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c Grupo de Investigación de Recursos Hídricos y Acuáticos, Universidad Regional Amazónica Ikiam, 150150, Tena, Napo, Ecuador 
d Instituto de Ciencias del Mar y Limnología - Estación El Carmen, Universidad Nacional Autónoma de México, 24157, Ciudad Del Carmen, Mexico   
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A B S T R A C T   

Degradation of freshwater ecosystems by uncontrolled human activities is a growing concern in the tropics. In 
this regard, we aimed at testing an integrative framework based on the IFEQ index to assess freshwater ecosystem 
health of river basins impacted by intense livestock and agricultural activities, using the Muchacho River Basin 
(MRB) as a case study. The IFEQ combine multiple lines of evidence such as riverine hydromorphological 
analysis (LOE 1), physicochemical characterization using ions and pesticides (LOE 2), aquatic macroinvertebrate 
monitoring (LOE 3), and phytotoxicological essays with L. sativa (LOE 4). Overall, results showed an important 
reduction in streamflow and an elevated increase in ion concentrations along the MRB caused by deforestation 
and erosion linked to agricultural and livestock activities. Impacts of the high ion concentrations were evidenced 
in macroinvertebrate communities as pollution-tolerant families, associated with high conductivity levels, rep-
resented 92 % of the total abundance. Pollution produced by organophosphate pesticides (OPPs) was critical in 
the whole MRB, showing levels that exceeded 270-fold maximum threshold for malathion and 30-fold for 
parathion, the latter banned in Ecuador. OPPs concentrations were related to low germination percentages of 
Lactuca sativa in sediment phytotoxicity tests. The IEFQ index ranged from 44.4 to 25.6, indicating that fresh-
water ecosystem conditions were “bad” at the headwaters of the MRB and “critical” along the lowest reaches. Our 
results show strong evidence that intense agricultural and livestock activities generated significant impacts on 
the aquatic ecosystem of the MRB. This integrative approach better explains the cumulative effects of human 
impacts, and should be replicated in other basins with similar conditions to help decision-makers and concerned 
inhabitants generate adequate policies and strategies to mitigate the degradation of freshwater ecosystems.   

1. Introduction 

Uncontrolled human activities such as unplanned urbanization, 
random use of agrochemicals, extensive livestock farming, and improper 
disposal of wastewater, decrease water quality and affect the ecological 
health of river basins (Bashir et al., 2020; Wu et al., 2017). In this regard, 
comprehensive water quality assessment has become an important tool 
to develop and implement strategies to safeguard freshwater ecosystems 
(Grizzetti et al., 2017). The use of multiple lines of evidences (LOEs) has 

been widely recommended to assess water quality, as this integrative 
method gives a wider picture of freshwater ecosystem health that 
otherwise could not be done by isolated approaches (Altenburger et al., 
2019; Backhaus et al., 2019; Buchwalter et al., 2017; Chapman et al., 
2016; Merrington et al., 2014; Palma et al., 2018; Reyjol et al., 2014). 
For instance, physicochemical endpoints provide information on con-
centrations of chemical stressors in the aquatic ecosystem, but they do 
not describe how biological communities are affected by them (Post-
huma et al., 2019; Serpa et al., 2014). On the other hand, field-based 
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biomonitoring using macroinvertebrates gives an idea of pollutant ef-
fects on ecological health of river basins (structure and functioning of 
aquatic communities) without precisely describing the chemical 
stressors (Backhaus et al., 2019; Shiji et al., 2016). 

Physicochemical characterization coupled with macroinvertebrates 
monitoring generates meaningful results in order to understand fresh-
water ecosystem health, however, its outcomes cannot reflect the 
bioavailability of pollutants (Montvydienė et al., 2007; Wang et al., 
2001). To solve this limitation, ecotoxicological essays have been inte-
grated into water quality assessment to detect the potential effect of 
pollutants on the biota (Fabbrocini et al., 2010; Moiseenko et al., 2008). 
A commonly used ecotoxicological tool is the phytotoxicity essay with 
Lactuca sativa as it is simple, quick, reliable, and cost-effective (Cap-
parelli et al., 2020). Non-chemical stressors, such as riverine hydrolog-
ical and morphological changes, also play an important role in 
freshwater ecosystem health (Backhaus et al., 2019). Variables such as 
streamflow and channel width variability, instream modifications, 
vegetation cover, deforestation and erosion strongly influence water 
chemistry, and hence structure and diversity of aquatic communities 
(Gebler et al., 2018; Palma et al., 2018; Stefanidis et al., 2019). In fact, 
the EU Water Framework Directive and several authors suggested 
considering riverine hydromorphology as a line of evidence to assess 
water quality (Bogardi et al., 2020; van Gils et al., 2019). 

In the tropics, not enough studies combining multiple lines of 

evidence have been reported despite having several problems related to 
the degradation of water quality and aquatic ecosystems. Historically, 
freshwaters in Western Ecuador have been impacted by intense livestock 
and agricultural activities (Salmoral et al., 2018). It is estimated that 
three thirds of the total surface of the region has been deforested to 
satisfy the land demand for agricultural and livestock uses (MAAE, 
2020). In spite of this, most water quality studies in the region (e.g., 
Aveiga et al., 2019; Barahona and Tapia, 2010; Lucas and Carreño, 
2018; Quiroz et al., 2017) focus solely on classical physicochemical 
parameters without considering other chemical stressors, such as ions or 
pesticides, the main pollutants released by livestock and agricultural 
activities. Furthermore, the few studies that combined multiple LOEs (e. 
g., Alvarez-Mieles et al., 2013; Damanik-Ambarita et al., 2018, 2016a; 
Nguyen et al., 2017) did not consider ecotoxicological components, and 
their physicochemical results were not adequately contrasted with na-
tional or international water quality regulations. 

