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Abstract: The application of hydrologic and hydrodynamic models in flash flood hazard assessment is
mainly limited by the availability of robust monitoring systems and long-term hydro-meteorological
observations. Nevertheless, several studies have demonstrated that coupled modeling approaches
based on event sampling (short-term observations) may cope with the lack of observed input
data. This study evaluated the use of storm events and flood-survey reports to develop and
validate a modeling framework for flash flood hazard assessment in data-scarce watersheds.
Specifically, we coupled the hydrologic modeling system (HEC-HMS) and the Nays2Dflood
hydrodynamic solver to simulate the system response to several storm events including one,
equivalent in magnitude to a 500-year event, that flooded the City of Tena (Ecuador) on 2 September,
2017. Results from the coupled approach showed satisfactory model performance in simulating
streamflow and water depths (0.40 ≤Nash-Sutcliffe coefficient ≤ 0.95; −3.67% ≤ Percent Bias ≤ 23.4%)
in six of the eight evaluated events, and a good agreement between simulated and surveyed flooded
areas (Fit Index = 0.8) after the 500-year storm. The proposed methodology can be used by modelers
and decision-makers for flood impact assessment in data-scarce watersheds and as a starting point for
the establishment of flood forecasting systems to lessen the impacts of flood events at the local scale.

Keywords: flood hazard assessment; data scarcity; model coupling; event sampling; survey data

1. Introduction

The assessment of natural hazards, such as flash floods, remains a challenging issue in
environmental sciences [1]. Flash floods caused by extreme rainfall events associated with climate
change have increased in the past few years [2–4]. Thus, the development and implementation
of measures that diminish flash flood impacts and safeguard people and civil infrastructure are
imperative. In this context, numerical models have been found to be reliable tools for flash flood
hazard assessment. Specifically, hydrological and hydrodynamic models have been widely applied
to describe flash flood dynamics at the watershed scale and project potential impacts on urban areas.
Hydrological models (e.g., HEC-HMS, SWAT, MIKE 11, HBV, Top Model) have been widely used to
simulate precipitation-runoff processes due to the ease of their implementation [1]. Although these
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models can accurately estimate streamflow patterns across complex watersheds, they do not provide
a comprehensive representation of water flow in riverbanks and floodplains. On the other hand,
hydrodynamic models (e.g., MIKE 21, LISFLOOD-FP, DELFT-2D, IBER, Nays2DFlood), which are
based on more complex formulations, can represent streamflow data in terms of water depths and flow
velocities across river channels and floodplains [5–9] but with a larger expense in computational and
data resources [10,11]. External coupling approaches that combine hydrological and hydrodynamic
models have shown satisfactory performance in representing flood extents while requiring a reduced
computational burden and data [12–16]. The information generated by combining these models may
be used to reconstruct historical flood events or evaluate the plausible response of the hydrologic
system to present or future stressors (e.g., climate and land-use changes) [17]. Given that hydrologic
and hydrodynamic models play a crucial role in the design of flooding control structures, flood risk
management, and mitigation policy-making, they need to be tested from a strict scientific point of
view [18–22]. Model reliability depends on two key factors, namely, the model formulation that
describes the system and the input data used to set up the model [11,23–26].

In developing countries, the availability and quality of hydrometeorological data represent
a significant constraint for the implementation of hydrological and hydrodynamic models due
to the absence of robust monitoring networks and the lack of long-term hydro-meteorological
observations [27]. The scarcity of reliable input data hinders the models’ ability to represent the
hydrological dynamics. Consequently, the application of hydrological and hydrodynamic models in
data-scarce environments is prone to equifinality (i.e., to generate a similar systemic response under
distinct model parameterizations) and high uncertainty, even after a successful calibration/validation
process [28]. In other terms, modeling outputs under data scarcity conditions may not enhance the
basic understanding of the processes taking place in the hydrologic system and appropriately represent
the watershed’s natural characteristics [29].

