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Abstract Plants acquire different combined forms of nitrogen by addition of
ammonia and/or nitrate fertilizer or manure to the soil, during organic matter
decomposition, by the conversion of nitrogen into different compounds, or by
biological nitrogen fixation (BNF). Diverse soil bacteria collectively called rhizobia
are capable to fix N2 from the atmosphere through symbiosis with legume plants.
The N2 fixed by the legume crops represents a renewable source of nitrogen for
agricultural soils, turning symbiotic nitrogen fixation (SNF) in a natural process of
significant importance in world agriculture. Within the legumes carrying out this
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process, common bean (Phaseolus vulgaris L.) constitutes a staple, being the most
important grain legume worldwide, especially for developing countries. However,
P. vulgaris is a low nitrogen fixer compared with other legumes, mainly attributed to
the presence of high but inefficient diversity of indigenous rhizobia in soil, increas-
ing the promiscuity of bean genotypes and lack of response under field conditions.
Rhizobia diversity has been extensively studied. Polyphasic taxonomy and recently
the average nucleotide identity approach have allowed to discover about
117 so-called Rhizobium species and the real genetic differences of microsymbionts
in ecosystems around the world. Nevertheless, phylogenomic, ecological, and pop-
ulation genetic criteria to delineate biologically meaningful species in interplay with
their host are still needed. Therefore, understanding genotypic variabilities between
bean genotypes and Rhizobium strains contributes to achieve an efficient interaction,
increase plant parameters, nitrogen fixation, and yields of common bean. Here, we
discuss about the most recent studies on Rhizobium diversity linked to P. vulgaris in
the American continent as the center of origin/diversification and outside this
continent. The abiotic and biotic factors mediate the efficiency of the interaction,
with special emphasis in the promiscuity of common bean as a constraint to achieve
high nitrogen fixation rates and we show a case of study at southern Ecuador where
genotypic variability among local bean genotypes and native Rhizobium strains was
assessed to seek the efficiency of symbiosis based on its diversity.

Keywords Phaseolus vulgaris · Diazotrophs · Interaction · Diversity · Nitrogen
fixation

19.1 Introduction

Legumes are one of the most widespread plants worldwide. These provide a wide
range of nutritional factors, being an important source of protein-rich food and feed,
oil, fiber, minerals, and vitamins (Pandey et al. 2016). The contributions of these
plants to ecosystem services, especially in agroecosystems, are also of particular
relevance, such as soil fertility by contributing nitrogen (N) through atmospheric N2

fixation (Martínez-Romero 2003); improve the structure and increase soil organic
carbon status (Wobeng et al. 2020); reduce the incidence of pest and diseases in
cultivations (Daryanto et al. 2020), and increase the overall productivity and eco-
nomic benefits of the production systems (Preissel et al. 2015).

Because N is the most necessary element for plant development, legumes become
essential crops for its incorporation into agroecosystems (Misra et al. 2020). The N2

fixed by the legume crops represents a renewable source of N for agricultural soils,
turning symbiotic nitrogen fixation (SNF) in a natural process of significant impor-
tance in world agriculture. Globally, legumes in symbiosis with soil rhizobia are
reported to fix 20–22 Tg of N each year in agricultural production systems (Herridge
et al. 2008). Table 19.1 shows the biological systems capable of fixing N, the rates of
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fixation, and the crops in which this important process can be carried out, highlight-
ing legumes with an average fixation rate from 50 to 100 kg N ha�1.

Among legumes, common bean (Phaseolus vulgaris L.) is a staple for human
nutrition and one of the main sources of protein and calories in the world, mainly for
developing countries (Los et al. 2018). Bean harvest areas and productions have
been increasing significantly during the last decade by 22.7% and 28% respectively
globally. These indicators have special relevance in Asia and America (Fig. 19.1),
which are the largest producers worldwide. The total harvest area in Asia raised
28.9%, with a production of 33.5%. While in America, the total harvest area
decreased in 3%, but production grew in 7.1% (FAO 2020. http://www.faostat.fao.
org/, assessed on June 18, 2020). Despite its importance, the bean crop is charac-
terized by low productivity (882.3 kg ha�1) especially because of poor cropping
practices, such as the inadequate supply of fertilizers and pests and diseases control
(Vieira et al. 2010).

Surprisingly in America, the center of origin of this pulse and with a wide
tradition of cultivation, although production has increased, the lands destined to
this crop are reducing. Therefore, stimulating crop production and yields is crucial
for many countries in this region. However, sustainable agricultural practices should
be addressed to reduce partial or total dependence of N fertilizers and its ecological
and economical costs.

As a legume, beans can carry out biological nitrogen fixation (BNF) through
symbiosis with root nodule inducing soil bacteria collectively called rhizobia,
allowing plants to grow in N-deficient soils (López-Guerrero et al. 2012; Sánchez
et al. 2014). Rhizobium is a gram-negative symbiotic bacterium that colonizes the
roots of leguminous plants forming root nodules, which helps in ammonia produc-
tion (Mahdi et al. 2010). SNF by root nodules of legumes contributes far more to the
N economy of natural communities and to the fertility of soils than the asymbiotic
systems (Table 19.1) (Gunnabo et al. 2019). N-fixing root nodules can fix 100–200
times more N2 than free-living bacteria, because of the capability of nodules to
continue to fix N2 for long periods of time (Tanveer et al. 2019).