Given the lack of comprehensive documentation on aquatic 
ecosystem degradation in the tropics, and in particular in western 
Ecuador, we aimed at testing an integrative framework to assess fresh-
water ecosystem health of river basins impacted by intense livestock and 
agricultural activities, using the Muchacho River Basin (MRB) as a case 
study. The framework combined multiple lines of evidence such as 
riverine hydromorphological analysis (LOE 1), physicochemical char-
acterization including ions and pesticides (LOE 2), aquatic 

Fig. 1. Location of the Muchacho river basin in western Ecuador. (a) Topography, drainage and sampling sites. (b) Land Use, and (c) deforestation. Data was 
obtained from Ministerio del Ambiente y Agua del Ecuador (MAAE, 2020). 
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macroinvertebrates monitoring (LOE 3), and phytotoxicological essays 
with L. sativa (LOE 4). Each LOE was summarized using numerical 
metrics and statistical analysis frequently used in freshwater ecosystem 
assessments. We found the framework provides a suitable character-
ization of cumulative effects of human activities on aquatic ecosystems, 
including the reduction of both water quality and quantity along a 
representative tropical river basin. Also, our outcomes give relevant 
insights to decision-makers and other stakeholders to generate adequate 
policies and strategies to mitigate the degradation of freshwater 
ecosystems. 

2. Materials and methods 

2.1. Study area 

The MRB is located at the transition between northern humid 
(Mache-Chindul) and southern dry (Chongón-Colonche) tropical forests 
in the Pacific coast of Manabí province, western Ecuador (Fig. 1a). It 
drains an area of about 61.9 km2 along 59 to 367 masl. The drainage 
network includes three perennial (Tate, Camarones, and Muchacho) and 
eleven seasonal rivers. Its climate is sub-humid with an average annual 
rainfall of 600 mm that obeys a unimodal regimen with maximum values 
in March. Temperature ranges annually between 23 and 31 ◦C, and 
relative humidity averages 79% (Cadena et al., 2012). 

The basin presents a population of about 412 people and their main 
economic activities are animal husbandry and cultivation of water-
melon, cocoa, and maize (Río Muchacho Organic Farm, 2019). Ac-
cording to the Ministry of the Environment and Water of Ecuador, 
livestock and agricultural lands cover 76% of the MBR, while the dif-
ference is covered by native forests (Fig. 1b) (MAAE, 2020). Most of the 
forest is concentrated at the center of the MRB, along the Tate and 
Camarones river banks. However, during the last decades, deforestation 
in the latter areas increased at alarming rates (Río Muchacho Organic 
Farm, 2019). In fact, since 2000 about 10.3 km2 (16.6%) of the basin 
surface area have been deforested and dedicated to agricultural and 
livestock activities (Fig. 1c). 

2.2. Sampling 

We established six sampling sites along the MRB based on the Critical 
Sampling Points (CSP) methodology used in agricultural basins (Strobl 
et al., 2006b, 2006a). Sampling sites were distributed along an altitude 
gradient (~124 m) where significant biases by natural variations (i.e., 
climate, topography) were not generated (Nguyen et al., 2017; Río 
Muchacho Organic Farm, 2019). Sites P1 and P2 were located at the 
headwater Tate River, upstream of most human activities (less threat-
ened). The remaining four sites (P3 to P6) were distributed along the 
middle and lower reaches, near agricultural and livestock activities 
(Fig. 1a). Field sampling was carried out in January 2020 (end of dry 
season) and during the previous two weeks no precipitation events were 
recorded (INAMHI, 2020). For each site, surface water, sediment, and 
macroinvertebrates samples were collected. 

2.2.1. Water and sediment sampling 
Three superficial water samples (1 L each) were collected at the 

center of the stream channel (depth 10 cm), following NTE INEN 2176 
recommendations (INEN, 2013). For physicochemical and microbio-
logical analysis, water samples were conditioned in plastic containers. 
For pesticide analysis, amber-glass bottles were used. On the other hand, 
one sediment sample was collected at the riverbank in plastic containers 
(about 100 g), using a plastic hand trowel. Bottles and containers were 
rinsed three times with sampling water, labeled, and transported under 
refrigeration (4 ◦C) to the laboratory. 

2.2.2. Macroinvertebrates sampling 
Macroinvertebrates were sampled using the multi-habitat method 

described in Gabriels et al. (2010), covering a stretch of 10 m during 5 
min with a D-frame dip net (500 μm). We decided to use this sampling 
method as it is widely recommended to evaluate water quality using 
macroinvertebrates in Ecuador (Damanik-Ambarita et al., 2016a, 
2016b; Galarza et al., 2021; Nguyen et al., 2017; Van Echelpoel et al., 
2018). The method considers each microhabitat and substrate present at 
each site as a subsample. All subsamples were placed in the same 
container and treated as a composite sample in order to ensure thorough 
biodiversity assessment at each sampling site. 

