
Journal of Biogeography. 2020;47:59–71. wileyonlinelibrary.com/journal/jbi   |  59© 2019 John Wiley & Sons Ltd

 

Received: 17 February 2019  |  Revised: 15 August 2019  |  Accepted: 30 October 2019

DOI: 10.1111/jbi.13782  

R E S E A R C H  P A P E R

Global fern and lycophyte richness explained: How regional 
and local factors shape plot richness

Anna Weigand1  |   Stefan Abrahamczyk2  |   Isabelle Aubin3 |   Claudia Bita-Nicolae4  |   
Helge Bruelheide5,6  |   Cesar I. Carvajal-Hernández7  |   Daniele Cicuzza8,9  |    
Lucas Erickson Nascimento da Costa10 |   János Csiky11 |   Jürgen Dengler12,13,6  |    
André Luís de Gasper14 |   Greg R. Guerin15  |   Sylvia Haider5,6 |    
Adriana Hernández-Rojas16  |   Ute Jandt5,6  |   Johan Reyes-Chávez17  |    
Dirk N. Karger18  |   Phyo Kay Khine19  |   Jürgen Kluge16  |   Thorsten Krömer20  |   
Marcus Lehnert5,21  |   Jonathan Lenoir22  |   Gabriel M. Moulatlet23  |    
Daniela Aros-Mualin2  |   Sarah Noben1  |   Ingrid Olivares24  |   Luis G. Quintanilla25  |   
Peter B. Reich26,27 |   Laura Salazar28  |   Libertad Silva-Mijangos29 |   Hanna Tuomisto30  |   
Patrick Weigelt31  |   Gabriela Zuquim30  |   Holger Kreft31,32  |   Michael Kessler1

1Department of Systematic and Evolutionary Botany, University of Zurich, Zürich, Switzerland
2Nees-Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
3Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste Marie, ON, Canada
4Institute of Biology, Romanian Academy, Bucharest, Romania
5Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
6German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
7Instituto de Investigaciones Biológicas, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa, México
8Xishuangbanna Tropical Botanical Garden, Center for Integrative Conservation, Chinese Academy of Sciences, Menglun, China
9Faculty of Science, Environmental and Life Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
10Departamento de Botânica, Universidade Federal de Pernambuco. Av. Professor Moraes Rêgo, Recife, Brazil
11Department of Ecology, University of Pécs, Pécs, Hungary
12Vegetation Ecology Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
13Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
14Herbário Dr. Roberto Miguel Klein, Universidade Regional de Blumenau, Santa Catarina, Brasil
15TERN, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
16Department of Geography, University of Marburg, Marburg, Germany
17Zamorano Biodiversity Center, Zamorano University, Tegucigalpa, Honduras
18Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
19Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, China
20Centro de Investigaciones Tropicales, Xalapa, México
21Systematic Botany and Mycology, Ludwig-Maximilians-University Munich, Munich, Germany
22UR “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, UMR 7058 CNRS-UPJV), Université de Picardie Jules Verne, Amiens, France
23Facultad de Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
24Centre for Biodiversity and Environment Research, University College London, London, UK
25Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, Móstoles, Spain
26Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
27Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
28Centro de Investigación de la Biodiversidad y Cambio Climático, (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias del 
Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador

www.wileyonlinelibrary.com/journal/jbi
mailto:
https://orcid.org/0000-0002-3707-0307
https://orcid.org/0000-0001-8047-932X
https://orcid.org/0000-0003-3949-1989
https://orcid.org/0000-0003-3135-0356
https://orcid.org/0000-0002-5070-4140
https://orcid.org/0000-0001-9475-2075
https://orcid.org/0000-0003-3221-660X
https://orcid.org/0000-0002-2104-6695
https://orcid.org/0000-0003-3681-1326
https://orcid.org/0000-0002-3177-3669
https://orcid.org/0000-0001-7839-7456
https://orcid.org/0000-0001-7770-6229
https://orcid.org/0000-0003-1841-3818
http://orcid.org/0000-0001-8574-5746
http://orcid.org/0000-0002-1398-8172
https://orcid.org/0000-0002-7202-7734
https://orcid.org/0000-0003-0638-9582
https://orcid.org/0000-0003-2571-1207
https://orcid.org/0000-0003-1526-188X
https://orcid.org/0000-0002-9378-1365
https://orcid.org/0000-0003-0888-3445
https://orcid.org/0000-0003-0569-2627
https://orcid.org/0000-0001-7179-5822
https://orcid.org/0000-0003-1640-490X
https://orcid.org/0000-0002-2485-3708
https://orcid.org/0000-0003-0932-2308
https://orcid.org/0000-0003-4471-8236
https://orcid.org/0000-0003-4612-9937


60  |     WEIGAND Et Al.

