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When and how much humans altered humid Andean 
montane forests is debated. It was long argued that 
these systems were virtually uninhabitable1–3, but recent 

archaeological4–6 and palaeoecological7,8 data show long-term occu-
pation of some settings but not others9. Recently, it has been suggested 
that the Andean forests of today may have been treeless fields at the 
time of the European conquest8,10. If these arguments are true, then 
successional recovery following human population collapse conceals 
a history of past deforestation. The consequent sequestration of car-
bon by regrowing forests is suggested to have contributed to global 
cooling during the Little Ice Age11–13. Here, we present a detailed 
multi-proxy palaeoecological record spanning the last 2,130 years 
from a montane forest setting that demonstrates the importance of 
climate change to pre-Columbian agricultural strategies and that for-
est regrowth began long before the European conquest.

The montane forests on the eastern slopes of the Central 
Andes are one of the most biologically diverse systems on Earth 
but are reputedly among the most inhospitable for human occu-
pation. Oxygen deprivation and year-round freezing night-time 
temperatures are conditions typical of high montane settings14,15. 
Steep slopes covered by unstable soils, pervasive moisture and 
frequent ground-level clouds make these forests particularly 
uncomfortable for humans and challenging for crop cultivation15. 
Nevertheless, a long history of occupation of these mid-elevation 
settings is now emerging16,17.

Palaeoclimatic reconstructions of the last two millennia from 
Peru and Ecuador reveal local variability, but two broad trends in 
precipitation. Most data indicate that the period from ca. ad 700 
to 1200 was dry and prone to severe droughts but that conditions 
became much wetter after ca. ad 1200 (refs. 18–20).

The likelihood that past climate change in the Andes provoked 
societal changes, even displacement, has long been argued21,22 
although consensus often remains elusive23–25. Human ingenuity 

and invention are evident in offsetting problems posed by inimi-
cal environments to agriculture; for example irrigation systems26, 
raised field agriculture27 and terracing28. Nevertheless, when condi-
tions fall outside a given range, new problems or opportunities may 
produce societal change29–31. Indeed, populations living in marginal 
settings, that is on the cusp of hardship, are likely to be the most 
responsive to adverse conditions.

Laguna de los Condores (also known as Lake of the Mummies 
and hereafter Condores) lies at 6° 51’ 03.02” S, 77° 41’ 43.28” W at 
2,860 metres above sea level in a deep, forested valley. A glacial-
aged lateral moraine forms a steep, shaded northern shoreline and 
100-m-high sunlit white cliffs form the southern shore overlooking 
deep, black water. Sometime after ca. ad 900, indigenous peoples, 
referred to as the Chachapoya, used high cliff ledges above the lake 
to construct scaffolded ledges and burial chambers. Radiocarbon 
ages (Supplementary Table 2) for this material range from ad 1160 to 
1530 (refs. 32,33), confirming that most interments took place before 
and during the Inca conquest and occupation of the Chachapoya 
region (ad 1470–1532)34.

On the crest of the moraine and on its north-facing slopes lie the 
ruins of a late pre-Hispanic Chachapoya village that archaeologists 
named Llaqtacocha (Fig. 1 and Supplementary Fig. 1). Test excava-
tions were carried out in 1999. One of the 130 stone circular and 
rectilinear buildings has been carbon-14 (14C) dated, which sug-
gests that the occupation encompassed the period from ad 1200 to  
1550 (ref. 35).

The lake is about 2,300 m long and 700 m wide and is dammed by 
a terminal moraine. Based on the elevation of the moraine, the lake 
would have been formed during deglaciation 16,000–14,000 years 
ago36. Small inlet streams draining from steep valley sides and 
precipitation provide the water to the lake. Water is lost from the 
system by evaporation and via a small outlet stream through the 
moraine dam.
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The valley in which Condores lies is small, barely double the 
size of the lake, and currently uninhabited and the nearest village, 
Leymebamba, is about 19 km away. The valley has a montane for-
est that is rich in Araliaceae, Ericaceae, Hedyosmum, Lauraceae, 
Melastomataceae, Rubiaceae, Urticaceae and Weinmannia. Over the 
crest of the moraine to the north, outside the lake basin, the north-
facing slopes are maintained for grazing (Fig. 1d).