2.3. Riverine hydromorphological data collection 

Discharge and flow velocity were measured at each sampling station 
using the electromagnetic flow-meter HACH FH950. Also, a visual 
assessment of the riverine hydromorphology was conducted using the 
quick guide developed by Celi et al. (2018). The evaluation focused on 
deforestation and erosion levels along the riparian zone, anthropogenic 
instream modification (e.g., dredging, water extraction, or weirs), and 
channel width variation (Table S1). 

2.4. Freshwater ecosystem quality 

2.4.1. Physicochemical and microbiological characterization 
Water temperature, pH, dissolved oxygen (DO), electrical conduc-

tivity (EC), and total dissolved solids (TDS) were measured in-situ using 
a YSI pro-plus multiparameter instrument. Chemical oxygen demand 
(COD), turbidity, fecal and total coliforms were analyzed in the labo-
ratory. COD was measured using the Dichromate method (HACH 
TNT822 vial test) and a HACH DR 1900 spectrophotometer. Turbidity 
was measured with a HACH TL2300 turbidimeter. Finally, fecal and 
total coliforms were measured according to Standard Methods (APHA, 
2017), satisfying the maximum holding time (less than 24 h). 

2.4.2. Ions and organophosphate pesticides 
Cations (Li+, Na+, K+, Mg2+, Ca2+, NH4

+) and anions (F− , Cl− , NO2
− , 

NO3
− , PO4

3− , SO4
2− ) analyses were carried out using an ion chroma-

tographer Shimadzu (Shodex IC-52 4 E anion and Shodex IC YS-50 
cation) following the methodology described by Standard Methods 
(APHA, 2018). 

For organophosphate pesticide (OPP) analysis, water samples were 
transferred to separating funnels and added 50 g of NaCl, shaking until 
completely diluted. OPPs were extracted by shaking the samples for 1 
min using 15 mL of dichloromethane (three times). Then, the extract 
was filtered with 3 g sodium sulfate anhydrous and rotaevaporated to 1 
mL (Khalili-Zanjani et al., 2008; Montuori et al., 2015). Extracts were 
analyzed by gas chromatography with the nitrogen-phosphorus detector 
GC-2014 Shimadzu. Compound identification was carried out by 
comparing retention times with reference standard mixtures (96–99 % 
certified purity) of 7 OPPs: Dimethoate, EPN, Malathion, Mono-
crotophos, Parathion, Sulfotepp, and Tetraethylpyrophosphate. These 
OPPs were chosen based on their frequent use in western Ecuador 
(Deknock et al., 2019; Villegas et al., 2021). The limits of detection 
(LODs) for organophosphate pesticides ranged between 0.008 and 
0.010 μg/L in water samples. The percent recovery of each pesticide was 
55–95 % in water. 

2.4.3. Water quality regulations 
Physicochemical and microbiological parameters, ion and pesticide 

concentrations were compared to Ecuadorian (MAE, 2015) and Amer-
ican (USEPA, 2017, 1986) regulations for the protection of aquatic life 
and irrigation. Canadian regulation (CCME, 2002) was also used to 
contrast ion and OPP concentrations. We decided to compare outcomes 
of the chemical analyses using international regulations since Ecua-
dorian water quality regulation is permissible for various parameters. 

J.E. Chancay et al.                                                                                                                                                                                                                             
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2.4.4. Macroinvertebrate identification 
Collected macroinvertebrates were identified to the lowest practical 

taxa (family) according to standard taxonomic keys described in Dom-
ínguez and Fernández (2009), Darrigran (2013), and Palma (2013). For 
each sampling site, the status of macroinvertebrate communities was 
evaluated by total abundance (N), relative abundance (R), and biolog-
ical diversity using Shannon-Weaver (H′) and Gini-Simpson (L’) indices 
(Qureshi et al., 2020; Spellerberg and Fedor, 2003). Shannon-Weaver 
ranges from 1 (low diversity) to 4.5 (high diversity) and Gini-Simpson 
varies from 0 (no diversity) to 1 (high diversity). 

2.4.5. Phytotoxicity tests 
Seed germination, hypocotyl and root elongation of Lactuca sativa 

were tested using water and sediment samples according to the meth-
odology used in Capparelli et al. (2020). Ten seeds were distributed on a 
filter paper in sterile Petri dishes with 5 mL of water samples. Three 
replicates were performed for control (distilled water) and each water 
sample. Subsequently, Petri dishes were covered and left in the dark for 
5 days at ambient temperature. On the other hand, 30 g of sediment 
were placed in a plastic container (about 100 g) and eight seeds were 
spread on each container. For each sediment sample, three replicate 
tests were performed according to USEPA (1996) protocol. For this test, 
the control was a sediment sample from the Río Muchacho Organic Farm 
which protects part of the riparian forest from anthropogenic pressures. 

2.5. Numerical and statistical analysis 

To assess the quality of the freshwater ecosystem the parameters and 
indicators analyzed in this study were summarized using various nu-
merical and statistical indices. We considered three main criteria to 
choose the indices: (i) adapted for tropical conditions, (ii) frequently 
used in western Ecuador, and (iii) simple, quick, and reliable to 
implement. 

