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Abstract: As the number of legal and illegal gold mining sites increases in the Andes–Amazonia
region, integrative methods to evaluate the effects of mining pollution on freshwater ecosystems are
of paramount importance. Here, we sampled water and sediments in 11 sites potentially affected by
gold mining activities in the Napo province (Ecuador). The environmental impacts were evaluated
using the following lines of evidence (LOEs): water physicochemical parameters, metal exposure
concentrations, macroinvertebrate community response (AAMBI), and toxicity by conducting bioas-
says with Lactuca sativa and Daphnia magna. Dissolved oxygen and total suspended solids were under
(<80%) and above (>130 mg/Ls) quality standards 65% of the sites. Ag, Al, As, Cd, Cu, Fe, Mn, Pb,
and Zn in water and V, B, and Cr in sediments were detected above quality standards at sampled
sites. Nine out of eleven sites were classified as having bad environmental quality based on the
AAMBI. L. sativa seed germination in both water (37% to 70%) and sediment (0% to 65%) indicate
significant toxicity. In five sites, neonates of D. magna showed a 25% reduction in survival compared
to the control. Our integrated LOEs index ranked sites regarding their environmental degradation.
We recommend environmental impact monitoring of the mining expansion at the Andes–Amazonia
region using multiple LOEs.

Keywords: metals; environmental monitoring; bioassays; Amazon River; Amazonia; mining

1. Introduction

The Amazon basin has been historically impacted by mining activities [1–3]. Mineral
soils underlying the Amazon forests contain elevated levels of gold, whose exploitation
results in intensive land-use modifications [4] and freshwater contamination with mining
tailings [5]. Mining areas are expanding in protected and unprotected areas of the Amazon
due to governmental incentives [6–8]. Moreover, illegal mining has recently expanded in
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several parts of the Amazon basin, which has resulted in an environmental impact whose
extension is difficult to ascertain [4,9].

Between 2008 and 2009, the Ecuadorian government redefined policies to promote the
growth of the mining sector [10]. During the 2008–2018 period, mining exports increased
by 86%, positioning it as the fourth product of exportation in Ecuador [11]. Given the
importance of gold mining to Ecuador’s economy and the proliferation of mining conces-
sions, information on the environmental impacts caused by this activity is crucial. The
ecosystems on the eastern Andes of Ecuador, at the transitions with Amazonia, have been
largely impacted by gold mining activities [12,13]. In the last decade, new gold mining
concessions have been approved in the Napo province [8]. Until 2020, 152 concessions
were registered at the national mining cadastre [14], most of them located along the Anzu
and Jatunyacu rivers, where alluvial gold mining predominates. About 60% of the conces-
sions were authorized for artisanal mining, leaving the remaining ones for industrial or
medium-scale mining. The mining scale is defined by extension, the processed volume of
material, and the degree of financial investments [10,14]. Even though artisanal small-scale
gold mining (i.e., mining without heavy machinery and granted to small companies or
local communities) is the most common authorized concession, industrial gold mining
represents 98% of the total territory for the exploitation of gold in the Napo province
(33,718 ha).

To effectively assess the ecological impacts caused by gold mining activities, integra-
tive studies that involve different lines of evidence (LOEs), such as geochemical assess-
ments, ecotoxicological tests, and biological monitoring, have been proposed [15]. While
physicochemical and metal exposure analyses provide information on the kind and degree
of the contamination, ecotoxicological tests and bioassays are used to describe the potential
biological effects of the measured contamination levels on sentinel species [16,17]. In addi-
tion, biological monitoring evaluates structural changes in the ecosystem and identifies
sensitive species to different pollution levels. The integration of these multiple LOEs has
been traditionally used in the risk assessment of contaminated sites to elucidate cause–
effect relationships and allows the characterization of sampling sites regarding the nature
and magnitude of the ecological impact [17–19].