At Lake Condores, mean monthly temperatures range between 
15.5 and 17 °C with precipitation in excess of 3,200–4,000 mm 
(ref. 37). In the late Holocene natural variations in tropical Andean 
temperature were about 0.5–0.8 °C (refs. 38–40). Such temperature 
changes would have translated to a ~100–160 m vertical change in 
growing conditions. As Condores lies about 700 m below the mod-
ern upper forest limit and 500 m below where maize is commonly 
grown, even the coldest periods would still have been potentially 
productive for maize cultivation. Furthermore, the act of clearing 
land in tropical systems leads to a local warming of about 2–4 °C in 
mean annual temperature, with very little compensation in night-
time cooling41–43. Consequently, temperature is unlikely to have 
played a decisive role in determining cultivational patterns40.

Maize grows best in well-drained soils and bright sunlight. As 
photosynthetically active radiation falls below 1,000 µmol m–2 s–1 
maize productivity starts to decline, and when it falls below 
500 µmol m–2 s–1 this decline steepens44. High precipitation, rela-
tive humidity and low-level clouds are more likely to be important  

constraints on maize growth than temperature. The peak of the 
wet season at Condores occurs between November and April, and 
thus the austral summer would be the worst time to grow maize45. 
At 2,860 m elevation, dry season photosynthetically active radia-
tion would be about 700 µmol m–2 s–1, falling to ~500 µmol m–2 s–1 
in the wet season46. Thus, at Condores any increase in cloudiness 
or increased cloud immersion, which reduces light availability and 
wets leaves, would cause reduced maize productivity47,48.

results and discussion
Analysis of the sediments for fossil pollen and charcoal reveal 
times of deforestation and forest recovery. The chronology of the 
record was established on 11 14C dates (Supplementary Table 1 and 
Extended Data 1).

The fossil pollen record comprised 110 identified types that we 
describe in three zones (Fig. 2). The basal zone (ca. 150 bc–ad 800) 
was rich in disturbance taxa, for example Poaceae, Thalictrum, 
Geranium and Plantago, and was where Zea mays (maize) occurred 
in most samples (Extended Data 2). The intermediate zone (ca. 
ad 800–1200) showed strong oscillations between forested and dis-
turbed states but an overall increase in forest pollen abundance. In 
the upper zone (ca. ad 1200 to modern times), forest taxa were >80% 
of the pollen sum and Zea was represented sporadically (Fig. 2).

Across a broad range of modern tropical forest landscapes 
‘undisturbed’ forest produces a pollen signature in which Poaceae 
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(grass) accounts for 2–8% of pollen despite substantial variation in 
precipitation49–52. Human disturbance is quickly reflected in the loss 
of forest taxa (see Supplementary Table 3 for pollen categorization) 
and increased percentages of Poaceae pollen52. The modern setting 
of Condores yields 8% Poaceae pollen, with forest pollen accounting 
for 88% of the total pollen, which is consistent with a landscape that 
is primarily forested but showing some disturbance (Fig. 2).

In contrast, when this record began 2,130 years ago, there 
were Poaceae pollen inputs of 20–30% and forest pollen was only 
55–60%, with the remainder of the pollen coming from weedy 
herbs (Fig. 2). Titanium inputs, which are a proxy for terrigenous 
mineral influx, 2,130–2,000 years ago were more than double those 
from ad 1900 to modern times (Fig. 3). Carbonates were relatively 
high, suggesting the lake was not overflowing and that this was a 
generally drier time than at present. The lake was eutrophicated 
at that time, compared with the modern system, and supported a 
diatom flora dominated by species tolerant of turbidity, for exam-
ple Punctastriata mimetica and Planothidium frequentissimum53,54, 
whereas the modern dominant diatom, Tabellaria flocculosa, is 
consistent with a stratified system with good light penetration55,56 
(Extended Data 3).

Maize is not native to South America. It has pollen that trans-
ports poorly57 and its fossil presence is an unambiguous indica-
tor of clearance and cultivation taking place within the valley58,59. 
Maize (Z. mays) pollen occurred in the basal sample indicating that 
this landscape was already occupied and used when this record 
began; data that contrast with an absence of crop pollen in the  
modern samples.

Our inferences regarding human responses to climate change are 
divided into those aligned to decadal-scale forcing, which primar-
ily influenced the earlier part of the record, and those of centennial 
forcing, which were important after ca. ad 750.