2.5.1. Riverine hydromorphological condition index (LOE 1) 
Riverine hydromorphological indicators (level of deforestation, 

erosion, dredging, water extraction, and channel width variation due to 
human activities) were numerically reclassified according to the impact 
on the ecology of the river (Table S1), where 0 represents no impact and 
3 describes high impact. The riverine hydromorphological condition 
index (RHC) was computed as the sum of each indicator, following the 
recommendation presented in Damanik-Ambarita et al. (2016a) and 
Keogh et al. (2020). 

2.5.2. Physicochemical water quality indices (LOE 2) 
Physicochemical water quality of each sampling site was determined 

according to the National Sanitation Foundation’s Water Quality Index 
(NSF-WQI) and Canadian Council of Ministers of the Environment Water 
Quality Index (CCME-WQI). Procedure and equations for both NSF-WQI 
and CCME-WQI are fully described in Kachroud et al. (2019). For this 
study, CCME-WQI computation was carried out with all analyzed pa-
rameters (physicochemical, microbiological, ions, and pesticides), 
except for those without water quality threshold. 

2.5.3. Biological water quality indices (LOE 3) 
Biological water quality was assessed through three indices that are 

commonly used in river basins of Ecuador: Biological Monitoring 
Working Party modified for Colombia (BMWP) (Damanik-Ambarita 
et al., 2016b), Average Score Per Taxon (ASPT) (Zamora-Muñoz et al., 
1995), and Ephemeroptera Plecoptera and Trichoptera (EPT) (Machado 
et al., 2018). Note these are the most recommended indices to assess the 
study region (Damanik-Ambarita et al., 2016b; Nguyen et al., 2017). 

2.5.4. Phytotoxicity levels (LOE 4) 
To assess the growth of L. sativa for each treatment, the plant size 

(hypocotyl + root) was measured. According to Shapiro-Wilks and 

Fligner tests, data did not satisfy the assumption of normality and ho-
moscedasticity, respectively. Thus, plant size data were compared with 
their respective lab control using non-parametric Wilcoxon tests. Sam-
ples were considered toxic when mean plant size had statistically sig-
nificant differences (p < 0.05) below the respective control. 
Additionally, alterations in germination and normal development of 
seedlings were analyzed using the germination-root index (GI) which 
considers the root elongation and germination percentage with respect 
to lab controls. A complete description of GI was presented in Young 
et al. (2016). 

2.5.5. Integrative framework: the IFEQ index 
Integration of multiple lines of evidence was performed based on the 

recommendations presented in Vollmer et al. (2018). First, the average 
of the metrics for each LOE was computed. Subsequently, the resulting 
values were aggregated using the geometric mean, as we present in 
equation (1). 

IFEQ=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∏N

i=1

(
1
ki

∑ki

j=1
Fij

)
N

√
√
√
√ (1)  

Where, IFEQ is the integrative freshwater ecosystem quality index, N 
describes the number of LOEs (for this study N = 4), ki represents the 
number of used metrics for each LOE, and Fij represents the metrics. 
Note the used metrics in this study present different scales. Thus, they 
were set to a 0–100 scale in order to ensure suitable scalability during 
data aggregation. On the scale, 0 represents “critical freshwater 
ecosystem condition” and 100 describes “excellent freshwater 
ecosystem condition” (Table S2). 

Additionally, Principal Component Analysis (PCA) and Hierarchical 
Cluster Analysis (HCA) were used to summarize the outcomes and 
determine natural groups based on the (dis)similarities of hydro-
morphological, physicochemical, biological, and phytotoxicological 
characteristics. For HCA, we used the Ward algorithm as the agglom-
eration method (Ward, 1963). Prior to these statistical analyzes, all 
variables were normalized by setting their sum of squares to one. HCA 
and PCA were carried out with R project v.4.0.0 (R Core Team, 2019). 

3. Results and discussion 

3.1. Riverine hydromorphological condition 

Discharge greatly decreased downstream along the MRB. Headwa-
ters discharge (P1, P2) averaged 0.058 m3/s, while at middle reaches 
(P3, P4) averaged 0.033 m3/s. At lower reaches (P5, P6), the streamflow 
averaged 0.019 m3/s (Table 1). This behavior has been widely reported 
in basins that drain small areas with a strong presence of agricultural 
and livestock intervention (Steinfeld et al., 2006), as is the case of the 
MRB. In fact, improvised water pumping systems were observed at most 
sites in the middle and lower reaches (P3 to P6), confirming that water 
extraction for irrigation and animal husbandry activities is an important 
driver of streamflow decrease in the MRB. Various studies have 
mentioned that important streamflow reduction and changes in flow 
regimen produce significant impacts on the abundance, composition, 
and diversity of aquatic communities (Brasher, 2017; Rolls and Bond, 
2017). 

Flow velocity averaged 0.20 m/s for sites P1 to P3. However, at the 
remaining sites, it presented high variability from 0.04 to 0.32 m/s 
(Table 1). In general, channel modifications are the main causes that 
explain the variability of flow velocity (Gregory, 2006). For instance, in 
the MRB, we observed an improvised weir that generated a pond 
near-site P4, a high level of dredging at P5, and a large channel width 
reduction at P6. These impacts together with the high levels of defor-
estation and erosion observed in the middle and lower reaches (P3 to P6) 
influenced various physicochemical parameters, such as water 
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temperature, conductivity, dissolved solids, ions (see sections 3.2 and 
3.3), aggravating the impacts on aquatic communities (Dam-
anik-Ambarita et al., 2016b). 