In the absence of long-term observations, event sampling data may provide sufficient information
to perform hydrological and hydrodynamic simulations. In this sense, several studies have found
that the degree of hydrological information obtained by processing data from several storm events
is comparable to that obtained by processing long-term data series [30–36]. The implementation
of externally coupled models with event sampling data for flood hazard assessment may be quite
relevant in zones with high spatial precipitation variability such as those located in the Andes-Amazon
transition [37], where monitoring networks are sparse and recently established.

This study evaluated the potential use of event sampling and survey data for flash flood hazard
assessment in data-scarce watersheds. Specifically, this study was geared to (1) implement a coupled
framework to simulate in-stream flow and flow velocity and water depths across floodplains against
short precipitation-runoff events in the data-scarce Tena River Watershed in Ecuador, and (2) evaluate
the ability of the modeling framework to recreate the flood intensity due to a 500-year precipitation
event that flooded the city of Tena on 2 September, 2017. Despite the fact that this city, like many others
in the Amazon Basin, has experienced several flood events during recent years (2008, 2010, 2016, 2017)
that have caused fatalities and significant economic losses [38,39], no flood management system has
been implemented. The methodology and findings from this study may be used in similar watersheds
with scarce data and for the establishment of flood forecasting systems.

2. Materials and Methods

2.1. Study Area

The study area comprises the Tena River Basin (TRB) and the Pano River Basin (PRB),
which converge on the city of Tena (Napo province, Ecuador) and cover a drainage area of 235 km2

(Figure 1). The basins depict a very steep relief with a terrain elevation ranging from 500 to 2500 m above
mean sea level (mamsl; Figure 1c) and an average slope of approximately 22.4%. The main stem of each
river extends for 28 and 25 km for TRB and PRB, respectively, with a mean slope of 7%. The domain for
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the flood hazard assessment in the city of Tena considered a river segment of 1.7 km (Figure 1d) that has
a mean slope of 0.03%. Its width and bankfull area are equal to 50 m and 362 m2, respectively, and its
bed is composed of coarse material such as gravels (~5 cm) and cobbles (~25 cm). TRB and PRB have
similar characteristics in terms of their geology, morphology, soil composition, land use, and climate.
Both basins are part of a tertiary cretaceous sedimentary basin with predominant alluvial deposits.
The soils, classified as hydrated Andisols formed in volcanic ash, that are predominantly sandy clay
and sandy loam in the upper and lower parts of the watershed, respectively [40], remain saturated
most of the time. This is explained by the low evapotranspiration rates of the cloud forest located in
the upper part of the watershed [41], which, together with shrubs and herbaceous plants, cover 65% of
the area. The lower part, on the other hand, is covered by secondary forest, pasture, and crops such as
corn, cacao, and cassava (35%) [42].
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Figure 1. General features of the study area. (a) Location of the Napo province in Ecuador; (b) study
area within the Napo province; (c) terrain elevation and location of the precipitation and streamflow
gauges; (d) domain used for flood hazard assessment (red polygon) in the city of Tena.

In accordance with the Köppen climate classification, the study area can be defined as tropical
rainforest (Af), i.e., the climate is strongly influenced by humid air masses coming from the remaining
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portion of the vast Amazon Basin in the east [43]. The mean annual precipitation in the city of Tena is
estimated at 3500 mm, while in the upper zone of the study area, it could exceed 4000 mm. The mean
annual temperature is approximately 25 ◦C [38].

The city has experienced a disorderly urban growth in recent decades that has occupied
areas susceptible to flooding (low terraces), where nowadays approximately 3000 people live [44].
Several climate scenarios for this region have projected a progressive increase in the occurrence of
extreme precipitation events until the end of the century [45–48], which may imply a higher flood risk.