29Universidad de Ciencias y Artes de Chiapas, sede Mapastepec, Chiapas, México
30Department of Biology, University of Turku, Turku, Finland
31Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
32Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Göttingen, Germany

Correspondence
Anna Weigand, Department of Systematic 
and Evolutionary Botany, University of 
Zurich, Zollikerstrasse 107, 8008 Zürich, 
Switzerland.
Email: weigand.anna@yahoo.com

Funding information
The Rufford Foundation (Honduras); Swiss 
National Science Foundation, Grant/
Award Number: CRSII3_147630; Fundação 
de Amparo à Pesquisa e Inovação do 
Estado de Santa Catarina; Ministry of 
Natural Resources and Forestry; Deutsche 
Forschungsgemeinschaft, Grant/Award 
Number: DFG FZT 118, KL 2183/5-1, 
KL2183/5-2, KL2183/8-1, MI 271/30-1, 
MI271/30-2, NA 783/9-1, NA783/9-2 and 
OP219/4-1; Natural Resources Canada; 
Fundação de Amparo à Pesquisa do Estado 
do Amazonas; Conselho Nacional de 
Desenvolvimento Científico e Tecnológico; 
Suomen Kulttuurirahasto; Natural Sciences 
and Engineering Research Council of 
Canada; Fundação de Amparo à Pesquisa 
do Estado de São Paulo; Academia 
Româna, Grant/Award Number: RO1567-
IBB01/2019

Handling Editor: Wilfried Thuiller

Abstract
Aim: To disentangle the influence of environmental factors at different spatial grains 
(regional and local) on fern and lycophyte species richness and to ask how regional 
and plot-level richness are related to each other.
Location: Global.
Taxon: Ferns and lycophytes.
Methods: We explored fern and lycophyte species richness at two spatial grains, re-
gional (hexagonal grid cells of 7,666 km2) and plot level (300–500 m2), in relation to 
environmental data at regional and local grains (the 7,666 km2 hexagonal grid cells 
and 4 km2 square grid cells, respectively). For the regional grain, we obtained spe-
cies richness data for 1,243 spatial units and used them together with climatic and 
topographical predictors to model global fern richness. For the plot-level grain, we 
collated a global dataset of nearly 83,000 vegetation plots with a surface area in 
the range 300–500 m2 in which all fern and lycophyte species had been counted. 
We used structural equation modelling to identify which regional and local factors 
have the biggest effect on plot-level fern and lycophyte species richness worldwide. 
We investigate how plot-level richness is related to modelled regional richness at the 
plot's location.
Results: Plot-level fern and lycophyte species richness were best explained by models 
allowing a link between regional environment and plot-level richness. A link between 
regional richness and plot-level richness was essential, as models without it were re-
jected, while models without the regional environment-plot-level richness link were 
still valid but had a worse goodness-of-fit value. Plot-level richness showed a hump-
shaped relationship with regional richness.
Main conclusions: Regional environment and regional fern and lycophyte species 
richness each are important determinants of plot-level richness, and the inclusion of 
one does not substitute the inclusion of the other. Plot-level richness increases with 
regional richness until a saturation point is reached, after which plot-level richness de-
creases despite increasing regional richness, possibly reflecting species interactions.

K E Y W O R D S

big data, macroecology, pteridophytes, regional-local richness relationship, saturation curves, 
structural equation modelling

1  | INTRODUC TION

One of the most fundamental questions in plant ecology and bioge-
ography deals with the processes determining species richness pat-
terns at different spatial scales. Even though the importance of scale 
(i.e. extent and resolution/grain size) in ecological analyses has been 

acknowledged since the 1950s (e.g. Chase et al., 2019; Hutchinson, 
1953; Levin, 1992; Rahbek, 2005; Ricklefs, 1987; Whittaker, 1977), 
the full implementation of scale effects in global analyses has been 
hindered by lack of both data and appropriate methods (Beck et al., 
2012). Today, advanced statistical methods (e.g. Keil & Chase, 2019) 
and comprehensive datasets of global extent, fine resolution and 

mailto:weigand.anna@yahoo.com
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large taxonomic coverage (e.g. Bruelheide et al., 2019) are becoming 
more widely available, allowing the study of macroecological pat-
terns across scales on a global extent.

An ideal group for the study of diversity patterns across scales 
on a global extent are ferns and lycophytes. In addition to having a 
global distribution, the two lineages together contain almost 12,000 
currently accepted species with a comparably stable taxonomy (PPG1, 
2016). While they are the second largest vascular plant group on Earth 
after angiosperms (Smith, 1972), the species number is still manage-
able in plot sampling as well as computational analyses. Additionally, 
ferns and lycophytes have been the focus of several diversity studies 
at different spatial resolutions and extents over the last three decades.

At a large grain size of ca. 12,000 km2, Kreft, Jetz, Mutke, and 
Barthlott (2010) found regional fern species richness to be strongly 
and positively related to water-energy variables such as potential 
evapotranspiration and precipitation. They also found a strong posi-
tive relationship with geographical habitat heterogeneity, whereas 
the total surface area of the focal region only had moderate effects. 
However, their analysis did not include species numbers at local scale.

At finer grain sizes of typically a few hundred square metres, 
numerous studies have found fern species richness to correlate 
strongly with climatic variables. The most important of these have 
been heat-related water deficiency at low elevations, low tempera-
tures that limit diversity at high elevations and cloud cover as an in-
dicator of high humidity (e.g. Kessler, Kluge, Hemp, & Ohlemüller, 
2011; Khine, Kluge, Kessler, Miehe, & Karger, 2019; Salazar et al., 
2015).

