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Higher levels of taxonomic and phylogenetic diversity play 
important and independent roles in determining ecosys-
tem function1–3. In experimental studies of temperate grass-

lands, higher levels of taxonomic and evolutionary diversity were 
associated with greater biomass and productivity and variability in 
the amount of evolutionary history shared within a group of spe-
cies was often a better predictor of productivity than the number of 
species2–4, consistent with the hypothesis that evolutionary dissimi-
larity is related to niche complementarity1–5. However, although the 
results of a range of biodiversity experiments2–7 suggest that com-
munities with distantly related lineages have greater carbon stocks 

and productivity, the effect of phylogenetic diversity on measures 
of ecosystem function remains controversial. Positive relationships 
are common, but not a rule, and negligible effects of evolutionary 
diversity on productivity and biomass have been reported in some 
cases8,9. Therefore, it is still unclear whether these relationships can 
be generalized, and the extent to which evolutionarily diverse com-
munities maximize function is unknown, particularly at large scales 
relevant to conservation planning.

The total amount of phylogenetic diversity represented by spe-
cies within a community may be valuable for understanding how 
diversity affects ecosystem function, because these properties 
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tend to reflect variation in the functional diversity of these com-
munities. This is because evolutionary relationships can capture  
information about multiple traits5,10–12, including those that are dif-
ficult to measure. For instance, in an experimental study of grass-
land communities, evolutionary diversity was a better predictor of 
productivity than some easily measured, or ‘soft’, functional traits 
(for example, specific leaf area, seed weight and height), suggesting 
that unmeasured traits that are significantly related to phylogenetic 
relationships, such as root architecture, root morphology, resource 
requirements or other critical functional differences, could contrib-
ute to maximizing productivity3. Evolutionary diversity metrics that 
encompass the full breadth of functional diversity may be more infor-
mative about how much species contribute to ecosystem function, 
particularly in hyperdiverse communities such as tropical forests  
where the links between soft traits (such as specific leaf area and 
wood density13,14) and ecosystem functions (such as productivity)  
are typically weak15.

The evolutionary diversity of a community can be measured in 
different ways to reflect distinct aspects of biodiversity11,16,17, and 
these metrics may all relate in different ways to variation in func-
tional traits, life-history strategies and, as a result, ecosystem func-
tion2,3,5,18. Phylogenetic diversity is the sum of the total evolutionary 
history, or amount of the tree of life present in a given community, 
and is quantified as the sum of the branch lengths, which are mea-
sured in units of time, from a phylogeny that represents all species 
in a given community (total lineage diversity)16. A second aspect of 
evolutionary diversity is the extent to which communities are domi-
nated by closely related species (neighbour lineage diversity), which 
can be quantified by mean nearest taxon distance (MNTD)11,12. 
Finally, another dimension of the evolutionary history of a com-
munity is whether it contains a balanced proportion of the major 
lineages of organisms (basal lineage diversity)19,20, which can be rep-
resented by the mean phylogenetic distance (MPD) between all pairs 
of species11. MPD is strongly affected by branch lengths at the deep-
est nodes of the phylogeny, as well as the relative abundance of major 
clades in the community20. All of these metrics attain higher values 
in communities comprising more distantly related individuals.

Amazonian forests provide an ideal context for exploring the  
link between tree diversity and ecosystem functioning because these 
forests include some of the most species-rich ecosystems on Earth21 
and contain a wide variety of angiosperm lineages20. They also play a 
key role in regulating planetary biogeochemical cycles, including fix-
ing as much carbon annually as the human economy emits globally22,  
and storing an order of magnitude more23. Here, we construct a pan-
Amazon angiosperm phylogeny and use this in conjunction with 
data from 90 long-term monitoring plots across Amazonia (Fig. 1) 
to investigate the relationships between tree diversity and ecosys-
tem function. We investigate the role of taxonomic and evolutionary 
diversity in promoting aboveground wood productivity (hereafter, 
productivity) and aboveground biomass (hereafter, biomass).