3.2. Physicochemical and microbiological characterization 

Physicochemical and microbiological outcomes (Fig. 2; Table S3) 
suggested the downstream degradation of water quality along the MRB 
due to deforestation, erosion, and channel modification derived from 
agriculture and livestock. Various parameters related to the aforemen-
tioned activities (i.e., COD, conductivity, TDS, and total/fecal coliforms) 
exceeded maximum permissible levels for both Ecuadorian and Amer-
ican water quality regulations. 

At the headwaters, water temperature averaged 25.5 ◦C, while in the 
middle and lower reaches it averaged 28 ◦C. This behavior is explained 
by the forest distribution since vegetation cover modifies the energy 
balance on river water by intercepting solar radiation (Lozano-Parra 
et al., 2018). Sites with the highest deforestation levels along the MRB 
were those with the highest water temperatures. On the other hand, 
dissolved oxygen (DO) levels complied with the requirements estab-
lished in water quality regulations (Fig. 2; Table S3), except at site P4 
where DO was 5.2 mg/L. Chemical oxygen demand (COD), a parameter 
that influences the oxygenation conditions of water (Palma et al., 2018), 
increased downstream along the MRB. Note that site P4 presented the 
maximum COD level (74 mg/L) and the lowest DO level. This is 

explained by the significant reduction in flow velocity (Table 1) which 
produces a strong accumulation of organic matter derived from the 
intense livestock activities observed upstream. 

Overall, pH varied between 7.7 and 8.2, values that are within the 
limits established by American and Ecuadorian water quality regula-
tions (Fig. 2). Conductivity ranged from 1072 to 2409 us/cm and total 
dissolved solids (TDS) presented values between 880 and 1205 mg/L 
(Table S3). Turbidity showed a high increase from headwaters to lower 
reaches (0.28–2.48 mg/L). These results are typical of basins with high 
levels of agriculture and livestock near river banks as the case of the 
MRB, since these activities stimulate erosion and sediment transport 
along the basin (Kosmowska et al., 2016; Margenat et al., 2017; Ríos--
Villamizar et al., 2017). Finally, microbiological parameters showed 
levels above the established threshold in Ecuadorian and American 
water quality regulation (Fig. 2; Table S3). Site P3 presented alarming 
results, as it reached 56,000 CFU/100 mL and 324,000 CFU/100 mL for 
fecal and total coliforms, respectively (Table S3). In this site, a high 
density of cattle was observed living on the river banks. 

3.3. Ion composition 

Ion concentrations gradually increased from the headwaters to lower 
reaches, especially major cations and anions (Na+, K+, Mg2+, Ca2+, Cl− , 
SO4

− , Fig. 3). Similar trends have been reported in basins that present 
deforestation, agriculture, and animal husbandry along their river banks 

Table 1 
Streamflow and levels of riverine condition along the MRB. Condition is reciprocal to the average level of impact of selected indicators according to Celi et al. (2018).  

Indicator Sites 

P1 P2 P3 P4 P5 P6 

Streamflow 
Discharge (m3/s) 0.055 0.062 0.043 0.024 0.020 0.018 
Flow velocity (m/s) 0.19 0.21 0.18 0.04 0.12 0.32 

Riverine condition 
Deforestation Low Medium High High High High 
Erosion Low Medium High High High High 
Dredging level Absent Low Medium Medium High Medium 
Water extraction or weirs Low Low Medium High Medium Medium 
Channel width variation Low Low Medium Medium High High  

Fig. 2. Physicochemical and microbiological parameters measured along the MRB: water temperature (Temp), dissolved oxygen (DO), chemical oxygen demand 
(COD), pH, conductivity (Cond), total dissolved solids (TDS), turbidity (Turb), and fecal coliforms (FC). Water quality criteria for the protection of aquatic life and 
irrigation: red dashed lines for Ecuadorian regulation (MAE, 2015) and black lines for American regulation (USEPA, 2017, 1986). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 
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(Margenat et al., 2017; Potasznik and Szymczyk, 2015). 
No lithium was detected at headwater, but its concentrations aver-

aged 0.29 mg/L in the middle and lower reaches (Fig. 3). We discard that 
Li+ release occurs naturally in the MRB as regional geology does not 
present significant pegmatite contents, the main natural source of Li+ in 
the environment (Burbano et al., 2006; Kavanagh et al., 2017). Simi-
larly, no bromide was found at site P1 but it varied between 0.7 and 1.2 
mg/L in the remaining sites. Chloride concentrations ranged from 80 to 
337 mg/L and all sites, except P1, exceeded the maximum threshold 
presented in Canadian regulation. Fluoride decreased from P1 to P5, 
however, an excessive F− concentration (16.6 mg/L) was found at site 
P6. Note that all sites presented F− concentrations above permissible 
limits described in regulations (Fig. 3; Table S3). Various authors such as 
Flury and Papritz (1993) and Négrel et al. (2010) describe that enrich-
ment of these ions (Li+, Br− , Cl− , F -) is produced by diffuse contami-
nation of agriculture as several agrochemicals contain them. 