The decadal-scale events are evident in five profound droughts 
that caused spikes of deposition of calcium carbonate (CaCO3). 
These events were manifested in the calcium/titanium ratios of the 
X-ray fluorescence (XRF) data and in the separate measurement 
of carbonate through loss-on-ignition (Fig. 3). Carbonate deposi-
tion would have occurred when the lake stopped overflowing and 
evaporation increased in relative importance in the hydrological 
budget60,61. Decadal-scale changes were manifested as droughts dur-
ing ad 220–240, 450, 780, 1070–1090 and 1250. These events were 
superimposed on centennial-scale climatic changes that included a 
wet event from ca. ad 750 to 1000, a dry period from ca. ad 1050 to 
1200 and a wet event that began ca. ad 1200.

The droughts also influenced lake productivity. Local peaks in 
the silicon/titanium ratio, a proxy for biogenic silica, were consis-
tent with increased pulses of nutrient availability62. Silicon/titanium 
peaks followed drought events and increases in taxa, which were 
characteristic of disturbed landscapes (Fig. 3). All but the last of the 
major drought events were followed by an uptick in disturbance 
taxa. This last drought event at ad 1230 occurred, as we shall argue, 
when land use in the valley was shifting towards forest regrowth. 
These data suggested unusually dry episodes were exploited by local 
people to clear the forest and increase their agricultural footprint.

Charcoal did not appear to align closely with climatic events. 
This is consistent with the view that fire in these wet forests was 
almost uniquely associated with human activity7. Fire occurred 
irregularly through time until ad 1100 and was much less frequent 
thereafter, until a spike appeared in modern times. Phases of for-
est recovery were suggested by forest pollen increasing to about 
70–80%, at ad 200, 800 and 1200 (Fig. 4).

The drought event of ad 780 seems to mark a change in land 
use within the valley and also the transition to an increasingly wet 
system (for a broader palaeoecological context, see Supplementary 
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Material section ‘Laguna de los Condores paleoclimatology in a 
broader context’). There is greater volatility in the chemical records 
before ad 780, such that peaks and troughs for all elements are more 
extreme than those that follow. The landscape is still extensively 
deforested and human activity is manifest in the charcoal record; 
however, the transition from eutrophic to oligotrophic lake condi-
tions begins at this time. Titanium and silicon/titanium inputs, both 
markers for soil erosion, decrease abruptly and the record of maize 
pollen in the sediments becomes more erratic (Fig. 3) as conditions 
in the valley become wetter (Fig. 4).

Centennial-scale climate change also appears to have influenced 
the choice of land use by humans in the Condores valley. In addi-
tion to the pulses of drought, this area was subject to a long-term 
climatic press of increasing precipitation.

The principle component analysis (PCA) axis 1 of the XRF data 
from the Condores sediments is driven by abundances of titanium, 

iron, aluminium, potassium, silicon and most other elements with 
positive scores on axis 1, with calcium at the negative extreme of the 
axis. This axis is interpreted to represent the component of erosion 
caused by rainfall, with higher values possibly reflecting stronger 
streamflow entering the lake (Fig. 4). When plotted through time, 
PCA axis 1 of the Condores XRF data produces a curve that, at a 
centennial-scale, is similar to that of the delta-O-18 (δ18O) isotopic 
record from Lake Pumacocha, Peru19 (Fig. 4). At a decadal scale, 
where the El Niño Southern Oscillation (ENSO) and other short-
term events are reflected, Pumacocha shows a relatively weak con-
nection to Lake Condores, which is to be expected given the varied 
responses to modern ENSO at these locations and potential mis-
matches in dating63.

Our evidence for agricultural activities dating to 130 bc consti-
tutes valley occupation during the millennium prior to construction 
of Llaqtacocha and the tombs. Habitation sites left by these earlier 
groups have not yet been identified archaeologically. We hypoth-
esize that as conditions became wetter the suitability of the site for 
maize cultivation declined. There was not an immediate end to 
maize cultivation in the valley; rather the period between ad 750 
and 1200 appears to have been transitional with a period of for-
est regrowth between ad 750 and 1000, followed by a resurgence of 
cultivation and land clearance that lasted until ca. ad 1200. It should 
be noted that the Wari Empire expanded out of southern Peru and 
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probably introduced new farming techniques and crop varieties to 
northern Peru by ad 750 (refs. 64,65). A Wari enclave has been iden-
tified ~28 km southeast of Condores, but further investigation is 
required to determine whether this arrival relates to observed forest 
recovery at Condores between ad 780 and 1000.