Evolutionary diversity was estimated as total, neighbour and 
basal lineage diversity. As these metrics show strong relationships 
with the total taxonomic richness of communities20,24, the effect of 
which we were also interested in estimating, we calculated the degree 
to which communities show greater or less phylogenetic diversity, 
MPD and MNTD than expected given their richness (that is, stan-
dardized phylogenetic diversity metrics)17. Taxonomic richness and 
diversity were estimated as the sum of identified genera per area, 
Shannon diversity, Simpson index and Fisher’s alpha. Because taxo-
nomic and standardized phylogenetic diversity metrics represent 
different dimensions of biodiversity17, with genus richness being 
decoupled from evolutionary diversity (that is, variation in richness 
is a poor predictor of variation in phylogenetic diversity)24, we expect 
that they may have independent effects on ecosystem function. 
Changes in taxonomic diversity influence the number of function-
ally distinct lineages present in a community, which may influence 

ecosystem function via either sampling effects or complementarity. 
As the degree of evolutionary relatedness among tropical tree species 
reflects similarity in their ability to process and store carbon (that is, 
closely related taxa have more similar wood density, potential tree 
size, growth and mortality rates)10, we expect that communities with 
greater evolutionary diversity may maximize productivity and car-
bon storage due to complementarity in resource use. As evolutionary 
diversity may summarize information about a wide range of traits, 
species richness and composition in a single index5, we hypothesized 
that evolutionary diversity would be a stronger predictor of ecosys-
tem function than taxonomic measures of diversity2.

As environmental factors25,26, stand structure and mean func-
tional composition (number of stems, wood density and potential 
tree size)15 are also associated with both productivity and biomass, 
we accounted for variation in these factors in all of our analyses 
using available climate data27, locally collected soil data28, and stand 
structural and functional characteristics10,29. We explore the effects 
of taxonomic and evolutionary diversity metrics on ecosystem func-
tion using partial correlations, and in linear models of productivity 
and biomass that account for the influence of climate, soil, forest 
structure and functional composition, as these variables might 
obscure any underlying effect of diversity on ecosystem function 
(see Methods for details). We focus our results and discussion on 
the influence of standardized phylogenetic diversity metrics17,30 and 
on two common taxonomic metrics of diversity: taxon richness and 
the Simpson index. Taxon richness was chosen because it is widely 
used in comparative studies, and the Simpson index was chosen 
because it was included in the best model that explained the great-
est variance in the data. Analyses incorporating Shannon index, 
Fisher’s alpha and raw phylogenetic diversity metrics gave broadly 
similar results and are presented in the Supplementary Information. 
All of the analyses were conducted at the genus level due to the reso-
lution of the phylogeny.

Results
Individually, both taxonomic and evolutionary measures of diversity 
showed strong, positive, bivariate relationships with productivity 
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Fig. 1 | Location of plots. Location of 90 1-ha permanent inventory plots 
shown on a forest cover map72 produced from global land cover data. Plots 
are all located in lowland moist forests on well-drained soils across the 
Amazon Basin (see Methods for details).
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(Fig. 2 and Supplementary Table 3). Because climate, soil, forest 
structure, functional composition and spatial autocorrelation might 
obscure the underlying effect of diversity on wood productivity, we 
also controlled for variation in these variables by including them as 
model covariates. Using linear models, we found that the best sta-
tistical model of productivity (based on Akaike information crite-
rion (AIC) values) contained both evolutionary (standardized effect 
size of MNTD (sesMNTD)) and taxonomic (Simpson index) mea-
sures of diversity (correlation coefficient R2 = 0.47; ΔAIC = −2.5, in 
relation to the model excluding both taxonomic and evolutionary 
diversity metrics; Fig. 3 and Table 1). This shows that these met-
rics reflect distinct aspects of diversity that are both important for 
understanding patterns of productivity (Supplementary Fig. 10). 
Partial correlation analysis produced similar results to the model 
selection approach (Supplementary Table 4): sesMNTD (Kendall’s 
τ = 0.15; P = 0.044) and the Simpson index (τ = 0.15; P = 0.046) 
both showed significant partial correlations with productivity after 
accounting for other variables (Supplementary Table 4). In con-
trast, genus richness had no effect on productivity after account-
ing for environmental and structural factors, using either the 
model selection approach (P = 0.51) or partial correlation analysis 
(P = 0.57) (Table 1; full coefficients from the models are shown in 
Supplementary Appendix 4).