2.2. Data

Soil characteristics and land cover data for the TRB and PRB were derived from thematic
maps of the SIGTIERRAS project (STP), available at the spatial scale of 1:25,000 [42]. The watershed
morphological parameters for the hydrological modeling (Table 1) were derived from a 30-m digital
elevation model (DEM) produced by the SRTM (Shuttle Radar Topographic Mission) [49], while the
topography of the river segment and floodplains for the hydrodynamic modeling were derived from a
5-m DEM surveyed by the STP through Aerial Photogrammetry. In the latter, the topography of the
main channel was adjusted with ground control points, and false elevation values were corrected [42].
It is important to note that the DEM described the terrain elevation, and consequently, it did not
represent objects and obstacles such as buildings.

Table 1. Morphological and hydrological parameters of PRB and TRB.

Parameter Description [Units] PRB TRB

A Drainage area [km2] 99.96 134.86
P Perimeter [km] 54.97 54.13

El_min Minimum elevation [m] 499.00 499.00
El_max Maximum elevation [m] 2494.00 2448.00
El_ave Mean elevation [m] 982.00 1087.00
Sl_min Minimum slope [%] 0.00 0.00
Sl_max Maximum slope [%] 95.93 106.23
Sl_ave Mean slope [%] 24.09 27.51

Lh Hydraulic length [km] 25.43 27.99
Le Equivalent length [km] 23.17 20.48

Lr Relative length of the largest reach (Lh / Aˆ0.5) [-];
Lr > 1: elongated basin, Lr < 1: basins prone to floods 2.54 2.41

CN Curve number for saturated conditions [-] 90.00 87.00
Tc Time of concentration [minutes] 180.00 190.00

Lag Lag time [minutes] 108.00 114.00
Bf Baseflow [m3/s] 6.00 9.00

Hydrometeorological monitoring initiatives in the watershed started in 2013 with the foundation
of the Ikiam University, which installed an automatic weather station and an automatic radar
streamflow gauge [50] in 2015 and 2018, respectively (Figure 1). These gauges record precipitation,
streamflow, water depth, and flow velocity patterns using a one-minute time step. The data is
available at http://meteorologia.ikiam.edu.ec:3838/meteoviewer/. The streamflow gauging station is a
SOMMER RQ-30, which comprises a radar sensor for water level and flow velocity measurement [50].
The cross-section area (A) is computed as a function of the water level, and then used to calculate the
streamflow (Q = A × V × k; k = correction factor). A discharge table is generated from the cross-section
areas and the k-factors as a function of the water level corrected by a reference measurement. The cross
section of the channel at the measuring point was determined with a detailed topographic survey.

Given that this study focuses on flash flood hazard assessment, for the calibration and validation of
the modeling framework, we only considered storm events that have generated a significant streamflow.
These were events that generated a streamflow over 211 m3/s. This streamflow threshold was defined
following the methodology proposed by Reynolds et al. [30], using the annual minimum from monthly

http://meteorologia.ikiam.edu.ec:3838/meteoviewer/
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maximum records instead of the annual mean. This obeyed the short time-series available for the
streamflow (1 year; Figure 2). As a result, eight events were selected for the period between July 2018
and May 2019 (Table 2). E1 and E8 were the storm events with the longest durations (48 h), while E3
the event with the shortest (20 h) (Table 2). Likewise, the maximum and minimum peak flows were
recorded for E1 (714.2 m3/s) and E3 (234.8 m3/s), respectively (Table 2).
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Figure 2. Time series of precipitation (P) and streamflow (Q) from July 2018 to May 2019. The orange
dashed line represents the 211 m3/s threshold for storm event selection.

Table 2. Duration and peak flow of the eight storm events considered for model calibration
and validation.