They utilize the photosynthetic products of plants as a carbon source and, in
return, fix atmospheric N2 for their host (Misra et al. 2020). BNF becomes the

Fig. 19.1 Comparison of
dry bean harvest area and
production in the last
decade. FAO ( 2020, data
2018). http://www.faostat.
fao.org/
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cheapest and the most environmentally correct form to provide N to plants and the
most intensively studied model of beneficial plant–microbe interaction (Vieira et al.
2010). They are considered to be the most competent biofertilizer for legumes in
terms of the amount of N fixed (Jehangir et al. 2017). For instance, 75% of the total
N in plant was derived from SNF by faba bean; 62–94% by soybean, groundnut, pea,
and lentil; 54–58% by cowpea, chickpea, and pigeonpea; and 39% by common bean
(Dwivedi et al. 2015). However, in some legumes like P. vulgaris, poor nodulation
or lack of response to inoculation in field conditions has been attributed to the
(1) presence of a high but inefficient population of indigenous common bean
rhizobia in soil and in seeds (Andrade et al. 2002), (2) genetic instability of selected
strains (Satyanarayana et al. 2018), and (3) sensitivity of the symbiosis to environ-
mental stresses, such as high temperatures, soil dryness, and low soil fertility
(Graham and Ranalli 1997; Hungria and Vargas 2000).

Rhizobia biodiversity nodulating P. vulgaris is one of the most important con-
straints to achieve a proper interplay between bacteria and legume. This wide
diversity of microsymbiont leads to the promiscuity of common bean and to reduce
nodulation and N fixation performance in plants (Peix et al. 2015). Only in the
American continent, a total of 11 new Rhizobium species have been isolated from
P. vulgaris so far (Shamseldin and Velázquez 2020). The wide rhizobia biodiversity
has been classified by polyphasic taxonomy, including 16S ribosomal RNA gene
sequencing, multilocus sequence analysis (MLS), biochemical properties, and phe-
notypic features (Shamseldin et al. 2017). Currently, the average nucleotide identity
(ANI) based on nodulation host range concerning reference strains (Ormeño-Orrillo
et al. 2015) is used as an alternative approach (González et al. 2019). However,
although ANI is indicative of genomic clusters, phylogenomic, ecological, and
population genetic criteria to delineate biologically meaningful species are still
needed (Vinuesa et al. 2018).

Although is a fact that the ability of P. vulgaris to be nodulated by different
symbiovars linked to species primarily isolated from nodules of this legume and also
by symbiovars linked to species initially isolated from nodules of other legumes
allows P. vulgaris to establish N-fixing symbiosis in very different ecosystems
around the world (Shamseldin and Velázquez 2020), a few studies about the
diversity of rhizobia establishing symbiosis with P. vulgaris have been published.
To date, only two reviews have been published in the present century (Martínez-
Romero 2003; Shamseldin and Velázquez 2020). Therefore, understanding rhizobia
biodiversity can trigger the efficiency of the symbiotic process. Here we discuss the
genotypic variability among bean genotypes and Rhizobium species, as an important
role to enhance nodulation, plant parameters, N fixation, and grain yields. We show a
case study in southern Ecuador that ranges from microsymbionts molecular analysis,
through the search for efficiency under controlled conditions, to determine the
response under field conditions.
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19.2 Understanding Rhizobium Diversity and Distribution
to Improve Interplay with Phaseolus vulgaris

The family Rhizobiaceae gather the seven genera Rhizobium, Neorhizobium,
Allorhizobium, Agrobacterium, Ensifer (syn. Sinorhizobium), Shinella, and
Ciceribacter. However, several so-called Rhizobium species do not exhibit robust
phylogenetic positions (Mousavi et al. 2015). The current classification of Rhizo-
bium species is mostly based on phenotypic features, 16S ribosomal RNA gene
sequencing, multilocus sequence analysis (MLS) of housekeeping genes, DNA:
DNA hybridization (DDH), and average nucleotide identity (ANI) values (González
et al. 2019). To date, this genus consists of 117 described species, of which 18 had
been isolated from common bean root nodules almost worldwide (Tong et al. 2018),
but particularly in the Mesoamerican and Andean centers of common bean origin/
diversification (Fig. 19.2).

Common bean forms N-fixing symbioses promiscuously with bacteria belonging
to different genera of alpha and beta Proteobacteria (Michiels et al. 1998; Peix et al.
2015). Within alpha-Proteobacteria, the species and symbiovars nodulating
P. vulgaris belong to the genera Rhizobium, Ensifer (formerly Sinorhizobium),
Pararhizobium (formerly Rhizobium), and Bradyrhizobium (Mousavi et al. 2015),
while from the beta-Proteobacteria can be nodulated by species from genera
Burkholderia (currently Paraburkholderia) (Talbi et al. 2010; Martínez-Aguilar
et al. 2013; Dall'Agnol et al. 2017) and Cupriavidus (da Silva et al. 2012).