Some studies have characterized the environmental concentrations of metals and met-
alloids (hereafter referred to as metals) in freshwater ecosystems of the Andean–Amazon
region impacted by mining activities, indicating the exceedance of national and interna-
tional quality standards [12,20]. However, the impacts of these metals on relevant biological
endpoints for the Andean–Amazon region have not been evaluated. This is of utmost
importance given the relevance of this region for maintaining the hydrological dynamics
of the Amazon basin and several ecosystem services, including water and food source
provision for local communities and biodiversity preservation [21,22]. For instance, the
rivers of the Napo basin drain from the steep Andean slopes towards Amazonian lowlands,
so it is expected that mining impacts along the river course can extend to the lower parts of
the Amazon basin.

The aim of this study was to characterize the environmental concentrations of metals
in selected areas of the Napo region and to evaluate their impacts on freshwater ecosystems
by providing an ecosystem impact classification ranking based on several LOEs, including:
(1) water physicochemical parameters, (2) metal exposure in water and sediments, (3) ben-
thic macroinvertebrates, and (4) bioassays performed with model plant and invertebrate
species. Through this study, we characterize the magnitude and spread of the contami-
nation posed by medium-scale to industrial-scale gold metal mining in the Ecuadorian
Andes–Amazonia region and provide a method that can be extrapolated to other regions
to assess the degree of environmental degradation.



Toxics 2021, 9, 149 3 of 14

2. Materials and Methods
2.1. Study Area and Sampling

Our study focused on the mining conducted at the tributaries of the Anzu, Jatunyacu,
and Napo rivers (the latter being formed by the union of the two previous ones). These
three rivers comprise about 90% of the gold mining concessions in the Napo province.
The Napo province has precipitation rates above 4000 mm/y. In addition to the great
biodiversity of flora and fauna, the study area is known to be a geodiversity hotspot, given
the content of high-value minerals, such as gold. Gold alluvial deposits of the types of
placer and paleoplacer predominate in the area.

Eleven sites located along rivers directly affected by medium-scale to industrial-scale
gold mining were sampled in December of 2020 (Figure 1; Table S1 of Supplementary Mate-
rials). Precipitation above 1 mm was not registered the day before sampling (Meteorological
Station of Ikiam University, http://meteorologia.ikiam.edu.ec:3838/meteoviewer/ (ac-
cessed on 17 November 2020)). All sites were located within mining concession territories.
Surface water (100 mL) and surface sediment (150 g) samples were taken. Water samples
were filtered and then acidified (to pH 2) in the field with HCl for metal analysis. After
collection, water and sediment samples were stored at 4 ◦C for no longer than 1 month until
processing. Additionally, water samples (1 L) were collected in plastic bottles and stored at
4 ◦C for performing bioassays. Macroinvertebrates were collected using a D-shaped net,
according to the methods described by [23]. For this, the benthic substrate was disturbed
for 5 min in riversides, ponds, under the rocks, and leaf packs to collect all representative
organisms. The macroinvertebrate samples were stored in glass flasks with 96% alcohol
and then transported to the laboratory for organism counting and identification.
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2.2. Measurements of Physicochemical Parameters

Conductivity, pH, ORP, total dissolved solids (TDS), and dissolved oxygen (DO) were
measured in situ using a professional plus multiparameter. Turbidity was measured in
situ with a HACH 2100 Q turbidimeter. The equipment was previously calibrated with
standard solutions. In the laboratory, dissolved organic carbon (DOC) concentrations were
measured using a total organic carbon analyzer (TOC-L Shimadzu, Kyoto, Japan). The total
suspended solids (TSS) were analyzed according to [24]. Water hardness was determined
according to [25].

2.3. Metal Analyses

Dissolved metal analyses in the water and sediment samples were performed at
the Laboratory of the University of Cuenca (Ecuador) after acid digestion using 8 mL
of ultrapure nitric acid and 2 mL of hydrochloric acid (Merck trend). The samples were
analyzed in triplicate using a Perkin Elmer 350X ICP-MS (Walthan, MA, USA). The standard
method was used for 44 metals, both in water and sediments. For the reading of metallic
and nonmetallic analytes, an adaptation of Method 200.8 EPA (United States Environmental
Protection Agency) was used [26]. Calibration curves were created from a multielement
standard Inorganic Venture, at concentrations from 0.1 to 0.0005 mg L−1. Quality control
for major and trace elements analysis was implemented using certified reference water
(CRM 1640a) and sediment (CRM 1646a) (NIST, Gaithersburg, MD, USA) every 10 samples,
as well as at the beginning and at the end of each sample batch. Recovery percentages were
calculated to determine possible matrix effects and method accuracy. All major and trace
metal concentrations were corrected based on the recovery percentages obtained in each
analysis, which ranged from 91% to 100% for water and 69% to 93% for sediments.