The forest recovery was interrupted by a dry period that began 
in ca. ad 1050 and developed into the drought of ca. ad 1070–1090. 
This drying coincides with increased cultivational activity, but it 
was not sustained after ad 1200. By ad 1230, and thereafter, forest 
types accounted for >80% of the pollen sum.

The south-facing, heavily shaded, steep moraine slopes may 
have been, at best, marginal lands for agriculture, and the wetter 
conditions may have favoured land use on the sunnier, north-
facing slopes outside the lake basin adjacent to where the village 
of Llaqtacocha was established. Consistent with the adjoining 
region66 archaeologists have identified agricultural terraces just 
below the eastern end of the settlement, but these are outside 
the catchment of the lake and are unlikely to have influenced 
the sedimentary signal. The use of the valley as a burial site and 
the decision to allow forest to regrow was therefore probably a  
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pragmatic one, as well as possibly being a cultural/religious 
response to climate change.

The earliest date for a bone recovered from the cliff was ad 1250 
and dates from mummy bundles entombed in the cliffs most often 
fell between ad 1450 and 1540 (refs. 33,67). European arrival and 
regional population collapse led to the virtual abandonment of the 
site and there were few burials after ad 1580. Substantial overlap 
between the radiocarbon dates from Llaqtacocha and the cliff tombs 
suggests that by ca. ad 1250 the local population that had built the 
village also created the mortuaries and interred their dead in the 
cliffs above the lake. The archaeologists who conducted the research 
at the tombs and at Llaqtacocha argue that the lake itself would have 
been considered a pacarina, or sacred place from which the local 
community emerged in primordial time68.

The data from Condores highlight that people responded to 
changing climate in the Andes opportunistically, colonizing areas 
when conditions were suitable and redirecting their efforts to more 
favourable locations or aspects when conditions deteriorated. Use 
of the spectacular setting for mausolea and ancestor-worship can 
be considered part of a larger adaptive response to changing condi-
tions. To allow the regrowth of forest in the valley was a form of land 
management and contributed to the mosaic of ecosystem services 
within a human-dominated landscape.

A key question is: how do the data from Condores fit into a 
framework of human history in the Andes69? The full length of 
occupation at Condores is not known, but the fact that its occupa-
tion had become more permanent by ad 1250 fits with an exponen-
tial increase in the density of archaeological sites in Amazonia and 
the Andes that took place over the last 2,000 years (refs. 70,71). Most 
palaeoecological records from the Andes show signatures of culti-
vation; however, in many cases the recovery of forest was not at the 
time of European arrival but around ad 1200 (refs. 7,72).

To gain a regional perspective we compared Condores with two 
other previously published sites: Lakes Pomacochas and Sauce, 
which lie 115 and 163 km from Lake Condores, respectively. 
Pomacochas is a cool, frequently cloud-covered lake at 2,050 m 
elevation in a major valley system that connects the highlands to 
the lowlands. At the foot of this elevational transect is Lake Sauce 
at 600 m elevation. Although receiving more rain than Pomacochas, 
Sauce has much higher evaporation rates, making this a functionally 
drier environment.

Lakes Sauce72,73 and Pomacochas7 have long histories of maize 
cultivation. Palaeoecological data provide compelling evidence that 
the two montane forest sites, Condores and Pomacochas, shared a 
common environmental history in which human disturbance of the 

landscape and maize agriculture were favoured during dry condi-
tions as the extent of forest clearance indicated by Poaceae pollen 
abundance rose and fell with precipitation (Fig. 5). In both settings 
forest clearance was substantial prior to ad 800, but they regained 
maximal forest cover between ad 1200 and 1300.