Event Start (Date, Time) End (Date, Time) Duration (Hours) Peak Flow (m3/s)

E1 21 July 2018, 12:00 23 July 2018, 12:00 48 714.20

E2 03 September 2018, 12:00 04 September 2018, 18:00 30 356.00

E3 14 October 2018, 12:00 15 October 2018, 08:00 20 234.80

E4 24 November 2018, 00:00 24 November 2018, 24:00 24 403.30

E5 07 January 2019, 12:00 08 January 2019, 12:00 24 435.60

E6 10 March 2019, 06:00 11 March 2019, 06:00 24 395.60

E7 27 April 2019, 00:00 27 April 2019, 24:00 24 589.80

E8 13 May 2019, 00:00 14 May 2019, 24:00 48 424.40

In September 2017, an extreme precipitation event flooded the city of Tena. It had a duration of
13 h with a 1.25-h period that registered a maximum intensity of 120 mm/h. In accordance with a study
of heavy precipitation events in Ecuador developed by the National Hydrometeorological Institute
(INAMHI) [51], the characteristics of the 2017 extreme event were equivalent to those of an event with
a 500-year return period. This INAMHI study used a meteorological station located 10 km to the
northeast of our study area and with more than 50 years of records to determine the characteristics of
precipitation events with different return periods. Among them, a 500-year event was described as
that with a maximum intensity of 120 mm/h for a period of at least 1.25 h. In order to reproduce the
flooding generated by the 2017 event and evaluate whether it may serve as a starting point for the
establishment of a regional flood forecasting system, we employed our modeling framework to cope
with the lack of streamflow records for the period when this 500-year event took place.
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2.3. Hydrological Modeling

We set up a lumped HEC-HMS model (4.2.1 version) [52] to simulate streamflow in the main stem
of PRB and TRB using the curve number (CN) and the synthetic unit hydrograph methods, both of
which were developed by the Soil Conservation Service (SCS; now NRCS) [53–55]. The resulting
hydrographs for PRB and TRB were combined without implementing any routing technique at the
junction of the rivers in the city of Tena (Figure 1d). The CN is defined in terms of land cover, soil type,
and antecedent soil moisture conditions. The latter is a crucial parameter that may reduce or increase
the soil infiltration capacity [56], and hence, affect the amount of runoff. Initial values of CN, time of
concentration (tc), and lag time (lag) were derived from previous studies performed in the study area,
DEM processing, and the analysis of precipitation and streamflow time series, and then adjusted
during calibration. According to Fernandez et al. [57], CN values of 90 for PRB and 87 for TRB
(Table 1) accurately represent the soil saturated and the high surface runoff conditions in the basins.
The tc, representing the hypothetical time that water would require to reach the watershed outlet
from the remotest point [54], was expressed in terms of the river channel length and the elevation
difference between the highest and lowest points of each basin using the Kirpich’s equation [58]. The lag,
which corresponds to the delay or time difference between the peak precipitation and peak streamflow,
was calculated as 60% of tc [52]. The initial lag values for PRB and TRB were equal to 108 and 114 min,
respectively. All the initial hydrological parameters used in this study are shown in Table 1.

The built-in automatic parameter estimation algorithm within the HEC-HMS interface [59] was
employed for model calibration, where the model was calibrated for event E1 and validated for events
E2-8. The goodness-of-fit of the model was evaluated by comparing the observed and simulated
streamflow using the Nash-Sutcliffe efficiency coefficient (NSE) and the Percent Bias (PBIAS). The NSE
indicates how well the observed and simulated data fit a 1:1 line [60], while the PBIAS measures the
average tendency of the simulated data to underestimate or overestimate the streamflow compared
to the observations [22]. The model parameters were adjusted until the model reached a ‘very good’
performance in accordance with the Moriasi et al. [21] ratings, where the model performance metrics
were computed considering all values at one-minute time steps over the event duration (Table 2).