2.4. Calculation of the Andean–Amazon Biotic Index for Macroinvertebrates

All macroinvertebrates were classified and identified taxonomically to the family
level using specialized taxonomic keys [23,27]. Then, the Andean–Amazon Biotic Index
(AAMBI) [28] was calculated for each sampling site. This index assigns a numerical value
to each macroinvertebrate family, which goes from 1 for contamination-tolerant families
to 10 for highly susceptible ones. The sum of these numerical values is classified into five
water quality categories: excellent (>121), very good (90–120), good (50–89), regular (36–49),
and bad (<35).

2.5. Bioassays

Bioassays with Daphnia magna and Lactuca sativa were performed at the National
Reference Laboratory for Water of the Universidad Regional Amazónica Ikiam (Ecuador).
Ten neonates of D. magna of 24 h of a parthenogenetic culture (4th generation) were exposed
to 10 mL of water from each sampling site and standard culture medium as a control [29],
using two replicates. After 48 h, the survival rate was calculated. The L. sativa tests were
performed by exposing seeds to the collected water and sediment samples according to [12]
and [19]. 2.5 mL volume of the water samples and control (distilled water) was transferred
in duplicate to filter papers in Petri dishes. Then, 15 L. sativa seeds were evenly distributed
on fully moistened filter papers. Petri dishes were covered with aluminum foil and allowed
to stand for 5 days in the dark at room temperature. For sediment samples, 15 seeds were
evenly distributed in 10 g of sediment in a plastic container (100 mL). The sediment used
as a control was taken from an area far from any source of contamination. The containers
were then incubated at 25 ◦C in the dark for 24 h and maintained under a 12 h/12 h
(light/dark) photoperiod for 14 days. After that, germination rates and root elongation of
the germinated seedlings were measured.

2.6. Data Analyses

Metal concentrations in water samples were compared to the environmental quality
standards established by the Ecuadorian legislation [30], the United States Environmental
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Protection Agency [31], and the Canadian Environmental Quality Guidelines [32]. As for
sediment samples, the CCME (2002) environmental quality standard was used. Measured
concentrations were compared to the threshold effect level (TEL), which represents the
concentration below which rare adverse biological effects are expected, and to the probable
effect level (PEL), which defines the level above which adverse effects are frequently
expected to occur [33].

Statistically significant differences in the survival rate of D. magna in the control and
in the collected water samples were assessed using the Student’s t test. The assessment
endpoints in the L. sativa tests were the germination percentage and the average length
of the root of the germinated seedlings. Statistically significant differences between the
water and sediment controls and the collected samples for the L. sativa endpoints were also
evaluated with the Student’s t test. Prior to that, the normality and homoscedasticity of the
root length data were evaluated using the Shapiro–Wilks and Fligner tests, respectively.
Samples were considered toxic or eutrophic when the mean length of the seedlings was sig-
nificantly lower or higher than the control, respectively. Statistically significant differences
were assumed when the calculated p-value was ≤ 0.05.

The integration of the four LOEs (i.e., physicochemical parameters, metal exposure,
biological monitoring, bioassays) was carried out using an integrated quantitative index
that uses the complete decision matrix for the four LOEs [19]. We assigned seven classes of
normalized values from 0 to 5 to each of the LOEs depending on multiple criteria (Table S2,
Supplementary Materials). The sum of the assigned scores to each site can be interpreted
as the degree of environmental impact, where the maximum index value is 20 (i.e., no
observed degradation), and the minimum index value is 0 (i.e., full degradation).

