Invasive species 

that are out of balance with the local ecology are a major problem in secondary forests and 

are usually not controlled in passive restoration (Anderson, 1995), with ecological impacts 

that range from local suppression of native species to whole-scale changes in the 

functioning of ecosystems (Mack, 1986; Chornesky and Randall, 2003).  For example, the 

expansion of Green Alder (Alnus viridis) across the Alps is much faster than the re-growth 

of the primary montane forests there (Anthelme et al., 2007; Svensk, et al., 2021), leading 

to increases in total nitrogen (TN) given that alders fix nitrogen (Figure 3). 

 

Temperate broadleaf and mixed forest 

 

In the restored temperate forest, MBC and MBN level increased by 29% and 85% 

respectively, compared with degraded lands, which was significantly higher than other 

biomes (Figure 2). It is probably because the warm weather and humid climate are 

favorable for regeneration, which provides a positive rhizosphere effect on soil 

microorganisms (Rutigliano et al., 2004; Singh et al.,2004; Mackay et al., 2016). This 

enhancement of plant productivity and litter biomass would lead to accumulation of soil 

organic matter (Figure 3), which is an important substrate for soil microbes (Camenzind et 

al., 2018; Chen et al., 2018). Also, compared with montane grasslands, the leaf litter here 

decomposes faster and presents better nutrition (e.g., balanced nitrogen availability) 

(Kanerva and Smolander, 2007). In addition, our study demonstrated an increase in pH in 

response to passive restoration process, which is important because lead to changes in the 

microbial community (Fierer and Jackson, 2006; Rosenzweig et al., 2016). 

 

The abundance of different bacteria phyla varied in the restored forest soil in this biome 

and there were differences between these and those of degraded lands.  Proteobacteria 

are known to be copiotrophic, and their presence correlates positively with C and N pools 

(Goldfarb et al., 2011; Zhang et al., 2016), while both Actinobacteria and Acidobacteria are 

often considered oligotrophs and are adapted to resource-limited conditions (Fierer et al., 

2007). Interestingly, there are not significant differences between the percentages of 

recovery of Acidobacteria and Proteobacteria, which may suggest that late-state restored 
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forests do not show a distinction between the recovery of copiotrophic groups and 

oligotrophic groups in this biome. 

 

Tropical and subtropical moist broadleaf forest  

 

The present meta-analysis showed only small amounts of microbial biomass in soils of 

restored forests. Although the researchers found for this biome has focused mainly on 

MBC, this difference might be because soils in the (sub) tropical forests can be highly 

weathered and depleted in phosphorus, and constrain the accumulation of organic C, 

which can limit soil microbial growth (Nottingham et al., 2015; Vitousek et al., 2010; He et 

al., 2020; Miki et al, 2020). Thus, these characteristics prevent a positive correlation 

between high productivity and microbial biomass (Prach and Walker, 2020). This may also 

be related to rapid litter decomposition in this warm, moist environment, in which 

nutrients are assimilated almost immediately by plants (Palm et al., 2007). Although some 

studies report that plant diversity increases soil microbial biomass across a diverse range 

of terrestrial ecosystems (Zak et al., 2003; Lange et al. 2015; Chen et al., 2019), our study 

did not show this relation in the terrestrial biomes.  

 

4.1.2. Primary forest vs. Restored forest 

 

Montane grassland and shrublands biome 

 

MBN level of montane grasslands and shrublands was 25% lower in restored forest, 

compared primary forest, in contrast to the case of tropical and subtropical moist broadleaf 

forests. The difference between primary forest and restored forest in microbial biomass C: 

N levels was only 3% (Figure 2 and 3), suggesting that the passive restoration process does 

not change the proportion of bacterial to fungal biomass, but does change the capacity of 

microbial communities to decompose biomass, fix N, and mineralize N (Jia et al., 2005; Guo 

et al., 2018). Besides, forest regeneration affects the quality of SOM, preventing the 

availability of C, which was reflected in the SOC level for degraded lands (Figure 3).  