Regarding nitrogenous ions, concentrations of ammonia and nitrite 
varied from 2.0 to 3.1 mg/L and 1.4–3.1 mg/L, respectively. These 
values were 5 to 10-fold higher than maximum thresholds established by 
regulations (Fig. 3; Table S3). In contrast, nitrate concentrations ranged 
between 0.31 and 1.24 mg/L, except at site P2 where it was 3.88 mg/L. 
No site reached the maximum NO3

− threshold concentrations. Overall, 
high concentrations of NH4

+/NO2
− respect to NO3

− at DO levels 
(5.2–9.0 mg/L) found in the MRB suggest recent pollution by nitrogen 
fertilizer (e.g., urea) and livestock wastewater discharge (Lehtovirta--
Morley, 2018; Xia et al., 2018). 

3.4. Organophosphate pesticides (OPPs) 

From seven OPPs analyzed in this study, Dimethoate, Sulfotep, 
Parathion, and Malathion were detected along the MRB. At headwaters, 
malathion showed high concentrations, exceeding thirteen-fold the 
maximum threshold established by the American regulation. Malathion 
exceeded the threshold in all sites, even reaching 27.8 μg/L at site P6 
(Table 3). These values were above concentrations detected in other 
river basins of western Ecuador, such as the Guayas river basin where 
Malathion ranged from 0.022 to 0.687 μg/L and was mainly related to 
rice fields, maize, sugarcane, and cacao plantations (Deknock et al., 
2019). We expected high Malathion levels as it is the most widely used 
OPP in Ecuador due to its multiple applications in agriculture, livestock, 
pet care, and vector-borne disease control (Hoffman et al., 2000; 
Mateo-Sagasta and Burke, 2011). Malathion is considered to have low 
toxicity for humans, but it is very toxic for fishes and microcrustaceans, 
causing endocrine-disrupting and reproductive effects (Brun et al., 
2005; Fadaei et al., 2012). 

Dimethoate was detected at site P6 in a concentration below the 
threshold established in the regulations (Table 3). This OPP is very toxic 
to aquatic organisms and moderately toxic for humans (Agrawal et al., 
2010). Note that dimethoate is a degradable chemical, highly soluble in 
water and highly mobile in soil, and could infiltrate into the ground-
water rapidly until it gets undetectable on the surface water 
(Köck-Schulmeyer et al., 2014; Lorenzo-Flores et al., 2017). This gen-
erates concern about groundwater that is used as a secondary source of 
water by the inhabitants due to the water deficit. 

Fig. 3. Concentration of analyzed ions: Lithium (Li+), Sodium (Na+), Potassium (K+), Magnesium (Mg2+), Calcium (Ca2+), Fluorides (F− ), Chlorides (Cl− ), Bromide 
(Br− ), Phosphate (PO4

3− ), Sulphates (SO 4
2− ), Ammonia (NH4

+), Nitrites (NO2
− ), Nitrates (NO3

− ). Water quality criteria for the protection of aquatic life and 
irrigation presented by Ecuadorian (red dashed lines; MAE, 2015), American (black lines; (USEPA, 1986, 2017)USEPA, and Canadian (blue lines; CCME, 2002, 2008) 
regulations. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Sulfotep concentrations (0.011–0.022 μg/L) were lower compared to 
the rest of analyzed OPPs (Table 3). Sulfotep is used as a fumigant in 
greenhouses and can be found in nature as an aerosol. This makes it 
easier to spread by the air than through surface water or even less 
through groundwater (Chbib et al., 2018). Several studies suggest that 
the presence of low sulfotep concentrations, as the case of the MRB, is 
due to the fact that this pesticide can be found as an impurity in other 
agrochemicals such as Diazinon and Chlorpyrifos (Hala et al., 2016; 
Mekonen et al., 2016; Mojiri et al., 2020). 

Although Parathion has been banned in Ecuador since 2009 
(Agrawal et al., 2010; Agrocalidad, 2019), it has been detected in higher 
concentrations (0.028–0.346 μg/L) than the average reported in other 
surface waters (0.001–0.150 μg/L) of countries where its use is totally 
prohibited (Gao et al., 2009; Hoffman et al., 2000; Na et al., 2006). Note 
that parathion exceeded 9-folds the American regulation (Table 3). 
These results raise concern since this OPP is highly toxic and extremely 
hazardous for humans and can cause irreversible damage to fish and 
aquatic macroinvertebrate communities (Rico et al., 2010). 

3.5. Macroinvertebrate composition and diversity 

Aquatic macroinvertebrates found along the MRB corresponded to 
17 families (10 orders), and totaled 506 individuals (Table S4). 
Pollution-sensitive (PS) families that are considered indicators of good 

water quality represented only 8.7 % of the total macroinvertebrate 
abundance (Dominguez-Granda et al., 2011; Everaert et al., 2014; 
Sundar et al., 2020). In contrast, the three most abundant families were 
pollution-tolerant (PT): Thiaridae with 272 individuals (54 % of the 
total abundance), followed by Elmidae and Pachychillidae with 97 (19 
%) and 53 (10 %) individuals, respectively (Fig. 4a). 