Climatological and soil variables were also associated with varia-
tion in productivity (Fig. 3, Supplementary Fig. 4 and Supplementary 
Table 4). Mean annual temperature, climatic water deficit, and soil 
total phosphorus, magnesium and potassium were all associated 
with productivity25 (Fig. 3), with higher rates of wood growth typical 
of areas in the western Amazon with low water deficit and greater 
nutrient availability (that is, total phosphorus and magnesium). 
Although the standardized effect sizes of some environmental vari-
ables, such as water deficit, were large, the effect sizes of biodiversity 

variables in the best model were similar to some other individual 
environmental variables commonly considered to control variation 
in productivity in tropical forests, such as soil phosphorus concen-
trations (Fig. 3 and Supplementary Table 4).

Bivariate correlations indicated significant negative associations 
between biomass and all diversity metrics (Supplementary Fig. 5 and 
Supplementary Table 3). However, biodiversity and biomass were 
almost completely unrelated after accounting for variation in cli-
mate, soil, forest structure and mean functional composition (Fig. 3  
and Supplementary Table 5), in contrast with the positive, significant 
biodiversity–productivity relationships (Supplementary Table 4).  
Instead, biomass was largely determined by variation in wood  
density (Fig. 3, Supplementary Fig. 7 and Supplementary Table 5). 
The model selection approach also suggested that variation in tem-
perature, stem density and magnesium concentration had a small, 
significant effect on biomass (Fig. 3 and Supplementary Appendix 4),  
but these results were not supported by the partial correlation  
analysis (Supplementary Table 5).

Discussion
This study shows that there is a positive, small and significant effect 
of both taxonomic (Simpson index) and evolutionary (sesMNTD) 
measures of diversity on wood productivity, but not aboveg-
round biomass, in tree communities across lowland, terra firme, 
Amazonian forests, after accounting for the influence of environ-
mental factors, stand structural variables and spatial autocorrela-
tion (Figs. 2 and 3, Table 1 and Supplementary Table 4). Although 
the effects of diversity on productivity were small, the strength of 
these effects was similar to previous studies at small experimental 
scales in grassland ecosystems2–4, and comparable to the effects 
of some environmental variables within this analysis, such as soil 
phosphorus (Fig. 3).
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areas represent 95% confidence intervals. Solid lines indicate significant bivariate correlations between productivity and diversity metrics. Relationships 
for the other taxonomic and phylogenetic diversity metrics are included in the Supplementary Information.
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A range of mechanisms may underlie the significant relation-
ships between neighbour lineage diversity (sesMNTD), Simpson 
index and productivity (Fig. 2, Table 1 and Supplementary Table 4),  
including both sampling effects (that is, the presence of particular 
species with relevant functional traits within a community) and 