In a study combining regional and local species numbers, Karger 
et al. (2011) compared five elevational transects within the tropics 
and found that local and regional richness patterns were almost 
identical after the effect of the surface area of the relevant ele-
vational belt was accounted for. This suggests that they are either 
driven by the same factors or that local richness equals a certain 
subset of regional richness and is directly driven by the size of the re-
gional species pool. In contrast to these results, another study found 
that on islands of different sizes in the Indo-Malayan archipelago, 
local species richness was driven by local environmental conditions 
and not by differences in regional (island-wide) species richness, 
suggesting that the two are independent (Karger et al., 2014). 
Studying the species diversity gradients of ferns and lycophytes in 
the Amazonian rain forests, Tuomisto, Zuquim, and Cárdenas (2014) 
found that local species richness increased with soil nutrient con-
centration, and that this increase was paralleled by an increase in the 
soil-specific regional species pool. However, it has been argued that 
the interactions between species and their environment can limit 
the number of locally co-occurring species numbers, leading to local 
saturation. If this is the case, an increase in regional species rich-
ness should not affect local diversity (see Olivares, Karger, & Kessler, 
2018; Srivastava, 1999 for details and examples).

The contrasting results and arguments of previous studies show 
that the cross-scale relationships between regional and local fern 
and lycophyte richness and their drivers remain puzzling and call 
for a global analysis of richness patterns across spatial scales. Here, 

we use structural equation modelling, a relatively recent statistical 
approach in complex ecological sciences (Lefcheck, 2016), to under-
stand the influences of environmental predictors at two resolutions 
(‘regional’ = 7,666 km2 grain size and ‘local’ = 4 km2 grain size) on 
fern and lycophyte richness measured at regional (7,666 km2) and 
plot (300–500 m2) grain size. To this end, we combined a large data-
set of almost 83,000 vegetation plots with a model of regional fern 
and lycophyte richness. The model fills in gaps where regional spe-
cies richness is unknown and increases the comparability of regional 
species richness estimates based on input species lists of different 
degrees of completeness. As predictors in the modelling, we used 
environmental variables related to climate, vegetation structure, lo-
cality characteristics and soil. Based on the results of previous stud-
ies, we tested the following competing hypotheses represented by 
competing structural equation models:

Hypothesis 1 Regional species richness drives plot-level species rich-
ness. Regional environment controls regional richness but does 
not directly impact plot-level richness.

Hypothesis 2 Plot-level species richness is influenced by local and re-
gional environment as well as regional richness, indicating that re-
gional environment acts differently at different spatial grain sizes.

Hypothesis 3 Plot-level species richness is influenced by local and re-
gional environment but is independent of regional richness.

Hypothesis 4 Plot-level species richness is exclusively influenced by the 
local environment and not by regional environment or richness.

Additionally, we discuss the relationship between regional and 
plot-level species richness of ferns and lycophytes as observed in 
our extensive dataset of almost 83,000 vegetation plots across the 
globe.

2  | MATERIAL S AND METHODS

2.1 | Regional species richness data

We extracted species presence information on 1,243 geographi-
cal entities (protected areas, regions, states or countries) from 
the Global Inventory of Floras and Traits database (GIFT; Weigelt, 
König & Kreft, 2019). All originally available entities were filtered 
for those mentioning fern and lycophyte species numbers, in-
cluding known absences (i.e. geographical entities for which it is 
known that no fern and lycophyte species occur in them). Entities 
reporting less than five species were manually double-checked to 
avoid false under-representation. When an entity spatially over-
lapped with another one by more than 10%, the larger one was 
excluded from analyses. Coverage per continent ranged from a 
minimum of 30 entities in the Antarctic realm to a maximum of 315 
in South America. To mitigate the effect of sampling artefacts such 
as differences in sampling completeness, time since publication of 
the species list, and overall availability between regional species 
lists, we built a model of regional species richness. Environmental 
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predictor variables were extracted from 30-arc second resolution 
environmental raster layers and summarized across the extent of 
each geographical entity (as mean, median, 75% quantile or 95% 
quantile; the best fitting summary was chosen for each predictor). 
Botanical continent (continental scheme level 1 of the Taxonomic 
Database Working Group; Brummitt, Pando, Hollis & Brummitt, 
2001) was additionally included as a factor variable to allow con-
tinents to have unique richness–environment relationships. This is 
important since each continent has a unique geographical history 
and is inhabited by a set of species with a unique diversification 
history, which affects species richness patterns differently among 
biogeographical realms. We then used generalized linear models 
(GLMs with Poisson distribution) to ascertain environment–rich-
ness relationships and project regional richness onto an equal area 
grid with hexagonal grid cells of 7,666 km2 (Barnes, 2017). The 
selection of environmental variables was based on previous stud-
ies on determinants of global fern richness (Kreft et al., 2010) to 
prevent considerable overlap between model predictors and the 
predictors used for the following analyses.