These three aforementioned PT families have been widely reported 
in river water with high conductivity and ion concentrations (Beermann 
et al., 2018; Nguyen et al., 2017; Olson and Hawkins, 2017; Zhao et al., 
2016). Similar results were reported in other high agricultural and 
livestock impacted river basins of western Ecuador, such as Portoviejo 
River Basin (Van Echelpoel et al., 2018) and Guayas River Basin 
(Damanik-Ambarita et al., 2016b). In the MRB, abundance of PT in-
dividuals increased from P1 to P5 as downstream ion concentrations and 
deforestation levels increased (Table S4; Fig. 4b). However, at P6 a 
significant decrease in abundance was observed. High pesticide con-
centrations in aquatic ecosystems induce a decrease in the abundance of 
macroinvertebrates (Palma et al., 2018; Schäfer, 2019). In fact, 
maximum pesticide concentrations were found at P6, which may justify 
the decrease in abundance. 

It is known that high diversity values (H’→ 5; L→ 1) are mainly 
related to pH, high flow velocity, high DO levels, and low TDS con-
centrations (Damanik-Ambarita et al., 2016b; Palma et al., 2018). In the 
present study, site P3 showed the greatest diversity (Fig. 4c) and the 

Fig. 4. Characterization of the macroinvertebrate community along the MRB. (a) Total abundance of macroinvertebrates families considering the whole MRB. (b) 
Abundance of PS and PT families per sampling site. (c) Diversity indices per sampling site. 
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lowest TDS concentration (880 mg/L). Instead, site P4 showed poor 
diversity and the lowest values for both flow velocity (0.04 m/s) and DO 
level (5.24 mg/L). It is interesting that P3 presented the highest di-
versity, being a site with the second highest malathion concentration 
(Table 2). Maltby and Hills (2008) mentioned that in cases in which no 
evident effects are observed in macroinvertebrates communities despite 
the strong pesticide pollution, the effects are evident at the individual 
level in their behavior or enzymatic activity. This type of analysis was 
not carried out in our study, but we agree with other authors that these 
analyzes should be included in the evaluation of aquatic ecosystems 
(Kwok et al., 2007; Maltby and Hills, 2008; Rico et al., 2011). 

3.6. Phytotoxicity test 

Phytotoxicity tests using Lactuca sativa showed low germination 
percentages in sediment (25–83%) with respect to water (73–93%). 
Seedlings showed growth inhibition in water samples (p < 0.05) and 
growth enhancement in sediment (p < 0.05; Fig. 5). Overall, low 
germination and growth inhibition represent signals of toxicity and they 
are influenced by pH, elevated concentrations of metals and ions (Cap-
parelli et al., 2020; Chan-Keb et al., 2018; Galarza et al., 2021). Growth 
enhancement, otherwise, may indicate accumulation of organic matter 
and nutrient excess, and hence eutrophication (Capparelli et al., 2020; 
Galarza et al., 2021). 

In water samples, pH values ranged from 7.7 to 8.2, discarding ef-
fects of acidity but suggesting the influence of ionic strength and toxic/ 
trace elements (metals) concentrations in water toxicity (Biruk et al., 
2017; Capparelli et al., 2020). In fact, several studies (e.g., Bauer--
Gottwein et al., 2008; Biczak et al., 2017; Rout and Shaw, 2001; Sim-
mons, 2012; Tavakkoli et al., 2011; Young et al., 2016) describe that 
increase in dissolved ions on freshwater, especially Na+, K+, Ca2+, and 
Mg2+, as the case of the MRB, affects the development of root tissues and 
membranes of plants (phytotoxicity) due to the change in ionic balance. 
On the other hand, various authors have mentioned that phytotoxicity 
would be more related to the concentration and bioavailability of metals 
(Amari et al., 2017; Capparelli et al., 2020; Margenat et al., 2017), 
however, in this study no metal concentrations were analyzed. 

In sediment samples, the seedling growth enhancement was related 
to a strong accumulation of nutrients in sediments since high concen-
trations of nitrate (0.3–3.9 mg/L) and phosphate (1.2–1.7 mg/L) were 
reported in water samples of the MRB (Table S3). Nevertheless, low 
germination indicates that not only nutrients are being concentrated in 
sediments, but also a complex mixture of pollutants (Galarza et al., 
2021). Note that the lowest germination percentage corresponded to 
sites P6 and P3, where the maximum pesticide concentrations in water 
were reported (Table 3). Finally, an interesting finding is the notable 
increase in growth enhancement, which indicates that in the sediment 
matrix the cumulative effect of agricultural and livestock activities is 

more evident than in water. 

3.7. Integrative analysis and final remarks 

In general, each LOE can characterize different pollution sources and 
drivers of aquatic ecosystem degradation (Galarza et al., 2021), how-
ever, the integrative framework that uses IFEQ index also captured the 
synergistic of degradation processes produced by human activities and 
their cumulative effects, confirming the high decrease of freshwater 
ecosystem health along the MRB (Table 3). 

The hydromorphological (LOE 1), physicochemical (LOE 2), and 
phytotoxicological (LOE 4) indices presented moderately good values at 
headwaters where native forest is the matrix on the landscape (Table 3). 
This suggests that headwaters present relatively better ecosystem health 
compared to middle and lower reaches (P3 to P6). As we expected, the 
multivariate analysis (PCA and HCA) grouped sites P1 and P2 such as the 
less threatened groups (Fig. 6). However, headwaters presented 
important pollution by Malathion and the biological water quality 
indices (LOE 3) showed disappointing results. The IFEQ index reached 
44.4 and 40.5 for sites P1 and P2, respectively, which indicates poor 
freshwater ecosystem conditions. These results agree with the reality of 
the region since headwater degradation of agricultural basins of western 
Ecuador has been widely reported in previous studies (Dam-
anik-Ambarita et al., 2018; Nguyen et al., 2017; Parker and Carr, 1992; 
Van Echelpoel et al., 2018). 