functional complementarity. In general, the contribution of ses-
MNTD and Simpson index to explaining variation in productivity,  
even after accounting for two major stand structural attributes 
(wood density and tree size), suggests that among lineages, there are 
additional functional characteristics that are related to phylogenetic 
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AGWP includes neighbour lineage diversity and the Simpson index as biodiversity metrics, as well as mean annual temperature, climatic water deficit, total 
phosphorus, magnesium and potassium. Greater productivity is found in plots with lower mean annual temperature and higher water availability, and on soils 
with greater amounts of soil phosphorus and magnesium and lower amounts of potassium. The best model for aboveground biomass (AGB) included wood 
density, number of stems, magnesium and mean annual temperature. The relationship between AGB and wood density is nonlinear. In all AGB analyses, 
wood density was specified with linear and quadratic terms, but for clarity, in the graph, the effect size is shown only for the quadratic term. For each variable 
in the model, dots represent the standardized effect size and lines represent 1 s.d. In some cases, error lines are unobserved due to very small standard 
deviations. See Supplementary Figs. 4 and 7 for detailed bivariate correlations, and Supplementary Appendix 4 for all of the coefficients of the models.

Table 1 | Results for GLS models across 90 1-ha plots for AGWP and AGB.

Model AGWP AGB

R2 AIC ΔAIC R2 AIC ΔAIC

Climate–soil–structure model + sesMNTD + Simpson index 0.47 199.08 −2.51 – – –

Climate–soil–structure model + sesMNTD 0.45 205.04 3.45 0.74 973.99 1.99

Climate–soil–structure model + Simpson index 0.44 200.73 −0.86 0.74 973.78 1.78

Climate–soil–structure model + sesPD 0.46 201.13 −0.46 0.74 973.72 1.72

Climate–soil–structure model + sesMPD 0.44 203.57 4.48 0.74 973.97 1.97

Climate–soil–structure model + richness 0.44 203.12 1.53 0.74 971.03 −0.97

Climate–soil–structure model 0.44 201.59 0 0.74 972.00 0

Biomass and productivity were modelled as a function of diversity metrics, structural and compositional attributes, and climate and soil variables, and accounted for spatial autocorrelation using a Gaussian 
correlations structure. The best model for AGWP is the climate–soil–structure model + sesMNTD + Simpson index. The best model for AGB is the climate–soil–structure model. Full coefficients are taken 
from the models shown in Supplementary Appendix 4. The results are for the best-fit model, with lowest AIC values, incorporating environmental variables (climate and soil), functional attributes (mean 
wood density, potential tree size and number of stems) and spatial autocorrelation. ΔAIC values refer to the comparison between each model that includes the diversity variables and the climate–soil–
structure model, which excludes diversity. For AGWP, the climate–soil–structure model includes mean annual temperature, climatic water deficit, and total phosphorus, magnesium and potassium. For AGB, 
the climate–soil–structure model includes wood density, number of stems, magnesium and mean annual temperature.
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relationships among taxa that promote productivity within plots. 
Since the evolutionary relationships among species tend to reflect 
their similarity in functional traits10,31,32, and because evolution-
ary diversity explicitly incorporates species differences, the effect 
of sesMNTD on productivity is likely to be a result of increased 
functional complementarity among lineages1,2. Higher values of the 
Simpson index, which indicate a more even distribution of abun-
dances among genera33, may also increase niche complementar-
ity. Alternatively, the weak positive effects of sesMNTD and the 
Simpson index on productivity could be due to sampling effects, but 
this is unlikely as tropical forests are sufficiently diverse at the 1-ha 
plot scale such that sampling effects saturate; these diverse forests 
comprise taxa from the entire phylogeny at this scale, and include 
genera that have both fast and slow demographic traits26. Moreover, 
lineages that contribute disproportionately to the diversity/produc-
tivity relationship8 are scattered across the phylogeny, and there is 
no phylogenetic signal for the contribution of different lineages to 
the effect of the Simpson index or sesMNTD on wood productivity 
(see Supplementary Text and Supplementary Fig. 12). These results 
suggest that greater phylogenetic diversity is not related to a higher 
probability of sampling functionally dominant lineages that would 
in turn disproportionally contribute to the relationship between 
evolutionary and taxonomic diversity and productivity. Because 
of this, complementarity appears to be the most likely mecha-
nism to explain the positive biodiversity effects we observe (see 
Supplementary Information for further analyses and discussion).