Although the difference in SOC between primary forest and restored forest is just 10%, it is 

the highest among the three biomes that were studied. This could be a consequence of 
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burning or grazing, which are factors that significantly influence the accumulation of dead 

biomass in primary grassland and shrublands (Baer, 2002). Despite this, our results showed 

the total SOC would be natural regeneration of this biome (Figure 3). This is a promising 

result since grasslands are important ecosystems for global C and N cycles, considering that 

they store 10–30% of SOC globally (Follett and Reed, 2010; Qiu et al., 2013).  

 

Temperate broadleaf and mixed forest 

 

MBC level was significantly higher (185%) in restored forests than primary temperate 

forests. This may be due to the qualities and quantities of primary forest leaf litter, which 

contains more lignin and nitrogen (Figure 3), ultimately limiting microbial growth (Schipper 

et al., 2011; Griffiths and Philippot, 2013; Hawkes and Keitt, 2015; Zhang et al., 2016). 

Nonetheless, the main bacteria phyla relative abundance in the restored forest was similar 

that of primary forests. This may be due to the fine-textured soils of temperate forests that 

have silt contents between 50% and 80%, which is more favorable for bacterial growth 

because they improve the water-holding capacity and nutrient availability, in addition to 

protecting against bacterial grazers (Xu et al, 2018). Thus, for environmental restoration 

objectives, our results are encouraging since the major recycling pathways in temperate 

forests is microbial decomposition (Pausas and Bond, 2020). 

 

Tropical and subtropical moist broadleaf forest  

 

Although there are only a few data to support a trend of MBC recovery back to levels found 

in primary forest, our results showed similar MBN, microbial C: N ratio, SOC and TN, 

Acidobacteria, Actinobacteria, and Proteobacteria abundance in the restored and primary 

tropical forests (Figure 3 and 4). Tropical/subtropical forest soil property recovery could be 

due to the structure of these forests. For instance, trees and other species that inhabit 

forest canopies (e.g., epiphytes, lianas), together with understory vegetation, may increase 

soil carbon and nutrient input quantity and quality during passive restoration process 

(Santiago and Wright, 2007).  Furthermore, the recovery of the properties of these soils 

after a perturbation (e.g., farming) could be easier due to the lower natural levels of 

nutrients (Xu et al., 2018). The present study confirmed that passive restoration is a viable 
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way to mitigate anthropogenic impacts on tropical forest soils (Deng et al., 2016, 

Shimamoto et al., 2018), even though a full return to the enormous species richness of 

these forests will take a long time (Chazdon and Guariguata, 2016). 

 

Our result showed that a passive restoration strategy does contribute to the recovery of 

the relative abundance of bacteria in the Acidobacteria and Proteobacteria to levels similar 

to those of primary forest. Actinobacteria, however, do not respond in same way (Figure 

2). Curiously, a meta-analysis of bacterial responses to land-use changes across the tropics 

forest found a consistent decline in Acidobacteria and Proteobacteria and increases in 

Actinobacteria (Petersen et al., 2019). 

 

4.2. Factors affecting soil microbial biomass in a passive restoration  

We found that the response ratios of MBN and microbial C: N did not show 

correlations with the response ratios of SOC or soil C: N. The response ratio of SOC showed 

a positive correlation with the response ratio of MBC in degraded lands vs. restored forest, 

which means that increasing soil C inputs through plant root exudation and litter 

production may likely stimulate microbial biomass production. 

5. Conclusion 

 

Terrestrial biomes show different trends and magnitudes of recovery of microbial 

biomass, bacterial communities, and physical and chemical soil parameters. In some 

biomes, passive restoration may partially offset the losses of SOC, TN, soil C: N ratio, and 

bacterial communities, caused by land degradation. However, removing the human activity 

that caused the degradation may not necessarily cause the system to revert to its natural 

state, or recovery could be very slow (> 40 years). This last result may be verified by 

increasing the microbial diversity component in the present meta-analysis. Finally, new 

efforts are needed to quantify the effect of restoration on soil bacterial communities and 

its factors associated with all terrestrial biomes, including primary forests as experimental 

controls. 
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