2.4. Hydrodynamic Modeling

Nays2DFlood solver (3.0.0 version) [8] was used for hydrodynamic modeling. Nays2DFlood is
an open-source flood flow solver for two-dimensional unsteady flow problems. It implements the
continuity and momentum equations in a curvilinear coordinate system where water depths and
flow velocities are the main model outputs [61,62]. For the domain used for flood hazard assessment
in the city of Tena, we employed a 1-km2 structured grid that comprises 10,000 × 10-m square cells
(Figure 3). This simulation area encompassed the overflown section of the main channel and the urban
areas that are more prone to flooding. The upstream boundary conditions were defined using the
hydrographs generated by the hydrologic model for the Tena and Pano rivers (Figure 3a) while the
downstream boundary conditions, located before the confluence of the Tena and Misahuallí rivers
(Figure 1), were set as free outflow. Free outflow means the simulation results for the grid cells
adjacent to the boundary grid cells are given to the boundary grid cells as their boundary condition [8].
Specifically, the initial water depth was set to 0.5 m, which corresponds to the water depth at the
baseflow. Additionally, model calculations were performed using a time step of 0.05 s with the model
outputs being printed every 60 s.
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Figure 3. Hydrodynamic domain and control points for calibration and validation. (a) Modeling
domain for the hydrodynamic simulations and location of the streamflow gauging station; (b) Polygon
of flooded areas (black line), additional control points of flooded sites (greenish dots), and high-water
mark (reddish dot) used to validate the results of the hydrodynamic model in simulating the 2017
flood event.

The cell roughness characteristics were estimated by comparing aerial photographs and land cover
data with tabulated roughness values. Among all the parameters, the Manning’s coefficient (n) is one
of the most important for hydrodynamic modeling [11]. It represents the average flow resistance in the
water profile [8]. We used an initial n value of 0.025 (natural channels with no vegetation) for the main
channel [63]. For the floodplains, an equivalent Manning coefficient was implemented resembling the
roughness of pavement and other urban areas (n = 0.05) [64]. Given that Nays2DFlood employs an
implicit finite difference scheme to solve the advection equation, during the simulation, the water flow
variables need to be spatially interpolated at each time step. Specifically, this study used the constrained
interpolation profile (CIP), which is a high-order, accurate method that fits a third-order polynomial
to reduce numerical diffusion. One of the CIP advantages is that a small number of adjacent cells is
required to obtain an accurate estimation of the advection terms [12].
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There are several techniques for the calibration and validation of hydrodynamic models based on
single or multiple data sources such as remote sensing, survey data, and historical records [65–69].
In this study, the coefficient of Manning was manually adjusted until the error between the observed and
simulated water depths and flow velocities was the minimum possible at the radar streamflow gauge
located in the main channel (Figure 1). It is important to note that during flash flood events, the kinematic
wave (gravitational forces) prevails over the dynamic wave (inertial forces). Therefore, the use of
flow velocities and water depths is suitable for calibrating the Manning’s coefficient for the main
channel, where the flow is predominantly one-dimensional [70,71]. The calibration and validation of
the Manning’s coefficient of the river reach took into account the six storm events that were calibrated
and validated for the hydrologic model (i.e., E1-E3, E5, E6, and E8) and one that occurred in 2017.
Events E4 and E7 were not considered because of the unsatisfactory performance of HEC-HMS in
simulating their streamflow patterns (Figure 4). The same model metrics (NSE and PBIAS) used for
the hydrological modeling were used to evaluate the performance of Nays2DFlood.
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In addition to the water depths and flow velocities at the gauging station, we used a polygon of
flooded areas, additional control points of flooded sites, and a high-water mark (Figure 3b) to validate
the performance of the model in simulating the 2017 extreme event. The flooded areas generated
by the hydrodynamic model were evaluated using the fit index (better known as F index) [65,72],
which measures the degree of overlap between the observed and simulated flooded areas from 0 to 1,
where F = 1 represents a perfect overlap, and F = 0 represents no overlap. The F index is computed by
dividing the spatial intersection between the observed and simulated flood areas by their spatial union.

2.5. Flood Hazard Mapping

The most relevant physical characteristics of flood events are flow velocity, water depth,
and duration, which may determine their intensity and destructive capacity, and hence, may provide a
measure of its hazard [73,74]. We built flood intensity maps for the 2017 flood event, postprocessing
the results from the hydrodynamic simulations in GIS tools and using the flood intensity categories
proposed by Cançado et al. [75] (Table 3). The flood hazard mapping was only implemented for the
2017 event because, within the available precipitation records, this flood event had survey data (flooded
areas and points) which was useful for validation.