One potentially key unmeasured trait that may underlie an increase 
in functional complementarity and productivity in more diverse 
communities is variation in canopy structure. Canopy structure is a 
key determinant of productivity in temperate forests34, and experi-
ments with young trees35 show that mixtures of species with comple-
mentary crown morphologies and branching patterns have denser 
canopies35–37, because species distribute their branches and leaves in 
complementary height layers of the canopy. As a result, both light 
interception and productivity are enhanced36. In Amazonian forests, 
there is a wide range of canopy architecture among species, and com-
plementarity in crown shape may enable trees to utilize canopy space 
more efficiently. For example, for 2,457 trees in Madre de Dios in the 
Peruvian Amazon38,39, crown architecture varies widely among fami-
lies (Supplementary Fig. 8). Differences in crown architecture among 
genera from different families may enhance canopy space filling and 
resource uptake. There may also be variation among communities in 
other unstudied, evolutionarily correlated traits such as belowground 
resource allocation, tree height/diameter allometry, hydraulic traits 
or functional groups (for example, nitrogen/non-nitrogen fixers) that 
may affect productivity.

The effect of sesMNTD and the Simpson index on productivity 
could also reflect pathogen dilution in more diverse communities. 
Host ranges of most tree pests and pathogens show a clear phyloge-
netic signal, with co-occurring, closely related plant lineages being 
more vulnerable to similar natural enemies than distant relatives40,41. 
A community with greater sesMNTD (that is, comprising more dis-
tantly related lineages) is therefore expected to be less susceptible to 
disease pressure41, and thus needs fewer resources invested in defence, 
which in turn allows faster growth rates42. In tropical regions, where 
strong conspecific negative density dependence is observed, indi-
vidual trees tend to have lower performance (for example, growth 
and survival) when growing near closely related neighbours43. At the 
community level, a species may therefore perform better in forests 
that contain fewer close relatives. Similar arguments may also apply 
to communities with higher values of the Simpson index: a greater 
proportion of rare species may reduce the probability of an individual 
tree being attacked by species-specific pathogens and/or herbivores, 
and increase community-level productivity.

The similar, but independent, effects of taxonomic and phyloge-
netic diversity for explaining variation in productivity are in contrast 

with our initial prediction. Perhaps both variation in the relative 
abundance distribution among communities (best captured by the 
Simpson index) and the functional distinctiveness of taxa (best 
captured by sesMNTD) are important for determining the strength 
of functional complementarity within communities. In contrast,  
a recent subtropical biodiversity experiment found that phyloge-
netic diversity did not explain additional variation in rates of carbon 
accumulation, compared with measures of taxonomic diversity44. 
However, both the metrics of phylogenetic diversity and the over-
all level of diversity of the communities in the experimental study 
differed from our pan-Amazon study. Understanding the specific 
functional differences among genera within a community that con-
tribute to maximizing productivity in diverse tropical forests is an 
important area for further research, to strengthen the links between 
causative mechanisms and the correlations that we report here.

Both taxonomic and evolutionary diversity had no effect on 
aboveground biomass in intact forests in Amazonia. These results 
are supported by a previous pan-tropical study that used an over-
lapping dataset to investigate the role of taxonomic diversity on 
biomass26, as well as a recent study that investigated the role of evo-
lutionary diversity on biomass during forest succession and found 
that, despite a positive effect of phylogenetic diversity on biomass 
in early successional forests, there is no effect at later stages of for-
est succession45. Not surprisingly, but in contrast with the positive 
effect of taxonomic and evolutionary diversity on productivity, bio-
mass was strongly determined by functional characteristics (Fig. 3 
and Supplementary Table 5), with variation in wood density being 
the most important variable in controlling patterns of biomass in 
these forests15,26,46. To a much lesser extent, and consistent with pre-
vious findings47, the number of stems had a marginal and positive 
effect on biomass (Fig. 3). These results corroborate a recent meta-
analysis in tropical forests, which found that stand structural (for 
example, number of stems) and community mean functional trait 
variables (for example, wood density) are more important than tax-
onomic diversity for predicting variation in biomass48. In general, 
as variation in stem mortality rates is a better predictor of variation 
in stand biomass among plots than productivity49, and tree death is 
a highly stochastic process50, any positive effect of tree diversity on 
biomass through increased productivity is probably obscured by the 
impact of variation in stem mortality rates among plots.