Maize pollen follows the pattern of Poaceae abundance, which 
provides evidence that humans clearing the forest are responsible 
for the pattern of Poaceae pollen. The linkage between drier condi-
tions and maize cultivation is evident in these data. We suggest that 
the earlier abandonment of maize cultivation at Pomacochas com-
pared to Condores is because Pomacochas is the most marginal set-
ting for maize production. Low-hanging cloud limits evaporation 
and light availability and increases humidity, which are unfavour-
able conditions for growing maize (Fig. 6). Under drier conditions 
we hypothesize that ground-level cloud would have been rare or 
less dense at the margins of its occurrence. As conditions became 
progressively wetter, Pomacochas would have become unsuitable 
for maize cultivation before Condores. On the other hand, in the 
brighter, warmer lowland setting of Lake Sauce, Poaceae repre-
sentation and maize pollen are not closely linked. In this record, 
maize cultivation does not seem to be linked to precipitation  
(Fig. 5), and its cessation coincides with the timing of European 
arrival. These data support the hypothesis that the areas most 
impacted by ground-level cloud were most strongly affected by cli-
matic change (Fig. 6). Climate was a potent force that structured the 
human response in these mid-elevational systems, but probably to a 
lesser degree at low elevations.

The 10% Poaceae pollen representation for the peak clearance in 
the last 2,000 years from Lake Sauce is considerably less than from 
either Pomacochas or Condores. The use of Sauce, although stretch-
ing back >6,000 years, did not result in large-scale clearance of the 
forest. In the last 2,000 years, the maximal extent of small-scale 
clearings in which maize was cultivated was at ad 0–300 at Lake 
Sauce, ad 300–800 at Pomacochas and ad 100–800 at Condores. 
A commonality of all these settings is that the population collapse 
caused by European contact occurred long after forest regrowth was 
initiated. In no case was there a significant increase in forest cover in 
the 1500s, contra the expectations of the ‘Great Dying’13.

Although heavily trafficked valleys, such as the Quijos Valley 
of Ecuador, showed active use until the time of conquest8, the 
Peruvian forests described here had been recovering for as much 
as a millennium before European contact. Our data are consis-
tent with northern Peruvian high-valley settings that supported 
substantial human populations at European contact5, but that did 
not exhibit deforested landscapes74. Other settings on the eastern 
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Fig. 6 | the elevational gradient showing hypothesized changes in ground-level cloud immersion at Sauce, Pomacochas and Condores. Maize 
production, reversion to forest and interment of mummies are represented by corn cobs, trees and mummies, respectively. Credits: Corn: Can Stock Photo 
Inc/emaria; Tree: Can Stock Photo Inc/nikifiva; Mummy drawing by Christiane Clados, Philipps University Marburg.
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flank of the Peruvian Andes show no history of human occupa-
tion9. A key message arising from this study is that although the 
Andean flank supported human populations who modified land-
scapes, their densities changed through time and they did not fol-
low a simple upward trajectory of intensifying maize agriculture, 
and ecological and climatic processes contributed to these patterns. 
Oversimplification of patterns of forest regrowth, and an unreal-
istic expectation that they coincide with European arrival, leads 
to misconceptions regarding carbon sequestration and climate 
impacts. Just as studies in lowland Amazonia revealed a heteroge-
neous occupational history75,76, generalizations about the history of 
Andean forests should be avoided.

Conclusions
Long histories of maize agriculture in the Chachapoyas region of 
Peru did not follow the trajectory of overall population growth but 
showed retrenchment associated with climate change. Drought pro-
moted penetration and use of the wetter cloud forests, but during 
wet intervals people would have moved elsewhere or relocated their 
cultivation activities away from these settings. When permanent 
villages became common throughout the region, responses lacked 
mobility, but land use decisions that balanced food production and 
societal needs were apparent. Andean forests had heterogeneous 
histories of occupation and successional recovery following changed 
land use. In all cases explored here, that recovery took place long 
before European arrival. The Andean forests of this region are not 
all post-Columbian regrowth systems, should not be assumed to be 
young or even aged and do not conform to expectations of suddenly 
becoming a carbon sink in the mid-1500s.