2.2 | Plot-level species richness data

To analyse plot-level fern and lycophyte richness, we collated 
a global dataset of 82,825 vegetation plots ranging in size be-
tween 300 and 500 m2. The data came from the sPlot consor-
tium (Bruelheide et al., 2019), species lists from ground vegetation 
surveys carried out on Level II plots of the Europe-wide forest 
monitoring programme ICP Forests (http://www.icp-fores ts.net, 
Canullo, Starlinger, Granke, Fischer & Aamlid, 2016; Ferretti & 
Fischer, 2013), and published and unpublished data from fern and 
lycophyte inventories carried out by a research network on fern 
and lycophyte diversity (e.g. Hernández-Rojas et al., 2018; Karger 
et al., 2014; Kessler et al., 2011; Tuomisto et al., 2014; Zuquim et al., 
2014 see Figure 1 for plot distribution). From the sPlot data (sPlot 
2.0, accessed on 20th April 2018), we used plots that contained at 

least one fern or lycophyte species, had explicit geographical co-
ordinates with a location uncertainty less than 5,000 m and whose 
surface area was between 300 and 500 m2. ICP Forest data (ac-
cessed in October 2016) included Level II ground vegetation data 
between the years 1994 and 2012. Plots that were sampled re-
peatedly during this time frame provided multiple data points, but 
only one of them was selected within any one run of the statisti-
cal analyses (see details below). Although the data were collected 
in the scope of many different projects, they included complete 
species inventories of fern and lycophyte species, including ter-
restrials, hemi-epiphytes and epiphytes. Some inventories applied 
thresholds to juvenile individuals, but we consider any differences 
this may cause in the actual presence of species to be negligible 
in comparison to the differences caused by environmental condi-
tions. Only the inventories made in Amazonia were not complete, 
as they included epiphytes and hemi-epiphytes only up to a height 
of 2 m. In agreement with the responsible specialists, their spe-
cies numbers were increased by 10% and rounded to the next full 
number to make them more comparable with the full inventories.

2.3 | Predictor variables

At the regional grain, we used environmental data that were re-
sampled to the same 7,666 km2 grid cells as the regional species 
richness data as predictors. At the plot level, species richness was 
assessed in units of 300–500 m2. The environmental predictor 
data corresponding to each plot were obtained as averages for 
grid cells of 2 × 2 km2 to account for georeferencing inaccuracies 
in the plot and environmental data that could otherwise have led 
to excessive noise in the predictions. The chosen variables are re-
lated to climate, vegetation structure, locality characteristics and 
soil (Table 1).

To identify the most important environmental predictors of 
species richness, we ran generalized linear models with a Poisson 
distribution for each response variable (regional and plot-level 

F I G U R E  1   Location and number of 
plots per 10° × 10° grid cell

http://www.icp-forests.net
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richness) and evaluated the R2 values for each. For regional pre-
dictors, we tested a number of summary statistics (minimum, 
maximum, mean, median, 95%-quantile, 5%-quantile, 75%-quan-
tile, 25%-quantile, as well as number and range when applicable) 

across the 7,666 km2 grid cells. For regional and local predictors, 
we always compared the untransformed and the logarithmic trans-
formations to find the best fit. We then selected the variable with 
the highest R2 values and excluded all variables that correlated 

TA B L E  1   Predictor variables tested at the two resolutions

Predictor Regional Local Data source

Actual evapotranspiration x  Trabucco and Zomer (2010)

Annual Mean Temperature x x Karger et al. (2017)

Annual Precipitation x x Karger et al. (2017)

Area of cloud forest x  Derived from Wilson and Jetz (2016) (number of cells including cloud 
forest*mean of cloud forest cover across regional grid cell)

Aridity x x Karger et al. (2017)

Biome  x Crowther et al. (2015)

Canopy height  x Simard, Pinto, Fisher, and Baccini (2011)

Cloud forest predictions x  Wilson and Jetz (2016)

Distance to tree line x x Karger et al. (2019)

Elevational x  Danielson and Gesch (2011)

Elevational range x  Derived from Danielson and Gesch (2011) (range between minimum and 
maximum value per grid cell)

Habitat homogeneity x x Tuanmu and Jetz (2015)

Isothermality  x Karger et al. (2017)

Length of growing season x x Karger et al. (2019)

Max Temperature of Warmest Month  x Karger et al. (2017)

Mean annual cloud frequency x x Wilson and Jetz (2016)

Mean Diurnal Range  x Karger et al. (2017)

Mean temperature during growing 
season

x  Karger et al. (2019)

Mean Temperature of Coldest Quarter  x Karger et al. (2017)

Mean Temperature of Driest Quarter  x Karger et al. (2017)

Mean Temperature of Warmest Quarter  x Karger et al. (2017)

Mean Temperature of Wettest Quarter  x Karger et al. (2017)

Min Temperature of Coldest Month  x Karger et al. (2017)

Percentage forest cover x x Derived from Tuanmu and Jetz (2014) (sum of first 4 classes of consensus 
land cover per grid cell)

Potential evapotranspiration x x Zomer, Trabucco, Bossio, Straaten, and Verchot (2008)

Precipitation of Coldest Quarter  x Karger et al. (2017)

Precipitation of Driest Month x x Karger et al. (2017)

Precipitation of Driest Quarter  x Karger et al. (2017)

Precipitation of Warmest Quarter x x Karger et al. (2017)

Precipitation of Wettest Month  x Karger et al. (2017)

Precipitation of Wettest Quarter  x Karger et al. (2017)

Precipitation Seasonality x x Karger et al. (2017)

Soil organic carbon content (ORCDRC)  x Hengl et al. (2017)