Principal component analysis (PCA) was used to explore the relationship between the
physicochemical parameters, metal concentrations, the AAMBI values, and the results of
the toxicity bioassays in the water and sediments samples. Only the metals Ag, Al, As, Cd,
Cu, Fe, K, Mg, Na, Ni, Mn, Pb, and Zn and the parameters TSS, DO, color, and conductivity
were retained in this analysis. All variables were normalized by site, by setting the sum of
squares equal to 1. The first two principal components (PCs) were investigated, and their
correlations to each variable were tested through Pearson’s correlation test.

Hierarchical cluster analyses were used to assess the presence of natural clusters
among sampling sites by an iterative process that defined clusters based on the dissimilari-
ties of two sites. Dissimilarities between sites were calculated by Euclidean distances for
normalized variables (variable values divided by total sum of each variable); the Group
Average Link was used as the agglomeration method in the classification. All statistical
analyses were performed using the R software [34].

3. Results
3.1. Physicochemical Parameters

DO (except for sites P1 and P2) and TSS (except for Sites P2, P4, P7, and P8) were above
the thresholds set by TULSMA, CCME, and EPA (<80% Sat and >130 mg L−1, respectively).
pH values ranged from 6.5 to 8.0; water temperature was between 25 and 30 ◦C; turbidity
(NTU) ranged from 10 to 1690; conductivity ranged from 25 to 187 µs cm−1; color ranged
from 70 to 8500 Pt-Co; DOC ranged from 1.8 to 4 mg L−1; and ORP ranged from 77 to
174 MV (Table 1).

3.2. Metal Concentrations

Water quality standards were exceeded by at least one of the following metals in all
sites: Ag, Al, As, Cd, Cu, Fe, Mn, and Pb (Figure 3.3). Sites with the highest number of
metals exceeding the quality standards were P3, P6, P10, and P11. Cd was above quality
standards for all sites, and in Sites P2 and P6, it was detected above the limit for chronic
contamination. Pb was above the limit for chronic contamination in 55% of the sites. For Zn,
Site P6 exceeded more than 10 times-fold the limits for acute and chronic contamination.
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Sediment quality standards were exceeded by V and B in more than 55% of the sites; Cr
was detected above limits in P6.
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Table 1. Physicochemical parameters measured in the different sampling sites (see Figure 1 for site location). Values
highlighted in bold are above (TSS) or below (DO) the thresholds for the Water Quality Criteria for the Protection of Aquatic
Life [31], the Ecuadorian Guidelines [30], or the Canadian Environmental Quality Guidelines [32].

Sites

Physicochemical Parameters

pH T (◦C) Turbidity
(NTU)

TDS
(mg L−1)

TSS
(mg L−1)

Conductivity
(µs/cm)

DO
(% sat)

Color
(Pt-Co)

DOC
(mg L−1)

Hardness
(mg CaCO3 L−1)

P1 6.91 23.3 765 45.5 698 67.6 80.6 2800 4.31 11.8
P2 6.7 25.6 10.2 16.25 3 25.3 81.5 82 1.85 3.9
P3 6.55 30 277 14.95 523 25 75 375 2.4 5.3
P4 6.67 28.3 24 33.2 19 53.8 76.2 63 3.86 7.6
P5 7.17 31 246 31.2 171 52.1 78.4 1200 2.98 9.0
P6 6.8 29.2 1457 27.3 953 45.8 76.6 3950 3.52 12.3
P7 6.61 30 37.3 42.2 19 70.9 74.7 245 4.07 37.9
P8 8.06 28.1 28.2 115 6 187.2 76.9 78 1.89 34.5
P9 7.18 26.5 339 96.2 201 152.3 56.5 650 1.74 23.4

P10 7.37 25.1 5026 57.85 3200 88.6 54.5 8500 2.27 37.4
P11 7.79 26.7 1690 79.95 1024 127.3 50.8 5250 2.39 30.6

CCME 6.5–8.5 22.5–27.5 - 500 - 500 >80 - - -
TULSMA 6.5–9.0 22.0–28.0 10 1000 130 1000 >80 - - -
US EPA 6.5–9.0 22.0–28.0 - 500 - 500 >80 - - -