19.2.1 Rhizobia Strains Identification Linked to P. vulgaris
in the American Continent

When analyzing the biodiversity of Rhizobium species nodulating common bean, the
American continent and specifically Center and South America play a preponderant
role. A total of 11 new Rhizobium species have been isolated from P. vulgaris in this
continent: Rhizobium etli (sv. phaseoli), Rhizobium acidisoli (sv. phaseoli), Rhizo-
bium hidalgonense (sv. phaseoli), Rhizobium esperanzae (sv. phaseoli), and Rhizo-
bium mesoamericanum (sv. phaseoli) in Mexico; Rhizobium phaseoli (sv. phaseoli)
in the USA, Rhizobium freirei (sv. tropici), Rhizobium leucaenae (sv. tropici), and
Rhizobium paranaense (sv. unnamed) in Brazil; Rhizobium tropici (sv. tropici) in
Colombia, and Rhizobium ecuadorense (sv. phaseoli) in Ecuador. Interestingly, only
R. phaseoli, R. etli, and R. tropici are considered indigenous of the American
continent, just like their symbiovars: phaseoli and tropici (Shamseldin and
Velázquez 2020). Other species, on the other hand, have not been reported in
other nearby American countries such as R. acidisoli, Rhizobium anhuiense, Rhizo-
bium mesoamericanum, R. hidalgonense, and Rhizobium ecuadorenses. Finally,
R. hidalgonense and R. ecuadorense have been found outside the American conti-
nent, in Croatia, Southeast Europe (Rajnovic et al. 2019).
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Rhizobium etli and Rhizobium phaseoli were some of the first isolates from
common beans in the continent, together with Rhizobium tropici. However,
R. phaseoli was reclassified as biovar (currently symbiovar) of R. leguminosarum
(Jordan 1982) and then of Rhizobium etli (formerly R. leguminosarum type I strains)
(Eardly et al. 1992; Segovia et al. 1991). Currently, R. phaseoli is recognized as an
independent species from R. leguminosarum and R. etli mainly because of the
presence of divergent core genes (Ramírez-Bahena et al. 2008). Rhizobium tropici,
similarly to R. etli, was previously classified as Rhizobium leguminosarum (type II)
(Martínez-Romero et al. 1991). It was the first description of a rhizobial species to
include sequences from 16 s rRNA gene and also the first species to carry the
symbiovar tropici. In contrast to R. leguminosarum sv. phaseoli type II, R. tropici
strains tolerate high levels of acidity and high temperatures in culture, and are also
symbiotically more stable (Ormeño-Orrillo et al. 2012). Interest in the evolution of
R. tropici results from its close genetic resemblance with Agrobacteria. R. tropici and
some Agrobacterium strains resemble one another in morphology, growth rate,
tolerance to pH, DNA-DNA hybridization, and in the 16S and 23S rRNA sequences
(Martínez-Romero 1994), which indicates the possibility of discovering the linkage
between symbiosis and pathogenicity (Gomes et al. 2012).

Formerly, the species R. tropici was designated as having two subgroups, A and
B. Nevertheless, Ribeiro et al. (2013) proposed the reclassification of R. tropici type
A strains as a novel species: Rhizobium leucaenae sv. tropici. The species R. tropici
and R. leucaenae found in Colombia and Brazil were also found in soils of other
American countries such as Argentina (Aguilar et al. 2001) and Chile (Baginsky

Fig. 19.2 Species distribution of Rhizobium originally isolated from P. vulgaris
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et al. 2015), supporting the possibility of co-evolution between P. vulgaris and its
microsymbionts in the centers of host genetic diversification. Similarly, the distri-
bution of species R. etli and R. phaseoli supports this hypothesis (Shamseldin and
Velázquez 2020). In addition to the distribution of these bacteria, R. phaseoli, R. etli,
R. tropici, and R. leucaenae were also found outside the American continent in
Europe (García-Fraile et al. 2010; Valverde et al. 2011), Africa (Diouf et al. 2000;
Mhamdi et al. 2002; Shamseldin and Werner 2005; Aserse et al. 2012; Zinga et al.
2017), and Asia (Adhikari et al. 2013; Cao et al. 2014; Chen 2019).

During the last decade, reports of new Rhizobium species isolated from common
bean in America were linked to symbiovar phaseoli such as Rhizobium acidisoli
(Román-Ponce et al. 2016), Rhizobium hidalgonense (Yan et al. 2017), Rhizobium
esperanzae (Cordeiro et al. 2017) in Mexico, and Rhizobium ecuadorenses in
Ecuador (Ribeiro et al. 2015). These last two species have been reclassified from
the clade containing R. phaseoli/R. etli/R. leguminosarum, using mainly the
approach based on nodulation host range and genomic ANI. R. esperanzae and
R. ecuadorense have been reported to have higher similarity with R. etli on the 16S
rRNA gene sequence phylogeny and phylogeny of nifH analysis (Ribeiro et al.
2015; Cordeiro et al. 2017). Similarly, R. acidisoli and R. hidalgonense have
identical 16S rRNA genes to other Rhizobium species. For instance, the phylogeny
of 16S rRNA gene sequences of R. acidisoli suggests it is most closely related to
Rhizobium anhuiense (99.7% similarity) (Román-Ponce et al. 2016), and
R. hidalgonense was found to be similar to R. acidisoli using 16S rRNA and nifH
gene sequences (Yan et al. 2017).

19.2.2 Microsymbionts Beyond America

The first described nodulating common beans outside of America were Rhizobium
gallicum (sv. gallicum and phaseoli), Rhizobium giardinii (sv. giardinii and
phaseoli), and Rhizobium lusitanum (sv. tropici and phaseoli) in Europe. However,
only R. lusitanum, isolate in Portugal, is considered indigenous of this continent
(Valverde et al. 2011). Since then, R. gallicum has been found in American countries
(Amarger et al. 1997; Mhamdi et al. 1999; Sessitsch et al. 1997), and R. giardinii has
also been found in Asian and African soils (Herrera-Cervera et al. 1999; Mhamdi
et al. 2002; Aserse et al. 2012; Wang et al. 2016; Rouhrazi et al. 2016). The
phylogenetic analysis of these bacteria shows that R. gallicum has similarities with
R. etli (98%) and recent evidence suggests that the NodC of the pSym of R. etli is
distributed in some strains of R. gallicum (Verástegui-Valdés et al. 2014). On the
other hand, 16 s rRNA gene sequence analysis places R. giardinii on a lineage
independent of Rhizobium (Amarger et al. 1997), prompting Mousavi et al. (2015) to
place Rhizobium giardinii in the new genus Pararhizobium.

In Asia, the microsymbionts of P. vulgaris were directly introduced from Amer-
ican countries to the China region through P. vulgaris seeds. This hypothesis is
supported by the high similarities in the symbiotic genes (nodC and nifH) between
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the Chinese and American R. etli populations (Cao et al. 2014). Indeed, two new
species isolated in this continent carry the symbiovar phaseoli: Rhizobium vallis
(Wang et al. 2011), reported also in Iran (Rouhrazi et al. 2016), and Rhizobium
chutanense (Huo et al. 2019). According to 16S rRNA sequence analyses, R. vallis
showed the most similarity with Rhizobium lusitanum (99.1% sequence similarity)
and Rhizobium rhizogenes (99.0%) strains, although DNA–DNA relatedness values
were very lower (Wang et al. 2011). Also using 16S rRNA analyses, Rhizobium
chutanense was found to be most similar to R. ecuadorense, R. fabae, R. pisi, and
R. esperanzae (Huo et al. 2019).