Methods
In June 2010, our limnological survey revealed that dissolved oxygen fell to trace 
amounts 15 m below the surface and that Laguna de los Condores had a Secchi 
depth of about 2 m. A 1.84-m finely laminated sediment core was raised from 
Condores using a universal piston sampler deployed from a floating platform. The 
core was collected from the deepest point of the lake at about 60 m of water deep. 
Bedrock was not reached and the retrieved core only represents the most recent 
history of Condores. The core chronology was established using 14C accelerator 
mass spectrometry dates on ten bulk sediment samples and one wood macrofossil. 
The age–depth model was generated using the package ‘bacon’77 in R v.3.5.2 (ref. 78) 
using the IntCal13 calibration curve79 (Supplementary Table 1 and Extended Data 
1). Radiocarbon dates (n = 31) of all archaeological samples associated with the 
Condores burials (Supplementary Table 2) were amalgamated using the package 
BChron80 in R v.3.5.2 (ref. 78) and the IntCal13 calibration curve. A total probability 
density function was created from the ages81.

The core chemistry was analyzed using an Avaatech XRF core scanner at 
0.5-cm (about 5-year) resolution to provide elemental data82. Measurements 
of elements aluminium, bismuth, bromine, calcium, chlorine, chromium, 
cobalt, copper, gallium, iron, lead, manganese, molybdenum, nickel, niobium, 
phosphorus, potassium, rhenium, rubidium, silicon, strontium, sulphur, titanium, 
vanadium, yttrium, zinc and zirconium were made using a slit size of 1 × 1 cm2at 
10 kV and 30 kV over a 20-s counting period83. XRF data were transformed to 
obtain z-scores prior to PCA. PCA was conducted in R v.3.5.2 (ref. 78) using the 
package vegan v.2.0–10 (ref. 84). Loss-on-ignition analysis was performed according 
to standard methods85 at a 2-cm (about 20-year) resolution (n = 93).

The core was subsampled for fossil diatoms (n = 91)86 and pollen (n = 92) at 
a 2-cm (about 20-year) resolution for the entire 1.84-m sequence. Diatoms were 
extracted using standard methods described by Battarbee87 using 10% hydrochloric 
acid and 30% hydrogen peroxide. The samples were mounted in Naphrax. 
Identifications were made using standard texts for the region88,89 and online 
resources for example www.algaebase.org.

Exotic Lycopodium spores90 were added to allow calculation of pollen 
concentrations. Standard methods were used to extract pollen91. The samples 
were mounted in glycerol. The Neotropical Pollen Database92 (https://research.fit.
edu/paleolab/pollen-database/) and standard texts for the region93 were used for 
identifications. After initial counts were made, all pollen extracts were  
filtered using a 60-µm mesh. The retained material was mounted in glycerol  
and reanalyzed to search for Zea (maize) grains. Maize pollen grains were only 
found in the original counts to 300 grains in two samples from ad 520–550, all 
other maize grains were found in the extended anlysis of filtered samples.  
A CONISS-constrained clustering analysis was performed to aid with the 
zonation94. Tilia94 and C2 (ref. 95) software packages were used to construct fossil 
percentage diagrams.

Charcoal was sampled continuously along the core in 1-cm (about 10-year) 
increments (n = 184) and 0.5-cm3 of subsample were filtered using a 180-µm mesh 
and the residue inspected for charcoal. The surface area of charcoal particles was 
quantified using ImageJ software96.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated from this study are available through NEOTOMA 
Paleoecology Database (https://neotomadb.org/), which include pollen,  
charcoal, diatom, loss-on-ignition (carbonate) and XRF (Ti, Si and Ca) data 
visualized in Figs. 2–4.
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Extended Data Fig. 1 | Age-depth model of sediments from Laguna de los Condores, Peru. Age-depth model of sediments from Laguna de los Condores, 
Peru. The age-depth model was calibrated using 14C dates (Supplementary Table 1), Bacon77, and the IntCal13 calibration curve79.
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Extended Data Fig. 2 | CoNiSS zonation of the fossil pollen data from Laguna de los Condores contrasted with major use characterization of the site. 
CONISS zonation of the fossil pollen data from Laguna de los Condores contrasted with major use characterization of the site.
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Extended Data Fig. 3 | Fossil diatom abundances (%) of Laguna de los Condores, Peru. Fossil diatom abundances (%) of Laguna de los Condores, Peru86. 
Only taxa with a >5% total abundance are shown.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection No software was used.

Data analysis The program 'R' (3.5.2 ) and its packages 'bacon', ‘BChron’, and 'vegan' were used for the age-depth model, summed probability density 
function, and Principal Component Analysis, respectively. The program ImageJ was used to quantify the surface area of charcoal 
particles. The program Tilia was used to perform a CONISS constrained clustering analysis. 
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Study description High-resolution fossil pollen, charcoal, loss-on-ignition, diatom, and sediment chemistry data were used to reconstruct changes in 
landuse and climate from the iconic archaeological setting of Laguna de los Condores, Peru. The study site was situated in a 
montane-forest setting on the eastern slopes of the Central Andes. 