3.3. Macroinvertebrates

Chironomidae was the most abundant macroinvertebrate family (Figure 3a). Site P7
had the highest abundance of individuals (76), while at Sites P6 and P11, no macroinverte-
brates were found (Figure 3b). Family richness was higher in Sites P2 and P7 (Figure 3c) The
evaluation of water quality based on the AAMBI index (Figure 3d) showed that 63% of the
sites had scores below the lowest AAMBI classification (< 35), indicating poor water quality.
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3.4. Toxicity Bioassays

D. magna neonates showed more than 25% reduction in survival as compared to the
experimental control (Figure 4a) in Sites P3, P4, P5, and P6. Site P10 was the only one
where a significant difference from the control (p ≤ 0.05) was detected, indicating clear
sample toxicity.
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P9 3.84 4.09 3.79 0.16 11.88 

P1 3.84 4.17 3.06 0.36 11.43 

P3 3.71 4.18 2.49 0.6 10.98 
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P11 3.82 4.29 2.57 0 10.68 

P6 3.45 3.74 3.15 0 10.34 
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Figure 4. Results of the bioassays performed with neonates of Daphnia magna (a) and seeds of Lactuca sativa (b,c) with water
and sediment samples. For the Daphnia magna tests, data show the average number of surviving neonates (48 h) ± standard
deviation, and the asterisk (*) represents significant differences (p ≤ 0.05) with respect to control. The dashed black line
indicates a 50% reduction in survival. For the L. sativa tests, data represent the average length ± standard deviation.
(*) represents significant differences (p ≤ 0.05) with respect to the control, and the numbers within the bars show the
germination percentages (n = 15).

L. sativa seed germination rates were 37–70% in the water samples and 90% in the
experimental control. Regarding water phytotoxicity (Figure 4b), seeds from all sampling
sites inhibited root growth. Regarding sediment phytotoxicity (Figure 4c), seeds from
Sites P2 (60%, germination), P5 (55%, germination), and P8 (35%, germination) displayed
enhanced root growth, which may indicate hormesis response. Seeds did not germinate in
7 out of the 11 samples, while germination of the control was 100%.

3.5. Integrative Analysis of the Four LOEs

The different LOEs were used to rank the different sampling sites according to the
level of impact or degradation. Our results showed that the P7 site had the highest score
(13.77), followed by P2 (12.90), indicating the lowest ecological impact compared to the
other sites. On the other hand, Sites P11 (10.68), P10 (10.26), and P6 (10.34) were the most
affected by gold mining (Table 2).

Table 2. Integrative matrix analysis of four LOEs: physicochemical parameters, metal concentrations, toxicity assessment
with bioassays, and macroinvertebrate monitoring with the Andean–Amazon Biotic Index (AAMBI). Sites are ranked from
low to high levels of environmental degradation.

Sites Physicochemical
Parameters

Metal
Concentrations

Toxicity
(Bioassays)

Macroinvertebrates
(AAMBI) Total

P7 4.01 4.12 3.84 1.8 13.77
P2 4.25 4.08 3.09 1.48 12.90
P8 4.03 4.06 3.55 1.04 12.68
P4 4.38 4.56 2.5 0.76 12.20
P9 3.84 4.09 3.79 0.16 11.88
P1 3.84 4.17 3.06 0.36 11.43
P3 3.71 4.18 2.49 0.6 10.98
P5 3.87 4.15 2.43 0.44 10.89

P11 3.82 4.29 2.57 0 10.68
P6 3.45 3.74 3.15 0 10.34

P10 3.67 3.96 2.35 0.28 10.26



Toxics 2021, 9, 149 9 of 14

3.6. PCA and Hierarchical Cluster Analysis

For water samples (Figure 5a), the PC1 explained 28% and PC2 explained 21% of
data variance. Sites P2, P4, and P5 were highly correlated with DO concentrations. P6
was correlated with metal contamination, while phytotoxicity and D. magna toxicity were
related to Site P8. Sampling sites that were geographically closer to each other were found
to be in the same cluster, such as P5 and P6, P7 and P8, or P10 and P11 (Figure 5b). For sed-
iment, PC1 explained 66.83% of data variance and separated the samples mostly by metal
concentrations, while PC2 (14.68% of data variance) separated sites by physicochemical
parameters and phytotoxicity (Figure 5c). P6 was the site mostly associated with metal
contamination. The third PC apparently joined residual variances. Three sample clusters
could be identified at the cut-off value of 0.075 (Figure 5d).
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by gold mining. The dimensional space is determined by the two first PCA axes. (b,d) Results of the hierarchical
cluster analysis for water (b) and sediments (d). The description of the sampling sites is provided in the Table S1 of the
Supplementary Materials.