African diversity of nodulating rhizobia of P. vulgaris has their origins with the
introduction of American and European strains (Mhamdi et al. 1999; Aserse et al.
2012; Zinga et al. 2017; Kawaka et al. 2018). In the last decade, two new species
within the genus Rhizobium have been isolated in this continent: Rhizobium azibense
sv. gallicum (Mnasri et al. 2014) and Rhizobium aethiopicum sv. phaseoli (Aserse
et al. 2017), although the first specie has strains belonging to North Tunisia, Spain,
and Mexico (Silva et al. 2005). R. azibense was previously unsigned as Rhizobium
gallicum, based on 16S rRNA, recA, and atpD gene sequences (Mnasri et al. 2014),
but phylogenetic analysis based on recA, atpD, dnaK, and thrC sequences showed
that it is distinguished from a group closely related to Rhizobium gallicum. On the
other hand, the closest phylogenetic reference (combined recA and glnII sequences)
of Rhizobium aethiopicum were strains of R. etli (94% similarity) and Rhizobium
bangladeshense (93%) (Aserse et al. 2017). Lastly, the distribution of R. azibense
and R. aethiopicum is still unknown, given that these bacteria have not been reported
in other countries, though recently R. azibense together with R. bangladeshensewere
found nodulating in legumes in Bangladesh-South Asia (Tanim et al. 2019).

19.3 The Efficiency of Rhizobium–Bean Interaction
Mediated by Biotic and Abiotic Factors

Several factors directly influence the efficiency of symbiotic plant–Rhizobium inter-
actions, particularly in field conditions. Among them, (1) compatible strain and host
selection, (2) saprophytic competence, (3) root hair attachment and competition for
infection, (4) growth characteristics of bacteria within infection threads as well as
(5) effects of plant physiology, and (6) the abiotic environment (Terpolilli et al.
2012). The first of the factors, related to the strains type and host selection, is one of
the most significant to achieve the desired effect of N2 fixer bacteria application.

Rhizobia are soilborne bacteria with a key role in the SNF process as symbiotic
partners of legumes. Rhizobium spp. populations reside in soils and are in constant
evolution, being able to adapt to different habitats (Martínez-Romero 2003). The
colonization success and symbiotic N2 fixation depends on their attachment abilities
to biotic and abiotic substrates (Wielbo et al. 2015). Wang and Chen (2004)
described how Rhizobium colonize new environments, facing two different
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problems. In the first place, Rhizobium needs to establish a population in the local
community among groups of indigenous bacteria, and there exists a competition
between space and nutrients. In the second place, is the adaptation of bacteria to the
soil environmental factors, such as humidity, salt content, pH, temperature, and
symbiotic partners, which are determinant for the establishment of rhizobia in a
specific environment (Misra et al. 2020).

Bean cultivation is considerably varied by soil type, land use pattern, and
genotype. It is demonstrated that root exudates act as substrates in soils and signaling
molecules, which are required for establishing plant–bacteria interactions (Kour
et al. 2019). The successful root colonization is an important and initial step in the
interaction of beneficial bacteria with plants (Hungria and Mendes 2015). In order to
acquire beneficial effects from the microbial communities, the effective colonization
of the plant root area is crucial (Yadav et al. 2015).

Successful root colonization by a bacterium is the result of interactions with
physical, chemical, and biological characters of the environment as well as proper-
ties of the bacterium itself. A clear understanding of the bacterial colonization
process toward the plant is required (Dutta et al. 2014). Between these bacterial
colonizers, some genera of rhizobia are cataloged as effective colonizers. They
synthesize plant growth hormones and can make organic and inorganic phosphates
soluble (Avis et al. 2008).

Many rhizobacteria like rhizobia possessing the enzyme ACC deaminase catalyze
the conversion of ACC to ammonia and α-ketobutyrate, which indirectly decrease
the ethylene concentration in plants under drought stress (Glick 2012). By facilitat-
ing the development of longer roots, these rhizobacteria may enhance the survival of
seedlings, which help in combating the effect of stress ethylene (Zahir et al. 2009).
The root elongation plants under drought stress can allow a better access to water and
uptake of nutrients (Misra et al. 2020). Ethylene is also known to compromise the
nodule formation and N fixation in legume (Sapre et al. 2019). Rhizobium with ACC
deaminase activity can diminish the deleterious effect of ethylene under drought
stress by increasing the nodulation and N fixation in its symbiotic legume partner
(Belimov et al. 2009).

Salinity of the agriculture soil is a significant issue all over the world and it is also
a determinant environmental factor for reduction of growth and yield of agricultural
crops (Misra et al. 2020). The use of plant growth-promoting rhizobacteria (PGPR),
as well as those described for the genus Rhizobium, can stimulates mechanisms of
action for the amelioration of salt stress, and to reduce the application of chemical
fertilizers and pesticides in the agricultural fields and improve soil health (Yadav and
Saxena 2018). ACC deaminase producing Rhizobium strains can improve the growth
and quality of mung beans under salinity stress (Ahmad et al. 2012). Bacteria that are
tolerant to stress have better nodulation ability and greater ability for N fixation of
legumes to grow and survive under stressed conditions. Rhizobial populations vary
in their tolerance to major environmental factors. Together, the expression of all
these features can improve the efficiency of the rhizobia–legume symbiosis (Naveed
et al. 2015).
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19.3.1 Promiscuity as a Biotic Constraint for Achieving
a High Rate of N Fixation in Common Bean