Overall, our results suggest that multiple facets of diversity have 
a small, positive effect on present-day functioning of the world’s 
largest tropical forest. In particular, this study provides evidence 
that evolutionary diversity is weakly, but significantly, related to 
ecosystem functioning at large scales in natural ecosystems. While 
evolutionary diversity has previously been suggested as a factor to 
consider in the identification of priority areas for conservation, 
because of its role in enhancing ecosystem function2–5, this study 
provides quantitative evidence for this assertion in tropical forests. 
Our results therefore indicate that there is a synergy between pre-
serving diverse forests that encompass greater evolutionary heritage 
and protecting ecosystem function.

Methods
Tree community data. To investigate the relationship between biodiversity 
and ecosystem functioning, we estimated diversity, wood productivity and 
aboveground biomass using data from 90 long-term forest inventory plots in 
the Amazon and adjacent lowland forests from the RAINFOR (Amazon Forest 
Inventory) network (Fig. 1 and Supplementary Appendix 1). Data were extracted 
from the ForestPlots.net database, which curates tree-by-tree records from 
RAINFOR and other networks51,52. Plots were all 1 ha in size (except for two plots 
of 0.96 ha) and located in structurally intact and old-growth, closed-canopy forest. 
Our analyses were restricted to continuous lowland, terra firme, moist Amazonian 
forests (excluding plots in montane, swamp, seasonally dry and white-sand forests, 
and savannas). The ecological characteristics that influence resource uptake 
and thus underlie any potential relationship between ecosystem function and 
phylogenetic diversity may differ widely among biomes with distinct evolutionary 
histories53. For example, clades restricted to areas outside moist forests may have 
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evolved very different unmeasured traits (for example, higher root-to-shoot 
ratios to tolerate drought), which could lead to different relationships between 
evolutionary diversity and ecosystem function in comparisons across biomes. 
Restricting our analyses to a single biome, and therefore a relatively coherent 
pool of genera, with similar evolutionary histories and proven ability to disperse 
and mix across Amazonia over geological timescales54, allowed us to limit the 
potentially confounding effect of large, cross-biome differences in phylogenetic 
composition on the relationship between diversity and ecosystem function.

Plots were established between 1975 and 2010, and monitored for an average 
of 16.1 years in total (range: 2.0–28.6 years), with regular recensuses. All trees 
and palms with diameter at breast height greater than 10 cm were included in the 
analyses. In the dataset, all recorded species and genus names were checked and 
standardized using the Taxonomic Name Resolution Service55. Across all plots, 
94.9% of stems were identified to genus level, with a minimum of 70% identified 
to genus level per plot. We excluded all individuals not identified to genus level 
(5.1%) from biodiversity metric calculations.

Phylogenetic tree. To calculate metrics of evolutionary diversity, we constructed 
a large pan-Amazon phylogeny, including 526 genera based on two chloroplast 
DNA gene regions (rbcL and matK), following protocols from Gonzalez et al.56. 
Full details of the temporally calibrated, ultrametric phylogeny construction can be 
found in the Supplementary Information. Our analyses included only those genera 
for which we have phylogenetic data: 90.4% of the total number of genera in the 
plots, which encompass 98.0% of all identified stems.