Table 3. Flood intensity as a function of flow velocities and water depth.

Flood Intensity Depth (D) [m]-Velocity (V) [m/s]

High D > 1.5 or V > 1.5
Medium 0.5 < D < 1.5 or 0.5 < V < 1.5

Low 0.1 < D < 0.5 and 0.1 < V < 0.5

3. Results and Discussion

3.1. HEC-HMS Calibration

The performance of HEC-HMS in simulating the streamflow at one-minute time steps showed
satisfactory results (Table 4 and Figure 4). In accordance with the Moriasi et al. [21] guidelines for
calibrating hydrologic models, the NSE (0.88) and PBIAS (16.6%) for the calibration event (E1; Figure 4)
indicated a good fit between the observed and simulated streamflow. Similarly, in four (E2, E3, E6, E8)
of the seven validation events, the hydrologic model had a satisfactory performance (0.76 ≤NSE ≤ 0.95;
−3.67% ≤ PBIAS ≤ 10.46%; Figure 4). Since high performance metrics are difficult to achieve using
a one-minute time step, and the Moriasi et al. [21] performance ratings are for monthly time-step
evaluations, we considered that our model had also an acceptable performance in simulating event E5,
which obtained a NSE of 0.42 and a PBIAS of 23.44% (Figure 4).

Table 4. Observed and simulated peak flow, time at peak, and runoff volume for events E1-E8.

Event
Observed Simulated

Time at
Peak (Time)

Peak Flow
(m3/s)

Runoff
Volume (mm)

Time at
Peak (Time)

Peak Flow
(m3/s)

Runoff
Volume (mm)

E1 09:24 714.20 100.66 09:47 641.10 83.96
E2 01:49 356.00 25.34 02:16 306.30 24.52
E3 23:09 234.80 16.92 22:42 263.70 17.54
E4 11:19 403.30 30.25 11:33 760.80 43.94
E5 00:09 435.60 24.1 01:36 178.10 18.45
E6 17:54 395.60 25.21 17:36 319.90 22.57
E7 14:24 589.80 33.76 14:53 178.10 14.63
E8 04:40 424.40 48.01 04:24 404.60 49.67

This was supported by other studies [76,77] that have stated that simulations with a daily
(or smaller time steps) NSE as low as 0.4 may be considered acceptable. Consequently, five of the
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seven validation events had satisfactory results. Despite the fact that the performance of the model
was not validated in two events (E4 and E7; Figure 4), our modeling framework was reliable in 71.4%
(75% if considering the calibration event as well) of the cases, making it suitable for flood modeling.
The low performance in the aforementioned two events may be explained by the spatial variability
of the precipitation across the study area, which could not be fully described by the single weather
station available for this study. Recall that precipitation is not monitored in PRB; this may explain
some of the differences between the observed and simulated streamflow. Despite these limitations,
the results were promising, taking into account the data-scarce condition of the study area and the fact
that nowadays, flood prediction systems have not been deployed by the local authorities. The time
difference between the observed and simulated peak flow ranged from −27 min to 87 min, with a mean
value of 15 min, where the highest error was observed for E5 (Table 4).

The latter may imply some limitations for flood progress monitoring and forecasting, and a late
response to such events from the local authorities. We believe that the modeling errors were related
to the difficulty of describing the spatio-temporal patterns of every precipitation event that occurred
across PRB and TRB due to the lack of multiple monitoring points. However, the results showed that
in most of the cases, the single precipitation gauge available in the study area was able to provide
sufficient information for simulating the streamflow in the Tena River. More efforts should be made to
improve the monitoring system in the study area.