Common bean is nodulated by different Rhizobium species and symbiovars,
allowing this pulse to establish N-fixing symbiosis in very different ecosystems
around the world (Shamseldin and Velázquez 2020). However, among the biotic
factors restricting the Rhizobium–bean interplay, the microsymbionts biodiversity in
the soil and in nodules is crucial. As reported previously, P. vulgaris is a promiscu-
ous legume in its interaction with Rhizobium species and symbiovars (Michiels et al.
1998; Pérez-Ramı  rez et al. 1998). Indeed, P. vulgaris has been considered as a
promiscuous host because it can be nodulated by several divergent nodC symbiovars
(Peix et al. 2015). Also, in the laboratory under axenic conditions, P. vulgaris is
nodulated by many more Rhizobium species than in agricultural fields. In addition,
most of these species belong to the genus Rhizobium such as R. calliandrae,
R. grahamii, R. jaguaris, R. leguminosarum, R. mayense, R. mongolense¸
R. miluonense, R. multihospitium, R. rhizogenes, R. yanglingense, R. sophorae,
R. sophoriradicis, and R. laguerreae sv. viciae (Jiao et al. 2015; Flores-Félix et al.
2019).

Although promiscuity could be an important feature for plant breeding, in
P. vulgaris is one of the most important constraints to achieve high rates of N
fixation by this pulse (Dwivedi et al. 2015). Symbiotic interactions between common
bean and its microsymbionts are not always equally effective in the N fixation (Peix
et al. 2015). For example, compared with other Rhizobium species, the strains of
R. tropici, R. freirei, and R. paranaense show higher tolerance to environmental
stress and high efficiency in N2 fixation, so are thus considered for use in commercial
inoculants, especially in countries where they were discovered (Martínez-Romero
et al. 1991; Zurdo-Piñeiro et al. 2004; Gomes et al. 2015; Mwenda et al. 2018;
Ipsilantis et al. 2019; Elizalde-Díaz et al. 2019). Moreover, R. etli and R. tropici
strains showed different efficiency on different plant genotypes, which affect the
stability of the performance of inoculants (Gunnabo et al. 2019).

19.4 Seeking Efficiency of Rhizobium Species Based on Its
Biodiversity

Since bean is a poor N fixer compared to other grain legumes (de Sá et al. 1993;
Naveed et al. 2015; Yadav et al. 2020), inoculation of bean lines or genotypes with
Rhizobium strains well suited to different agroecological regions with high capacities
to fix atmospheric N is required. However, the response of the crop and inoculation
may not be satisfactory in cases in which highly competitive native Rhizobium
populations are present in the soil, restricting root colonization by the inoculant
strain (Hungria and Vargas 2000; Brito et al. 2015; Hungria and Mendes 2015; da
Conceição et al. 2018). Therefore, to recommend a Rhizobium strain with high
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agronomic performance, previous several tests are necessary to confirm its compet-
itiveness (Leite et al. 2018).

Although the competitive effect associated with rhizobia promiscuity in common
bean is well known, it would be important to take this feature into account when
searching effective strains in symbiosis with bean genotypes. This is a fact that
makes the Rhizobium biodiversity in this crop should not only be approached as a
negative aspect but also as an opportunity to obtain adequate genotypic variability
among Rhizobium strain � bean genotypes.

To test the effectiveness of Rhizobium inoculation in common bean, several types
of researches have been developed under laboratory, greenhouse, and field condi-
tions, where the strain–-bean genotype interactions play an important role to seek the
proper genotypic variability to enhance plant parameters and yields. In this regard,
Dwivedi et al. (2015) reported that genotype � environment and genotype �
Rhizobium strain interactions are a prerequisite to identifying germplasm and Rhi-
zobium strains for effective symbiosis in legumes. Correlations between these factors
can enhance plant parameters related to an effective symbiosis, such as nodule
number, nodule weight, root and shoot weight, N2 fixation, and yields in bean plants
(Table 19.2).

The infectivity of Rhizobium species nodulating common bean has been assessed
in different studies. Mhamdi et al. (2002) have reported nine groups of rhizobia
isolated from P. vulgaris in Tunisia. They delineated: Rhizobium gallicum biovar
(bv.) gallicum, Rhizobium leguminosarum bv. phaseoli and bv. viciae, Rhizobium

Table 19.2 Summary of results on the relationships among nodule number, nodule weight, % N2

in shoot, total N2 fixed, nitrogenase activity, root weight, shoot weight, harvest index, seed yield,
and 100-seed weight in common bean

Number and type
of germplasm Trait combination

Correlation
coefficient References

50 Iranian
germplasm

Grain yield, 100-seed weight, and harvest
index with nodule number, N% in shoot,
and total N2 fixed

0.208a–0.584a Reza
Golparvar
(2012)

Nodule number with total N% in shoot
and total N2 fixed

0.466a–0.517a

Total N% in shoot and total N2 fixed 0.671a

47 Andean, Meso-
American gene
pool

Root and nodule weight linearly corre-
lated with mg N fixed per plant

0.71a–0.74a Vadez et al.
(1999)

8 cultivars Shoot weight and mg N fixed per plant 0.46a Westermann
and Kolar
(1978)

Acetylene reduction activity (mmol C2H4

per plant) and mg N fixed per plant
0.38a–0.54a

Nodule weight with mg N2 fixed per plant 0.84a

Plant weight and seed yield with mg N2

fixed per plant
0.55a–0.74a

Source: Dwivedi et al. (2015)
aWeight, refers to dry weight of the sample
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etli bv. phaseoli, Rhizobium giardinii bv. giardinii, and four groups related to species
of the genus Sinorhizobium, Sinorhizobium meliloti, Sinorhizobium medicae, and
Sinorhizobium fredii. Among the isolates assigned to R. leguminosarum, two-thirds
were ineffective in nitrogen fixation with P. vulgaris and harbored a symbiotic gene
typical of the biovar viciae. The S. fredii-like isolates did not nodulate soybean plants
but formed numerous effective nodules on P. vulgaris.