4. Discussion

The integrative assessment carried out in this study, combining multiple LOEs, demon-
strates that medium-scale to industrial-scale gold mining has a broad impact on the quality
of freshwater ecosystems in the Napo River network. The identified impacts varied regard-
ing their nature and magnitude in the different sampling sites. Overall, metals were con-
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sidered relevant stressors, with environmental concentrations exceeding quality standards
for both water and sediments in all sites. Exceedance of regulatory thresholds has been
reported in several areas affected by mining exploitation in the Amazon basin [12,35–37].
Excessive metal concentrations in water and sediments, both those considered essential and
nonessential to biological systems, can cause serious damage to aquatic life by affecting the
reproductive physiology of fish and invertebrates, inducing carcinogenicity, genotoxicity,
and causing adverse effects on the endocrine systems, such as liver necrosis and ultimately
death [37,38].

The highest macroinvertebrate AAMBI index score measured in this study was 40,
while in areas with little or no mining impact, other authors have reported values above
80 [19,39]. Sites P2 and P7 were classified as having the best water quality according to
the AAMBI classification. All the others presented poor water quality according to the
AAMBI, and some (P6 and P11) even denoted a full absence of macroinvertebrates, which
can be related to the high concentrations of metals found in these sites. The absence of
macroinvertebrates was reported in a sampling conducted 8 months earlier at Site P6
(Site “GM”) by [19]. The prolonged absence of macroinvertebrates indicates an elevated
degree of environmental disturbance and can also be interpreted as a warning indicator for
pervasive local mining effects. Our results confirmed that gold-mining-derived water and
sediment contamination have direct negative effects on benthic invertebrate communities,
reducing species abundance and richness and modifying the community structure [40].
Moreover, all the sites classified as having moderate to high impact had full absence or low
abundance of most macroinvertebrate taxa, with the exception of the family Chironomidae.
This is consistent with other studies that showed a predominance of chironomids in sites
exposed to metal contamination [41].

The alteration of physicochemical parameters TSS, DO, turbidity, and color indicates
that there is a constant load of potentially metal-contaminated sediments into the rivers.
An associated impact of gold mining is the earth movement made by heavy machinery
on river margins, causing the erosion of the riverbanks and intense modifications to the
landscape. Moreover, to dig waste pools, mining machines move large amounts of soil onto
sediment piles, which are subjected to erosions caused by the intensive rainfall in the area.
Our sampling included sites where mining was active during the time of our sampling
(P1, P3, P9) and some that received mining tailings transported by the rivers (P6, P10, P11).
At all these sites, DO concentrations were found to be below permitted levels and were
slightly lower than those reported in a previous monitoring study [19], which may indicate
an increase in mining activity and a worsening of the water quality status in the study area.
Moreover, extremely high TSS concentrations were also reported for these sites. High TSS
are associated with the reduction of light penetration, reduction of primary productivity,
and a decrease of DO in water [42]. TSS are also potential carriers of metals to the rivers,
which can negatively affect some macroinvertebrate groups (e.g., filter and deposit feeders).
In all sites in which high phytotoxicity was registered, both low AAMBI values and high
mortality of D. magna were also reported. This suggests that the toxic effects of gold
mining contamination can affect multiple components of the ecosystem, from primary
producers to consumers, and indirectly affects habitat quality and the availability of food
resources for predators. Thus, as also suggested in previous studies [43], the alteration of
water physicochemical parameters by mining (by tailings and metal remobilization and
enrichment) can be detrimental to the local freshwater biodiversity.