Soil classes based on ‘World Reference 
Base legend’ (TAXNWRB)

 x Hengl et al. (2017)

Soil classes based on ‘Keys to Soil 
Taxonomy suborders’ (TAXOUSDA)

 x Hengl et al. (2017)

Temperature Annual Range x x Karger et al. (2017)

Temperature Seasonality  x Karger et al. (2017)
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strongly (correlation above 0.5) with it. Out of the remaining vari-
ables, we then selected the one with the next highest R2 and ex-
cluded the ones highly correlated with it and so on. Correlations 
were evaluated with correlograms (R-package ‘corrgram’, Wright, 
2018). At the local scale, we included the soil classification ‘Keys 
to Soil Taxonomy suborders (TAXOUSDA_250m)’, which had rela-
tively few classes compared to other soil classifications and, there-
fore, the frequency of plots per soil class was sufficient to enable 
robust predictions. Given that soils can vary considerably over 
short distances, we did not include soil variables at the regional 
grain. Additionally, we evaluated the predictive power of the se-
lected regional variables on plot-level richness and included only 
such regional variables that had an R2 value above 0.1 as direct 
predictors of plot-level richness during the path analysis. Finally, 
we extracted the number of predicted regional species from the 
regional species richness model for the polygon in which each plot 
was located.

2.4 | Model testing

Because the spatial distribution of the input plot data was ex-
tremely clustered, we used a meticulous data preparation work-
flow to minimize the effects of sampling bias on the results. 
Spatial unbalance was reduced by randomly selecting 10 plots 
from each 10° × 10° grid cell for the analysis (see Figure 1) and 
repeating the subsampling and analyses 1,000 times. If a grid 

cell contained less than 10 plots, all were selected. Plots with 
identical GPS-coordinates were considered duplicates and only 
one of them, chosen randomly, could be included in any given 
subset. The procedure produced subsampled datasets with 
about 890–1000 plots. We corrected for any spatial autocorre-
lation within the subsets using Moran Eigenvector GLM filter-
ing (MEs, R-package ‘spdep’; Bivand & Wong, 2018), selecting 
those Eigenvectors that limit residual autocorrelation below an 
alpha of 0.05. These MEs were then added as additional vari-
ables (‘spatial covariates’) in the competing structural equation 
models, as direct explanatory variables of regional and plot-level 
richness to correct the spatial autocorrelation between the GPS 
points used at both scales. All spatial and statistical analyses 
were carried out in the programming environment R (version 
3.5.1, R Core Team, 2016).

To test our competing hypotheses, we constructed four dif-
ferent structural equation models (SEM; Shipley, 2002). Each 
consisted of two generalized linear models (GLMs with Poisson 
distribution, ‘paths’) as implemented in the R-package ‘piecewise-
SEM’ (Lefcheck, 2016). In each model, regional environment was 
linked to regional richness, local environment to plot-level rich-
ness and spatial covariates to both levels of richness (Figure 2). 
In addition, models 1 and 2 linked regional richness to plot-level 
richness and models 2 and 3 linked regional environment to plot-
level richness.

We did not allow a link between local environment and regional 
richness because there is no logical causal link: the local environment 

F I G U R E  2   A priori conceptual structural equation models depicting environmental influences on fern and lycophyte richness as 
discussed in the hypotheses. (a) Models 1 and 2 allow direct impact of regional richness on plot-level richness, (b) Models 3 and 4 do not 
allow direct impact of regional richness on plot-level richness
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that gets included in the analyses depends entirely on how plot sam-
pling happens to have been done (how many plots are located within 
each regional cell and where they are situated within it). Local envi-
ronment was defined as correlated error of regional richness in all 
models to exclude it as a potential correlate. When a model evaluates 
variables as correlates, which in fact, should be correlated errors, the 
goodness-of-fit of the model will be lowered and direct separation 
values will potentially invalidate models based on these false assump-
tions. We did not link regional and local environment because we as-
sumed that they are being driven by the same external, global forces 
rather than being causally connected with each other.

We used AIC (Akaike Information Criterion) as a measure of gen-
eral model performance. We also used the p value and degrees of 
freedom of the Fisher's C test of directed separation as implemented 
in piecewiseSEM to check whether all unlinked paths are indeed 
statistically independent. The p value summarizes how statistically 
independent the unlinked paths are, so that a low p value indicates 
missing links in the evaluated model, and high p values indicate mod-
els that do not miss significant links.

We ran all four SEMs separately for each of 1,000 subsampled 
datasets, extracted AIC and Fischer's C values for each run, and 
noted which model performed best for each dataset. As the final 
best model, we took the one that performed best most often across 
the 1,000 repetitions.

Since the power of the predictors depends strongly on the total 
range of values of the response variables (0–81 species for plot-level 
richness and 0–439 for regional richness), we separated the two paths 
of the SEM and standardized the predictors to evaluate the models 
and predictor power separately in a later step for the best model.

To model the relationship between regional and plot-level rich-
ness, we tested a number of different regressions: linear, polyno-
mial (2nd and 3rd degree) and Michaelis–Menten (R-package ‘drc’, 
Ritz, Baty, Streibig, & Gerhard, 2015) on the 1,000 subsampled plot 
datasets. We used the AIC values of the regression curves to iden-
tify the one that gives the best fit. To find potential explanations for 
the resulting pattern, we also plotted regional and plot-level richness 
against the most important environmental predictors to identify sig-
nificant differences.