Despite site P3 reached the maximum values of biological water 
quality indices along the MRB (~50, Table 3), results still suggested a 
poor water quality. In fact, the IFEQ index was 36.8, confirming a bad 
freshwater ecosystem condition. Note that hydromorphological, physi-
cochemical, and phytotoxicological indices showed a notable reduction 
at site P3 compared to headwater due to deforestation, streamflow 
reduction, and enrichment of ions and pesticides. However, the effects of 
these four aforementioned degradation drivers are more evident at sites 
P4, P5, and P6 (Fig. 6). Overall, sites P4 to P6 showed the lowest scores 
for all LOEs, confirming that intense agricultural and livestock activities 
represented significant impacts on the aquatic ecosystem of the MRB, 
such as other authors previously discussed for basins with similar threats 
(Morabowen et al., 2019). The IFEQ classified site P4 with a bad con-
dition (31.2), whereas sites P5 and P6 with critical conditions (<30). 

As we expected, the multivariate analysis separated site P6 from 
other sites of middle and lower reaches due to its high concentration of 
Malathion, Parathion, and Dimethoate (Fig. 6). The observed critical 

Table 2 
Sulfotep, Dimethoate, Malathion and Parathion concentrations in water 
collected along the MRB. Results were compared with maximum permissible 
limits from TULSMA (MAE, 2015), USEPA (USEPA, 1986, 2017), and CCME 
(CCME, 2002, 2008).  

Station Pesticide concentration (ug/L) 

Sulfotep Dimethoate Malathion Parathion 

P1 N/D N/D 1.245 N/D 
P2 N/D N/D 1.462 N/D 
P3 0.013 N/D 4.288 0.031 
P4 0.011 N/D 0.250 0.028 
P5 0.019 N/D 1.491 0.034 
P6 0.022 0.031 27.856 0.346 
TULSMA Total sum of organophosphate pesticides < 10 μg/L 
USEPA – 0.50 0.10 0.04 
CCME – 0.62 – – 

N/D: No detected. Pesticide concentration below detection limit, 0.010 μg/L. 

Table 3 
Integration of multiple lines of evidence (LOEs) to assess the freshwater 
ecosystem health along the MRB. HMC: hydromorphological condition index. 
NSF-WQI: National Sanitation Foundation Water Quality Index. BMWP: Bio-
logical Monitoring Working Party. ASPT: Average Score Per Taxon. EPT: 
Ephemeroptera Plecoptera and Trichoptera. GI: germination index based on 
phytotoxicity tests with L. sativa for water and sediment. IFEQ: Integrative 
Freshwater Ecosystem Quality. All values are normalized to 0–100 scale.  

Line of evidence/Index Sites 

P1 P2 P3 P4 P5 P6 

Hydromorphological LOE 
HMC 73.3 53.3 26.7 20.0 8.7 13.3 

Physicochemical LOE 
NSF-WQI 51.5 50.7 41.1 44.2 48.9 48.3 
CCME-WQI 30.6 27.9 26.3 29.7 29.6 25.0 

Biological LOE 
BMWP 16.7 29.3 50.0 15.8 39.2 25.0 
ASPT 50.0 34.0 58.0 49.0 48.0 45.0 
EPT 18.2 10.8 47.9 0.0 1.5 3.3 

Phytotoxicological LOE 
GIwater 37.3 53.3 45.7 43.8 37.1 41.9 
GIsediment 53.9 51.0 32.9 73.7 57.4 29.1 

Integrative LOEs 
IFEQ 44.4 40.5 36.8 31.1 26.3 25.5  
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OPP pollution in the whole MRB constitutes a potential risk to human 
health. For that reason, we agree with other authors that the use of 
highly toxic pesticides within basins and near rivers should be strictly 
regulated (Chaikasem and Na Roi-Et, 2020). Furthermore, training 
workshops are essential due to the main reason for OPP pollution is the 
lack of knowledge of farmers and inhabitants about necessary dosage, 
methods, regulations, and suitable time of pesticide application (Fadaei 
et al., 2012). 

The lack of effective public policies for headwaters conservation and 
regulation of intense agricultural and livestock activities that result in 
pesticide and ion release has played an important role in freshwater 
ecosystems degradation of western Ecuador. Thus, this integrative 
framework that combines multiple LOEs and better explains the cumu-
lative effects of human impacts, should be replicated in basins with 
similar situations in order for decision-makers and concerned in-
habitants to generate adequate policies and strategies to mitigate the 
degradation of freshwater ecosystems. 
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Maldonado-Montiel, T.D.N.J., Ake-Canche, B., Gutiérrez-Alcántara, E.J., 2018. Acute 
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Fernández, F.E., Crespo, D.C., Barrena, R., Komilis, D., Sánchez, A., 2016. 
Development of phytotoxicity indexes and their correlation with ecotoxicological, 
stability and physicochemical parameters during passive composting of poultry 
manure. Waste Manag. 54, 101–109. https://doi.org/10.1016/j. 
wasman.2016.05.001. 
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