In 63% of the sites, no germination of L. sativa seeds was reported, suggesting high
toxicity.. This result confirms the findings of other studies describing the phytotoxicity
caused by mining pollution in L. sativa [12,19,44] and studies reporting growth inhibition
associated with Cu, Pb, Zn, Ni, and Cd exposure [44–46]. On the other hand, contaminants
may also stimulate L. sativa seed growth by generating stimulatory responses [47,48], as
observed in the sediment samples of Sites P2, P5, and P8. The hormesis response phe-
nomenon, characterized by low-dose stimulation and a high-dose inhibition [49,50], can
be observed in a wide range of biological endpoints. At higher metal concentrations, L.
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sativa seed germination inhibition would be expected, while growth stimulation may occur
at low metal concentrations. As denoted in this study, gold mining activity can induce
water and sediment phytotoxicity, due to high toxic trace element concentrations (e.g.,
Cd, Hg, and Cu) and the presence of soluble salts [51]. However, the degree of toxicity of
these metals depends on physicochemical parameters that induce metal speciation, such
as pH, oxide-reduction potential, hardness, and temperature [52]. Metals tend to become
more reactive at lower pH, higher oxidation potential, lower hardness, and higher temper-
ature [53]. Most of the pH values found in this study were above permitted thresholds
(Table 1), which indicates that some elements may be poorly soluble or present in less
reactive forms, associated with hydroxides, oxides, carbonates, and silicates.

Our multiple LOEs integrated index indicated that all monitored sites suffered a
notable degradation level. Sites P2 and P7 were the ones showing the highest rankings for
all evaluated LOEs. Although both sites are located upriver from mining concessions, they
still present signs of chronical contamination due to historical mining activities. The high
level of degradation of these study sites can be attributed to their location at basin outlets,
where mining sediments and mining tailings get immediately transported downstream and
deposited. River meanders, floodplains, and basin outlets can be considered as sink areas
that constantly receive washed-off materials from upstream areas. The flooding regimes of
the rivers of the upper Napo basin may also lead to the storage of contaminated sediments
on river margins, which can be eroded and sporadically redistributed [54,55]. Whether this
is the case in the study area, requires further investigations. However, it is clear from our
investigation that the most contaminated sites were located at basin outlets downstream
from mining camps that have received significant transportation and sedimentation of
mining disposals.

In addition to the ecosystem impacts, potential social impacts caused by mining
activities should be further investigated. For instance, Sites P6 and P11 are located less
than 1 km away from indigenous communities. The degree of contamination of both
water and sediments in these sites turns the water and food sources not recommended for
human consumption, as pointed out by [19] in their sampling performed two years before
ours. Therefore, it could be that local communities have been consuming water and fish
with metal levels above the recommended for a relatively long period already. Further
examination on the temporal and spatial extension of contamination and their impacts on
the health status of local indigenous communities is recommended.

5. Conclusions

Establishing causal relationships between chemical monitoring data and ecosystem
effects is challenging given the number of stressors that co-occur in freshwater ecosys-
tems and their direct and indirect impacts on biodiversity. The multiple LOEs approach
described here can be used to classify areas regarding their level of environmental degrada-
tion and to characterize the different drivers that impact freshwater ecosystems. Likewise,
it can help to establish conservation and restoration objectives, aiding in the development
of environmental management plans for mining areas in the Amazon region. Based on
the results of our study, we recommend that further monitoring focuses on selected basin
outlets, as contamination accumulates in those areas, and that macroinvertebrates, DO,
TSS, Cu, Pb, Zn, Ni, and Cd are periodically monitored as indicators of ecosystem deterio-
ration. Given the importance of the Andes–Amazonia region for biodiversity preservation
and ecosystem service provision, we also recommend further control of the gold mining
expansion and its continued environmental monitoring using multiple LOEs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxics9070149/s1, Table S1: Geographic coordinates and description of collection sites. Depth
at the center of the main river channel and width at the sampling location are reported, Table S2:
Parameters and the respective scores used to calculate the integrated index that includes the four
LOEs of freshwater parameters (physicochemical, metal concentrations, macroinvertebrates, and
toxicity) assessed in the study area. Table S3: Actual threshold values of CCME short- and long-
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term values calculated for the metals Cd, Zn, Mn and Cu. Calculations are based on pH, DOC
and Hardness, as indicated in the equations found at the CCME Canadian Environmental Quality
Guidelines (Vol. 2) 2002.
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