3  | RESULTS

3.1 | Regional richness model

The predictors chosen for the regional fern and lycophyte rich-
ness model following a previous study of Kreft et al. (2010) were 
surface area of input entity (exported directly from GIFT database), 
elevational range, potential evapotranspiration, mean annual cloud 
frequency and habitat homogeneity as well as aridity index, tem-
perature annual range, annual precipitation and precipitation of 
warmest quarter (find sources in Table 1). The final model of regional 
richness on a global extent had an explanatory power (R2) of 74.5% 
and the predicted species numbers ranged between 0 and 439 for 
the 7,666 km2 grid cells (Figure 3).

3.2 | Environmental data

As predictors for fern and lycophyte species richness at the plot level 
(300–500 m2), the following local environmental predictors (averaged 
to grain size of 4 km2) were chosen based on their performance in the 
GLM tests (explanatory power R2 ≥ .1) and correlation analysis (cor-
relation with other chosen predictors < .46): mean annual cloud fre-
quency (R2 = .4), isothermality (R2 = .37), precipitation of driest quarter 
(R2 = .23), canopy height (R2 = .21) and distance to tree line (R2 = .1). For 
regional fern and lycophyte richness at the plot localities, the following 
regional environmental predictors were found to be strongest (R2 ≥ .1; 
correlation < .4, see Table 2 for summary statistics and transforma-
tions): precipitation of warmest quarter (R2 = .47), elevational range 
of grid cell (R2 = .3), cloud forest cover (R2 = .29), mean temperature 
during growing season (R2 = .16), length of growing season (R2 = .11) 
and precipitation seasonality (R2 = .1). All regional predictors, except 
for elevational range of grid cell and precipitation seasonality, were 
also included as predictors of plot-level richness (R2 ≥ .1). We noted 
that precipitation variables were important at local as well as regional 
scale. Given that the regional grid cells cover 7,666 km2, the elevational 
range covered by them can be very large (maximum value: 8,534 m, 
mean: 1,232.8 m, median: 490.5 m). Precipitation and temperature 

F I G U R E  3   Global prediction of 
regional fern and lycophyte richness 
model at a grid cell size of 7,666 km2, 
Robinson equal area projection, model 
explanatory value R2 = .745 [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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vary significantly along such elevational ranges and even though the 
regional richness is going to be related to only one summary variable of 
this range, the individual precipitation/temperature of the plot can be 
important as well. We thus consider it necessary to include precipita-
tion at both scales.

3.3 | Structural equation modelling

We repeated the structural equation modelling 1,000 times with 
different random subsets of the plot data, and the AIC test se-
lected most frequently model 2 as the most likely (77.6% of the 
runs). This model included direct links from regional richness, re-
gional environment and local environment to plot-level richness. 
The next frequently most likely model (11.4% of the runs) was 
model 1 (deltaAIC = 23.3), which was otherwise similar to model 
2 but did not allow the link between regional environment and 
plot-level richness. Model 3 (deltaAIC = 26.3) and model 4 (del-
taAIC = 48.9), which did not link regional richness to plot-level rich-
ness, were not selected as the best model in any of the runs. In 
both models, the X2-distributed Fisher's C statistic indicating the 
goodness-of-fit after tests of directed separation had a p > .1. This 
indicates that the model was missing a significant link between 
some variables (Table 3).

By separating the two paths of the most likely model (model 2, 
Figures 2 and 4) and standardizing them individually to account for 
the range of the respective response variable (plot-level richness 
0–81 species, regional richness 0–439), we were able to measure 

the individual power of the predictors (standardized parameter co-
efficients) on plot-level and regional richness, respectively. After 
standardization (Figure 4), the local mean annual cloud frequency 
(coefficient = 0.64) and local canopy height (0.27) were revealed as 
having the strongest impact on plot-level fern and lycophyte rich-
ness, followed by regional mean temperature during growing season 
(0.19), local distance to tree line (0.17) and regional precipitation of 
warmest quarter (0.14). Of the significant predictors (p < .1), regional 
richness was the weakest predictor of plot-level richness with a pa-
rameter coefficient of 0.09. Local precipitation of driest quarter, local 
isothermality, regional length of growing season as well as regional 
area of cloud forest were not found to be significant in the stan-
dardized model (p > .1). For regional fern and lycophyte richness, the 
standardization revealed regional precipitation of warmest quarter as 

TA B L E  2   Predictors of fern and lycophyte species richness chosen for structural equation modelling (SEM) based on GLM (column ‘R2’) 
and correlation tests