The adjusted CN values for PRB and TRB were 84 and 81, respectively, being very close to the
initial assumption. The optimum lag time values, on the other hand, were 125 min for PRB and
130 min for TRB, approximately 15% greater than the initial values. Similar results for the lag time
were obtained in previous studies based on morphometric analyses [57]. The high CN and low lag
values indicated a fast watershed response to precipitation. This was explained by the combined effect
of intense precipitation patterns, steep slopes, and high water storage capacity of clay and loam soil
types. Recall that soils are saturated most of the time due to the humid environment and the cloud
forest in the upper part of the study area, which has low evapotranspiration rates and allows the
soil to remain moist [41]. Moreover, steep hillslopes in the upper zones of PRB and TRB facilitate
surface runoff [78,79]. Under these conditions, surface runoff may be generated by both infiltration
and saturation excess [80–82]. It is important to note that although TRB and PRB are densely forested,
the ability of this cover to attenuate floods is limited [83,84].

3.2. Nays2DFlood Calibration and Reconstruction of the 500-Year Flood Event

The Manning coefficient for the channel and the floodplains was simultaneously calibrated and
validated. As a result, a value of 0.05 for both generated the best results (highest performance metrics;
Figure 5 and Figure 7c). Our findings matched those from other studies that estimated an equivalent
Manning’s n for urban floodplains [64,72,85]. Moreover, several studies have found that the calibrated
Manning coefficient for the channel and floodplains can be very similar under certain conditions.
For example, Mosquera-Machado et al. [86] obtained Manning’s n values of 0.056 and 0.048 for the
floodplains and channel, respectively, in a flood hazard study in Colombia. Horrit and Bates [65] also
obtained similar values for the Manning coefficient in both the channel and floodplains of 0.02 and
0.05 using the TELEMAC and the LISFLOOD-FP models, respectively. In our case, the same value
of Manning’s n for the river channel and floodplains may be explained by the coarse bed material
of the channel (gravel and cobble) [87] and the urban cover of the floodplains, which have similar
roughness characteristics.
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Figure 5. Observed (black line) and simulated (reddish line) water depth (m) and flow velocity (m/s)
for the calibration and validation events (E1-E3, E5, E6, E8).

The Nays2DFlood showed satisfactory results in simulating water depths and flow velocity in
the main channel (Figure 5). For the water depths over the calibration and validation events (E1-E3,
E5, E6, E8), the NSE values ranged between 0.64 and 0.85, while the PBIAS varied from −3.17% to
8.62% (Figure 5). Overall, the model was able to simulate the magnitude and timing of the water
depths with a general tendency to underestimate its magnitude by 5.6%, which represents ‘very good’
performance in conformity with the Moriasi et al. [21] performance ratings. For the flow velocity,
the NSE (0.57–0.84) and the PBIAS (−11.03–10.79%) described a reasonable goodness-of-fit in five
of the six evaluated events (E1-E3, E6, E8; Figure 5). The model was not able to recreate the water
velocity during event E5 (NSE = −0.08; PBIAS = 40.73%; Figure 5). This error in the flow velocity was
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associated with the low accuracy of the hydrologic model in simulating the streamflow for this event
due to the complexity of describing precipitation patterns across the study area with a single weather
station. However, we believe these limitations can be overcome in the near future by improving the
precipitation monitoring network in the study area and/or using remote sensing data.

Given that there were no streamflow records for the precipitation event that flooded the city of
Tena in September 2017, they were recreated using the calibrated HEC-HMS model (Figure 6a). At the
junction of the Pano and Tena rivers, the simulated peak flow was equal to 1967 m3/s (Figure 6a),
i.e., 5.1% less than that estimated by Fernandez and Bateman [57] for the same area based on the
precipitation event that INAMHI described with a 500-year return period [51].
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Figure 6. Spatio-temporal evolution of the flood event generated by the 500-year storm on 2 September
2017. (a) HEC-HMS-reconstructed hydrograph. Flood stage (b) at the beginning of the river overflow,
(c) when the overflow took place along several river segments, and (d) at the time of peak flow.