In Africa, the increasing interest in the use of rhizobia as biofertilizers in
smallholder agricultural farming systems has prompted the identification of a large
number of tropical rhizobia strains and led to studies on their diversity. Besides in
Tunisia, Koskey et al. (2018) obtained 41 Rhizobium isolated from the root nodules
of MAC 13 and MAC 64 climbing beans in agro-ecological zones of Eastern Kenya.
The analysis of molecular variance based on restriction digestion of 16S rRNA genes
showed that the largest proportion of significant ( p < 0.05) genetic variation was
distributed within the rhizobia population (97.5%) than among rhizobia populations
(1.5%). The high degree of morphological and genotypic diversity of rhizobia within
Eastern Kenya shows that the region harbors novel rhizobia strains worth exploiting
to obtain strains efficient in biological N fixation with P. vulgaris.

Near this continent, in Spain, Mulas et al. (2011) analyzed the rhizobia present in
nodules of the variety “Riñón,” in order to select native rhizobial strains to be used as
biofertilizers. The analysis of rrs and housekeeping genes of the strains showed that
they belong to two phylogenetic groups within Rhizobium leguminosarum. Strains
LCS0306 from group I and LBM1123 from group II were the best N fixers among all
strains isolated and were selected for field experiments. The field research showed
that the biofertilization of common bean with native and selected rhizobial strains
can completely replace the fertilization with chemical N fertilizers.

Approaching the American continent, Díaz-Alcántara et al. (2014) analyzed
phylogenetic relationships with rhizobia isolated from the American and European
countries linked by trade routes since the discovery of America. In this study,
effective rhizobial strains nodulating common bean were isolated in the Dominican
Republic. A total of 25 isolates were obtained from nodules, concluding that the
strains of R. phaseoli sv. phaseoli, as well as those from R. etli sv. phaseoli, are
indigenous to mainland America from where they were introduced along with
P. vulgaris seeds. The results of this study showed that the analysis of P. vulgaris
endosymbionts present in the islands located between America and Spain is impor-
tant for biogeographical studies of these rhizobia, as well as for increasing the
knowledge of the coevolution of Rhizobium–Phaseolus vulgaris symbiosis.

In Mesoamerican and Andean region, the center of origin and diversification of
P. vulgaris, various studies based on microsymbiont diversity have been conducted
(Segovia et al. 1991; Souza et al. 1994; Hungria and Vargas 2000; Martínez-Romero
2003; Aguilar et al. 2004; López-López et al. 2010; Santos et al. 2011; Servín-
Garcidueñas et al. 2012; Ribeiro et al. 2013; Verástegui-Valdés et al. 2014; Torres-
Gutiérrez et al. 2017; Tong et al. 2018; Ramírez-Puebla et al. 2019). In Ecuador, an
Andean region from which common bean originates (Rodiño et al. 2010), few
rhizobia identification studies have been carried out, despite potentially being an
important source of rhizobial diversity, which is a key determinant of common bean
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productivity (Baginsky et al. 2015). Ribeiro et al. (2015) determined the taxonomic
affiliations of isolated strains from Ecuadorian soil (Rhizobium ecuadorense) previ-
ously reported by Bernal and Graham (2001), showing that all the Ecuadorian
isolates corresponded to three novel lineages from the Rhizobium etli group that
fall into the R. phaseoli/R. etli/R. leguminosarum clade. One of these lineages, with
representatives isolated mostly from Ecuador, seems to be a dominant lineage
associated with beans from that northern and central region (Ribeiro et al. 2013).

The few previous studies from the Ecuadorian Andean region have focused only
on determining the phylogenetic potential of symbionts (Bernal and Graham 2001;
Ribeiro et al. 2013). However, the effect of rhizobia on plant phenotypic parameters
and the variability among isolated strains are rarely studied under laboratory,
greenhouse, or field conditions. Therefore, it is important to assess the phenotypic
parameters of isolated strains, such as nodule formation and plant biomass produc-
tion. The determination of these parameters is not only necessary to elucidate the
capability of isolated strains to grow under different environmental conditions but
also to understand how bacterial inoculation enhances plant growth and yields
(Torres-Gutiérrez et al. 2017).

19.4.1 Genotypic Variability Among Local Bean Genotypes
and Native Rhizobium Strains. Case of Study
of Southern Ecuador

19.4.1.1 Rhizobium Biodiversity at Southern Ecuador

Serial experiments were performed to unravel Rhizobium biodiversity and its geno-
typic variability with local bean genotypes. Here we describe the first study
published by Torres-Gutiérrez et al. (2017), in which they show the genetic diversity
of native Rhizobium strains from the southern region of Ecuador.

For Rhizobium isolation, firstly, sampling was performed in nine municipalities of
Loja province in the southern region of Ecuador. Global positioning system data
were recorded at each collection point and altitudinal levels (meters over sea level)
were determined (Table 19.3).

In each of the sampling areas, roots nodules of P. vulgaris were taken randomly
and stored in moisturized Ziploc® bags to prevent drying. The isolation methodol-
ogy proposed by Sánchez et al. (2014) was used with minimal modification. Briefly,
individual nodules were dissected from the roots using a flame sterilized scalpel and
tweezers and were washed thoroughly in distilled water using a sieve to remove all
traces of soil. Subsequently, nodules were transferred to a sterile Petri dish and
surface disinfected by immersion in 10 mL of 3% NaClO for 3 min, followed by
immersion in 0.1% HgCl2 for 2–5 min. Finally, the nodules were washed profusely
with sterile distilled water. For bacteria molecular identification, isolated colonies
were grown overnight in Yeast Extract-Mannitol (YM) medium at 30 �C with
shaking at 250 rpm in a shaker incubator (Techine TS1500, USA). DNA extraction
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was performed using a ChargeSwitch® gDNA Mini Bacteria Kit (InvitrogenTM,
USA), according to the manufacturer’s instructions. DNA quality was checked
by&spi2;quantification in NanoDrop (NanoDrop 2000, Thermo Scientific, USA)
and electrophoresis in a 1% agarose gel (1 g agarose in 100 mL TBE buffer).
The&spi2;16S rRNA gene of isolates was amplified with the conserved primers:
ARI C/T (5’CTGGCTCAGGAC/TGAACGCTG3’) and pH (5’AAGGAGGTGA-
TCCAGCCGCA3’) (Clermont et al. 2009), which amplify almost the full length of
the 16S rRNA gene (1500 bp). The PCR-amplified 16S rDNA fragments were
purified using a PureLink® PCR Purification Kit (InvitrogenTM, USA) and the
sequence analysis was performed using an Applied Biosystems 3100 DNA
Sequencer. Sequence assembly was performed with BioNumerics version 4.5
(Applied Maths, Sint-Martens-Latem, Belgium). The closest related sequences
were identified using the FASTA program and compared with those available in
the GenBank database.