Predictor Unit
Resolution 
(km2) Response

Summary statistic/
interpolation method

Log 
transf. R2

Isothermality °C 4 Local Bilinear x .37

Mean annual cloud frequency % 4 Local Bilinear  .40

Precipitation of driest quarter mm 4 Local Bilinear x .24

Distance to tree line M 4 Local Bilinear  .10

Canopy height m 4 Local Bilinear  .21

Soil classes ‘Keys to Soil 
Taxonomy suborders’ 
(TAXOUSDA_250m_II)

factor 4 Local Nearest neighbour  —

Regional fern richness species 7,666 Local Bilinear  .10

Precipitation of warmest quarter mm 7,666 Regional + local 75% quartile x .47

Elevational range (derived from 
GMTED2010)

m 7,666 Regional Bilinear  .30

Cloud forest cover m2 7,666 Regional + local  x .29

Mean temperature during grow-
ing season

°C 7,666 Regional + local 75% quartile x .17

Length of growing season days 7,666 Regional + local 75% quartile  .11

Precipitation seasonality Coefficient of variation 7,666 Regional 75% quartile x .10

Note: ‘Response’ indicates at which grain each variable was linked to fern and lycophyte richness. Variables included in log transformation were not 
added again without transformation. For sources of the environmental variables, see Table 1.

TA B L E  3   Mean AIC scores, deltaAIC values between each 
model and the best one, and p values of X2-distributed Fisher's C 
for all models after 1,000 repetitions, ordered from most to least 
likely

 AIC deltaAIC
p value of 
Fisher's C

% chosen as best 
modela

Model 2 150.3 0 .24 77.6

Model 1 173.6 23.3 .19 11.4

Model 3 176.6 26.3 < .01 0

Model 4 199.2 48.9 < .01 0

aIn 11% of the runs, Models 1 and 2 were equally likely to be the best 
one as their AICs differed by less than 2. 
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the strongest predictor (coefficient = 0.52), followed by elevational 
range (0.37), regional length of growing season (0.32) and regional 
mean temperature during growing season (0.28). Area of cloud forest 
played a minor role with a coefficient estimate of 0.05. Regional pre-
cipitation seasonality was not significant (p > .1).

Out of the regression models we used to describe the relation-
ship between plot-level and regional species richness of ferns and ly-
cophytes, the third-order polynomial curve had the best fit in 99.9% 
of all cases (deltaAIC to next best model: 28; Figure 5). This model 
showed a gradual increase in plot-level richness with increasing re-
gional richness up to a regional richness of around 300 species and a 
mean plot-level richness of 23 species, with mean plot-level richness 
then decreasing to around 12 species at a regional richness of 440 
species.

The comparison of relationships between plot-level or regional 
richness and important environmental predictors showed over-
all similar patterns. At log-transformed precipitation of warmest 
quarter values between 0 and 2 the fern and lycophyte species 
richness at both grain sizes is rather low, while it drastically in-
creases after 2, peaking at 3, and then declining again. For regional 
habitat homogeneity (measure between 0, very heterogeneous, 
and 1, very homogeneous), both richness-levels showed a drastic 
increase between 0 and 0.25, after which it declined again. After 
0.75, only plot-level and regional richness values close to 0 were 
observed. With both regional length of growing season and local 
mean annual cloud frequency, the two richness levels showed a 
drastic increase of maximum values but with a large amount of 
points still ranging in the lower third of species richness values 
(Figure S1).

4  | DISCUSSION

Our model of regional fern and lycophyte species richness (Figure 3) 
following the approach of Kreft et al. (2010) reveals that richness (grid 
cell size of 7,666 km2) is highest in wet tropical mountains and in re-
gions of high habitat heterogeneity, but much lower in Africa than in 
other tropical continents. Through an almost 10-fold increase in high-
quality input data and finer spatial resolution compared to Kreft et al. 
(2010), we obtained a realistic model of regional richness across the 
globe with a high explanatory value (R2 = .745). We used these pre-
dicted regional richness values as input data in the regional path of the 
structural equation models, as they helped to mitigate various biases 

F I G U R E  4   Structural equation model describing the influence of environmental variables on regional and plot-level species richness of ferns 
and lycophytes based on model 2 (see Figure 2), which was the best performing model identified by structural equation models. Standardized 
predictor power and scaling performed for both paths (response: plot level and response: regional) separately. Blue solid lines indicate significant 
positive effects, with the width of the line being proportional to the standardized parameter coefficient of each predictor in the GLM. Blue 
dashed lines indicate non-significant predictors (p > .1) with positive effect and black double lines that the power was not directly measured. The 
use of logarithmic transformation and summary statistics are specified in Table 2 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  5   Relationship between regional and plot-level 
species richness of ferns and lycophytes, and curves describing 
the relationship. DeltaAIC averaged across 1,000 repetitions with 
different random subsets of the plot data [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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in the original species checklists (missing geographical coverage, varia-
tion in time since publication and in degree of completeness).

By combining the data obtained from the regional model 
with our extensive dataset of almost 83,000 vegetation plots 
(300–500 m2) across the globe, we were able to analyse the de-
terminants and relationships of plot-level and regional fern and 
lycophyte species richness through different structural equation 
models (Figure 2). The best model after 1,000 repetitions of the 
SEM test showed that regional environment has an important in-
fluence not only on regional richness, as expected, but also on 
plot-level richness (model 2), confirming Hypothesis 2 and reject-
ing all others. Even though regional environmental predictors af-
fect the number of regionally occurring species, they also seem 
to have a direct impact on the number of locally occurring spe-
cies in each plot that cannot be substituted with regional species 
richness.