According to the simulation results, the river started overflowing 150 m downstream of the
confluence of the Pano and Tena rivers at 23:07 (111 min after the peak precipitation was observed;
Figure 6a,b), and only 8 min later (23:15), several river segments near the meanders were overflowing
simultaneously. Moreover, when the peak flow was observed (23:40), most of the floodplains were
almost covered. These results may help stakeholders to develop flood emergency plans that consider
evacuation plans, the establishment of early warnings, the construction of levees, or urban planning
strategies to relocate vulnerable communities.

As mentioned in 2.4, the Nays2DFlood results were further validated using survey data of the
flooded areas and control points of flooded sites. A high agreement between the simulated and
observed flooded areas was obtained based on the fit index (F = 0.8). Additionally, six of the eight
control points of flooded sites were within the simulated flooded areas, and the simulated water depth
(1.23 m) matched that observed in a high-water mark (1.2 m) left on a building after the flood event
(Figure 7c).
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Figure 7. Reconstructed 500-year flood event. (a) water depths; (b) flow velocities; (c) simulated flood
extent against surveyed flooded areas (black line) and control points of flooded sites (greenish dots),
and location of the high-water mark (reddish dot); (d) flood intensity map as a function of flow velocity
and water depth in compliance with Cançado et al. [75] guidelines (Table 3).

The values reported in Figure 7 correspond to the instant at which the peak flow in the channel
was reached (11:40 pm; Figure 6a). The flood intensity map (Figure 7d) indicated that 71% of the
flooded areas (40.9 ha) were under a high intensity, while 23% and 6% were under medium and
low intensity, respectively. The flood intensity map also showed that the Bellavista and El Tereré
neighborhoods were the most affected, being within high flood intensity areas (water depth > 1.5 m or
flow velocity > 1.5 m/s). Accordingly, the maximum water depths in the floodplains were approximately
2 m and 4 m in the Bellavista and El Tereré neighborhoods, respectively, while the maximum water
depth in the main channel was 8.5 m. The maximum flow velocity in the floodplains, on the other
hand, was approximately 3 m/s across both neighborhoods, while in the main channel, a maximum of
9.4 m/s was reached (Figure 7). These areas with medium and high flood intensities may represent a
threat to individuals and hinder evacuation and rescue tasks, given that at a water depth of at least
0.3 m and a flow velocity of 2.0 m/s, humans and cars become unstable [88,89]. Moreover, a water
depth of 1.5 m may represent a damage factor of 0.84 on South American residential buildings [90].
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Governmental reports stated that one person died and 1312 people, 324 houses, 36 private goods,
and three public goods were affected during this extreme flood event [91].

4. Conclusions

This study coupled HEC-HMS and Nays2Dflood with event sampling and survey data to simulate
the hydrologic response of data-scarce watersheds for a flood hazard assessment in the city of Tena.
The results showed that this approach is suitable for calibrating and validating hydrologic and
hydrodynamic models and recreating extreme flood events. Our modeling framework was reliable in
simulating the streamflow and water depths of the main channel in 75% of the evaluated storm events,
indicating that under certain conditions, data from a single precipitation gauge can accurately represent
the spatio-temporal patterns of precipitation across the study area. Additionally, survey data such as
polygons of flooded areas, control points of flooded sites, and high-water marks can provide sufficient
information to constrain hydrodynamic models in the two-dimensional space. We appropriately
reproduced an extreme flood event that occurred in September 2017 due to a 500-year precipitation
event, where streamflow records were not available. According to our flood intensity map, 94% of the
floodplains were under medium or high intensity, which may represent a threat to life, hinder evacuation
and rescue tasks, and significantly damage residential and civil infrastructure.

The framework that we developed in this study facilitated the evaluation of the possible impacts of
flood events on urban areas located in watersheds where robust monitoring networks are not available.
Despite the assumptions that long-term data and multiple monitoring points are required for flood
hazard assessment and the establishment of flood forecasting systems, we found that event sampling
and survey data can cope with data scarcity and pave the way for flood research and the establishment
of flood monitoring/forecasting systems in developing countries while their monitoring systems are
being improved. This will enable stakeholders to formulate timely adaptation and mitigating plans to
lessen the impacts of flood events at the local scale.
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