The 16S rDNA assay (Table 19.4) demonstrated the presence of nine species of
Rhizobium among the 20 isolated strains, including Rhizobium tropici, R. etli, R. etli
bv.mimosae, R. leguminosarum, R. leguminosarum bv. viciae, R. mesoamericanum,
R. undicola and two unclassified species, Rhizobium sp. and uncultured Rhizobium
sp. These results show the wide Rhizobium diversity at southern Ecuador, as well as
the prevalence of R. tropici, which nodulates P. vulgaris in this region.

Table 19.3 Georeferentiation of sampling sites at southern Ecuador

Municipality Samples

Georeferentiation

Soil type
Altitudinal
levelsbS W

Heighta

(m.o.s.l)

Pindal 4 04�0700600 80�

0603200
800 Inceptisols 1

Paltas 3 04o0204600 79o4607800 940 Entisols

Catamayo 4 04�0509900 79�1802900 1078 Inceptisols 2

Calvas 2 04o2605600 79o3505200 1193 Inceptisols

Sosoranga 3 04o190500 00 79o47´
3500

1549 Entisols

Gonzanamá 3 04o0708700 79o2505000 1680 Inceptisols

Loja 8 03o5608600 79o1204800 2120 Entisols 3

Celica 2 04o0509500 79o5707800 2029 Inceptisols

Saraguro 5 03�3605600 79�1502600 2691 Inceptisols
aAverage height of the sampling sites in meters over sea level (m.o.s.l.)
bAltitudinal level 1: from 800 to 940 m.o.s.l., altitudinal level 2: from 1078 to 1680 m.o.s.l.,
altitudinal level 3: from 2120 to 2691 m.o.s.l
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Table 19.4 Genetic diversity of Rhizobium strains at southern Ecuador

Strain
code

Sampled
municipality

Altitudinal
levelsa

Accession
no. Closets to FASTA hit

Sequence
identity
(%)

NAR1 Paltas 1 KP027690.1 Rhizobium tropici str.
MMUST-006

100

PIN1 Pindal 1 JQ797311.1 Rhizobium etli str. ECRI 15 100

PIN3 Pindal 1 KP027691.1 Rhizobium leguminosarum
bv. viciae str. MMUST-003

100

TAB1 Calvas 2 EF555479.1 Rhizobium sp. rf033 98

COL1 Calvas 2 KP027691.1 Rhizobium leguminosarum
bv. viciae str. MMUST-003

100

COL6 Calvas 2 KP027691.1 Rhizobium leguminosarum
bv. viciae str. MMUST-003

100

TAM1 Catamayo 2 KP027690.1 Rhizobium tropici str.
MMUST-006

100

CB1 Catamayo 2 KP027690.1 Rhizobium tropici str.
MMUST-006

100

NAM1 Gonzanamá 2 JX122134.1 Rhizobium
mesoamericanum str.

100

SOS1 Sosoranga 2 KM672515.1 Rhizobium undicola str.
MR68

100

SOS4 Sosoranga 2 KC172298.1 Rhizobium uncultured.
Clone DM6-85

100

LP1 Célica 3 KP027690.1 Rhizobium tropici str.
MMUST-006

100

VP1 Loja 3 CP006986.1 Rhizobium etli bv. mimosae
str. IE4771

99

VP2 Loja 3 KP027690.1 Rhizobium tropici str.
MMUST-006

100

RC2 Loja 3 KP027690.1 Rhizobium tropici str.
MMUST-006

100

TUR1 Loja 3 KP027679.1 Rhizobium leguminosarum
str. KSM-004

100

RAI1 Loja 3 KP027690.1 Rhizobium tropici str.
MMUST-006

100

Q2 Saraguro 3 KP027691.1 Rhizobium leguminosarum
bv. viciae str. MMUST-003

100

Z1 Saraguro 3 KP027691.1 Rhizobium leguminosarum
bv. viciae str. MMUST-003

100

Z3 Saraguro 3 KP027691.1 Rhizobium leguminosarum
bv. viciae str. MMUST-003

100

aAltitudinal level 1: from 800 to 940 m.o.s.l., altitudinal level 2: from 1078 to 1680 m.o.s.l.,
altitudinal level 3: from 2120 to 2691 m.o.s.l
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19.4.1.2 Authentication of Rhizobium Isolates and N Fixation under
Greenhouse Assay

All isolates were assessed to determine their capability to promote nodule number,
biomass production, and N content of P. vulgaris in pot experiments under green-
house conditions. For the experiment, a complete randomized experimental design
with ten replicates was performed. The inoculation with the wild-type strain Rhizo-
bium etli CNPAF512 (obtained from the culture collection of the Centre for Micro-
organism and Plant Genetic of Catholic University of Leuven, Belgium) and a
treatment without inoculation were the controls.