Research sample Multiple samples at varying depths were analyzed from a lake sediment core retrieved from Laguna de los Condores, Peru. Fossil 
pollen was used as a proxy for changing vegetation, landuse, deforestation, and forest recovery. Fossil charcoal was used as a proxy 
for fires. Fossil diatoms provided proxy measures for nutrient inputs to the lake. X-ray fluorescence (XRF) data provide indices of 
chemical erosion, weathering, and lake productivity. Loss-on-ignition provided measurements of CO3. Pollen and diatoms were 
identified to the highest taxonomic level possible.

Sampling strategy The sediment chemistry was analyzed in 0.5-cm increments. Charcoal was analyzed continuously in 1-cm increments. Pollen, 
diatoms, and loss-on-ignition were analyzed in 2-cm increments. Exotic Lycopodium spores were added to allow calculation of pollen 
concentrations (University of Lund batch #3862, 9666 ± 2123 spores per tablet). A minimum of 300 terrestrial pollen grains were 
counted in each sample. For diatoms, a minimum of 300 valves were counted in each sample.

Data collection The sediment core was collected by MBB and BGV. Pollen analysis was performed by CMÅ, diatom analysis was performed by FM-B, 
charcoal analysis was performed by MB, extended maize counts were performed by C-JF, XRF analysis was performed by LCP, and 
loss-on-ignition analysis was performed by FM-B. The sediment chemistry was analyzed using an Avaatech XRF (x-ray fluorescence) 
core scanner. A Zeiss Axioskop photomicroscope at magnifications of ×400 and ×630 was used for pollen analysis and at a 
magnification of ×1000 for diatom analysis. An Olympus stereoscope at magnifications of ×20 and ×32 was used for charcoal analysis. 
Pollen and diatoms were identified using the reference collection at Florida Institute of Technology, published materials, and online 
databases.

Timing and spatial scale The sediment core was collected in July 2010 and data collection was undertaken throughout 2015-2019.

Data exclusions All data is recorded in the raw count data.

Reproducibility Recounts were undertaken in a number of samples to insure no notable differences between data collected.

Randomization Randomization was not relevant to this study as the individual samples represent the environment at a specific point in time.

Blinding Blinding was not relevant to this study. The data used were environmental proxies in a sediment record at various periods in time.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Field work was undertaken in a montane-forest setting on the eastern slopes of the Central Andes. The field work location has a 

mean monthly temperatures range between 15.5 and 17°C with precipitation in excess of 3200–4000 mm.

Location Laguna de los Condores (6°51’03.02”S, 77°41’43.28”W) is located at 2860 meters above sea level in a deep, forested valley. 
The lake is c. 2.3 km by 700 m and has a maximum water depth of 60 m. A glacial-aged moraine forms a steep and shaded 
northern shoreline, while 100 m-high cliffs form the southern shore. The montane forest currently occupies the valley and the 
north-facing slopes over the crest of the moraine are maintained for grazing.
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Access and import/export Access to Laguna de los Condores was provided by the community of Leymebamba, Peru.

Disturbance The sediment core was taken from the centre and the deepest point of the lake. All of the equipment used in the extraction of 
the lake sediments were removed from the site. No plants or animals were disturbed.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Palaeontology
Specimen provenance Sediment subsamples containing the extracted fossil palynomorphs (pollen, charcoal, diatoms, sediment chemistry) were 

collected from lake sediments retrieved from Laguna de los Condores situated near Leymebamba, Peru. 

Specimen deposition Samples and microscope slides are stored and accessible at Florida Institute of Technology in the Institute for Global Ecology.

Dating methods The chronology of the sediment core from Laguna de los Condores was established on 10 bulk sediment samples and one wood 
macrofossil sample using 14C accelerator mass spectrometry. An age-depth model was generated using the package ‘bacon’ in R 
(3.5.2) and the IntCal13 calibration curve. The result of the radiocarbon dating is shown in Supplementary Table 1 and in 
Extended Data 1. 

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.
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