After standardizing the best model (model 2), the most significant 
regional predictor of plot-level richness was regional mean tempera-
ture during the growing season, followed by regional precipitation of 
the warmest quarter and finally regional fern and lycophyte species 
richness (Figure 4). Locally, mean annual cloud frequency was by far 
the strongest predictor. Especially at higher elevations, this is related 
not only to rainfall but also to water input via fog as well as reduced 
solar irradiance and, therefore, actual and potential evapotranspiration. 
Previous studies identified rainfall as the strongest predictor of regional 
richness (Kreft et al., 2010) and of plot-level richness along elevational 
gradients (Kessler et al., 2011). However, fog can also be of major im-
portance, as shown by the correlation of fern diversity with epiphytic 
bryophyte cover (Kessler et al., 2011), which is a proxy of air humid-
ity (Karger et al., 2012). Local canopy height as well as local distance 
to tree line were also significantly related to plot-level richness, which 
further highlights the importance of forest structure for plot-level rich-
ness. Canopy height, which usually correlates with the distance to tree 
line, can differ drastically within a regional grid cell of 7,666 km2. This is 
also reflected in the fact that the elevational range covered by a grid cell 
was an important regional predictor of regional richness.

Soils are known to have a strong impact on local fern and lyco-
phyte species richness (Tuomisto et al., 2002, 2014) so that areas 
that have similar regional climatic conditions but differ in soils can 
be expected to show different plot-level richness values. However, 
when soil properties have not been measured at the site but their im-
pact needs to be inferred from soil type data derived from digital soil 
maps, their direct impact is not easy to quantify. This is partly due to 
accuracy problems and georeferencing errors in the available digital 
soil data, which themselves have been derived from scant field data 
(Moulatlet et al., 2017).

Putting the above considerations into context, our study shows 
that plot-level species richness of ferns and lycophytes is most 
strongly impacted by local environmental factors, but regional 
richness and regional environment were also identified as relevant 
predictors through structural equation modelling. Among the latter 
two, regional richness has to be considered to be more important 
as a predictor of plot-level richness than regional environment, as 

indicated by the fact that the models without this link (models 3 and 
4) were invariably rejected based on the test of direct separation.

We would have expected that plot-level species richness of ferns 
and lycophytes would either increase linearly with regional richness or 
reach an asymptote with sufficiently high regional richness. Instead, 
plot-level richness decreased at high levels of regional richness 
(Figure 5). Such a pattern has not yet been observed or predicted for 
global patterns of biodiversity in any group of organisms (Olivares et 
al., 2018; Srivastava, 1999). Nevertheless, this pattern remained stable 
through 1,000 random subsets of the plot data so that an obvious 
sampling effect as the underlying cause seems unlikely. But a detailed 
analysis of the geographical distribution of the medium species-rich 
plots in highly species-rich regions is necessary to exclude biases with 
certainty. Another possible explanation for this unexpected pattern 
may be that very species-rich regions tend to have a low degree of 
habitat homogeneity, which would limit the surface area of each hab-
itat in this region and thus via the species–area relationship the num-
ber of locally supported species. Additionally, regions with low habitat 
homogeneity can include habitats that support only a few species, 
such as alpine outcrops or regions with very poor soils. In such a situ-
ation, while these habitats increase overall diversity, they would result 
in lower average plot-level richness than areas that only have a few 
locally very species-rich habitats. However, plotting plot-level rich-
ness and regional richness against habitat homogeneity (Figure S1a) 
showed a similar pattern for both spatial grains. We cannot exclude 
the possibility that the chosen variable does not capture the habitat 
aspects important for ferns and lycophytes, though.

From another point of view, species tend to overlap in their eco-
logical preferences to some degree so that with increasing regional 
richness, locally co-occurring species increasingly compete with 
each other for the same resources, again leading to higher turnover 
of species between plots (Karger et al., 2015) or locally dominant 
species preventing many species from co-existing. Thus, we propose 
that there may be a regional effect on plot-level fern and lycophyte 
community assembly processes, such as high local species turnover 
in regionally rich assemblages (Karger et al., 2015). This hypothesis 
should be tested by targeted sampling. In any case, our data do not 
support a linear increase of plot-level richness with regional richness 
as would be expected if plot-level richness is simply a subsample of 
regional richness (e.g. Bhatta, Grytnes, & Vetaas, 2018; Karger et al., 
2011). Rather, the curve shape suggests that ecological species inter-
actions may limit the number of locally co-occurring species at high 
levels of regional species richness. This effect has indeed been doc-
umented for fern and lycophyte assemblages in the Indo-Malayan 
archipelago, where realized niche widths of species decreased on 
large islands with large regional species pools (Karger et al., 2014). 
Also, Kessler, Salazar, Homeier, and Kluge (2014) suggested that 
competitive species exclusions at high levels of individual densities 
of ferns and lycophytes occur in the Ecuadorian Andes. Such effects 
may occur more generally, but experimental approaches are needed 
to unravel the details of the underlying mechanisms.

In conclusion, our extensive dataset at two spatial resolutions and the 
use of recent statistical approaches that capture latent relations between 
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variables gave new insights into the determinants of species richness of 
ferns and lycophytes at regional and plot-level resolution, and raised new 
questions on how species interactions act across spatial scales.
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