Certified P. vulgaris cv. Mantequilla seeds were obtained at Loja Market. Seeds
were surface disinfected as described previously by Vlassak et al. (1998) and
pre-germinated for 2 days on moist filter paper in the dark at 28 �C. One
pre-germinated seedling was planted per pot. Bean plants were harvested at
21 days after inoculation (DAI) to determine nodule number, nodule dry weight
(mg), and total nitrogen content in the shoots (% total N). The best response strains
were grouped by Ward’s method, using Euclidean distance, taking into account the
results of nodulation, dry weight of nodules, and N fixation.

Figure 19.3 (panel A) shows that at 21 days after inoculation, all isolates were
able to nodulate the host plant. The nodule number and nodule biomass were
variable among the isolates, but most of them yielded significantly higher values
than the controls, primarily for nodule number, highlighting the potential of native
strains to nodulate a local beans cultivar. The inoculation with R. leguminosarum
bv. viciae COL6, R. etli bv. mimosae VP1, and R. mesoamericanum NAM1 was
statistically significant among the treatments. However, no significant difference was
observed among them and with R. tropici (NAR1), R. undicola (SOS1), R. tropici
(LP1), R. tropici (VP2), R. leguminosarum bv. viciae (Q2), and R. leguminosarum
bv. viciae (Z1). These nine bacterial isolates belonged to the group with the best
nodule formation in bean plants (group A) forming an average of 75 nodules per
plant. Following this group, a total of ten isolates (R. etli PIN1, R. leguminosarum
PIN3, R. sp. TAB1, R. leguminosarum bv. viciae COL1, R. tropici TAM1, R. tropici
CB1, R. uncultured SOS4, R. tropici RC2, R. tropici RAI1, and R. leguminosarum
bv. viciae Z3) were clustered in the second most important group (B) for nodulation,
and only one isolate (R. leguminosarum TUR1) and wild type strain CNPAF512
were included in group C, having the lowest nodules number. Although no signif-
icant differences were shown among several native strains and R. etli wild type strain
CNPAF512, the low responses by the reference strain could be associated with the
fact of adaptation to a new environment. Thies et al. (1991) state that native rhizobia
are generally more competitive than introduced strains. Finally, as expected, the
control treatment was unable to nodulate the host plant.

In panel B, the nodular biomass showed significant differences among the iso-
lates. A group A, with a total of seven isolates (R. tropici RC2, Rhizobium
mesoamericanum NAM1, R. tropici LP1, R. leguminosarum bv. viciae Z1, R. sp.
TAB1, R. leguminosarum PIN3, and R. leguminosarum bv. viciae COL6) exhibited
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the most significant results, with nodule dry weight values ranging from 70 to 92 mg.
The largest group (group B) of strains (11 isolates) had moderate nodule dry weights,
with values from 38 to 65 mg, and the low values (group C) belonged to Rhizobium
uncultured SOS4, R. leguminosarum TUR 1, and the wild-type strain CNPAF512.
The results for these two strains were consistent with the nodule number. The results
obtained with wild-type strain, as well as for TUR1, could be related to their erratic
interaction with P. vulgaris cv. Mantequilla. R. etli CNPAF512 was isolated from
Mesoamerican soils and has been shown to be effective with the common bean
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(Remans et al. 2007), but it may not be as efficient at promoting nodule formation
and nodule biomass for Andean cultivars. Several studies have focused on the lack of
response of wild-type strains in common beans. Mostasso et al. (2002) and Hungria
et al. (2003) demonstrated the low activity of the reference strain as CIAT899 when
used to inoculate P. vulgaris.

Despite the high diversity of morphological, genetic, and nodulation parameters,
N fixation was rather homogenous for most of the treatments assessed (Fig. 19.4).
The native strains, including uncultured Rhizobium sp. SOS4, R. tropici VP2,
R. leguminosarum bv. viciae Z3, R. leguminosarum bv. viciae COL6,
R. mesoamericanum NAM1, and R. etli PIN1, yielded the highest shoot N content.
Results obtained using COL6 and NAM1 were expected for N fixation, due to the
performance observed for the nodulation parameters. Voisin et al. (2003) and
Yadegari and Rahmani (2010) reported that with the inoculation of efficient Rhizo-
bium strains, the amount of N2 symbiotically fixed by common beans is increased
and is strongly correlated with the number of nodules and nodular biomass.

These results allowed the selection of the best strains according to their response
to nodulation, nodular biomass, and N fixation (Fig. 19.5) to assess their efficiency in
further researches under field conditions.

The results shown by native strains from southern Ecuador are in agreement with
other previous studies (Slattery et al. 2004; Figueiredo et al. 2008; Peoples et al.
2009; Mulas et al. 2011; Karaca and Uyanöz 2012; Kawaka et al. 2014), which have
been conducted with the purpose to select efficient Rhizobium strains to enhance
nodulation, N fixation, and growth of common bean genotypes.
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19.5 Conclusions and Perspectives

The rhizobia diversity plays an important role in establishing an effective and
efficient symbiotic relationship with Phaseolus vulgaris. Through this exhaustive
review, the biogeographic and genetic distribution of microsymbionts capable to
nodulate common bean globally has been shown. Although there is a net of
Rhizobium genetic distribution worldwide, we show that most of these strains belong
to symbiovars indigenous from America, such as phaseoli and tropici, where this
legume has its origin center. It is evident that biotic factors like the promiscuity can
effectively limit beneficial interactions, being a constraint for stimulation of nodule
formation and nitrogen fixation on P. vulgaris. Compatible interactions, as shown in
the case of study in southern Ecuador, help to understand the genotypic variability
between Rhizobium strains and local bean genotypes. Despite the amount of scien-
tific information regarding the diversity of diazotrophic bacteria, more studies are
needed focusing on the application of effective interplay under different agroclimatic
conditions. The goal should be directed to achieve plant growth stimulation and to
increase yields under field conditions with biofertilizers application and thus the
reduction and/or elimination of nitrogenous fertilizers to carry out sustainable
agricultural processes.
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