Biodiversity metrics. To represent the different aspects of biodiversity, we 
calculated ten genus-level diversity metrics, including taxonomic diversity indices 
and metrics that incorporate the evolutionary history within communities 
(Supplementary Table 1). Because different metrics can reflect similar dimensions 
of diversity17 (Supplementary Fig. 10) we present the results from five diversity 
metrics: (1) taxonomic richness (a common and widely used diversity metric, here 
evaluated as the sum of all identified genera in a given community); (2) the Simpson 
index of diversity (a common diversity metric that incorporates genus abundance, 
representing the probability that two stems randomly selected from a community 
belong to different genera); (3) total lineage diversity (the standardized effect size of 
phylogenetic diversity (sesPD), estimated as the sum of all branch lengths including 
genera within a community16 while controlling for the effect of genus richness);  
(4) neighbour lineage diversity (quantified as the sesMNTD while controlling for 
the effect of genus richness, which is more sensitive to relatedness near to the tips 
of the phylogeny11,12); and (5) basal lineage diversity (quantified by the standardized 
effect size of the mean pairwise distance (sesMPD)11,12 while also controlling for the 
effect of genus richness, and reflecting phylogenetic structure at the deepest nodes20) 
(see Supplementary Information for results that include all metrics).

Because the null expectation for the evolutionary diversity metrics of 
communities (that is, phylogenetic diversity, MNTD and MPD) necessarily 
shows strong relationships with the total taxonomic richness of communities, 
we quantified their standardized values: the degree to which communities show 
greater (+) or less (−) phylogenetic diversity, MNTD or MPD than expected given 
their genus richness. We calculated the standardized effect sizes, sesPD, sesMNTD 
and sesMPD by first generating a null expectation via randomly shuffling genera 
tip labels in the phylogeny 999 times. The effect size was then calculated as the 
difference between the observed and expected values (the latter being the mean 
across randomizations) divided by the standard deviation of values across the 
randomizations. These standardized metrics represent the residuals from the 
relationship between each evolutionary diversity metric and genus richness within 
each plot, and allow us to identify areas with high or low evolutionary diversity 
while accounting for the effect of richness.

Wood productivity and aboveground biomass. Aboveground wood productivity 
was estimated as the rate of gain in biomass during each census interval. Because 
longer census intervals increase the proportion of productivity that cannot be 
directly detected due to trees growing and dying during the census interval57, 
productivity was corrected for varying census interval lengths. Following the 
methodology developed by Talbot et al.58, estimates of annualized productivity 
per plot were computed as: (1) the sum of tree growth alive in the first and last 
censuses; (2) the growth of trees that recruited during the census interval;  
(3) estimates of unobserved growth of trees that died during the census interval; 
and (4) estimates of unobserved trees that both recruited and died between census 
periods. Census interval length is expected to affect the estimates of productivity, 
while plots monitored over short total census lengths are more likely to be affected 
by stochastic changes over time and measurement errors59. Productivity estimates 
were weighted by the cubic root of the census interval length (see Supplementary 
Information for details).

Aboveground biomass per stem was estimated using a pan-tropical, three-
parameter equation AGB ¼ 0:0673 ´ WDD2Hð Þ0:976

I
 from Chave et al.60, where 

WD is the stem wood density (in g cm−3) from the Global Wood Density 
database29,61, D is the tree diameter (in cm) at 1.3 m or above the buttress, and  
H is the tree height (in m). Tree height was estimated based on regional diameter–
height Weibull equations62. Similar to productivity, to reduce the influence of 

potential stochastic changes, and due to variation in the census interval within 
plots, we estimated biomass per plot using a weighted average across multiple 
censuses (see Supplementary Information for details). We extracted wood density 
data from the Global Wood Density database29,61.

Environmental variables. Because variation in both productivity and biomass in 
Amazonian forests is expected to be mediated by soil and climate25, we included 
environmental variables as covariates in our models. For climate data, to avoid 
collinearity among explanatory variables, we selected the mean annual temperature 
(°C; extracted from the WorldClim dataset at 30 s (~1 km2) resolution27) and 
maximum climatic water deficit (a measure of water stress extracted from a global 
gridded layer60). For soil data, we used average values for each plot, calculated 
at 0–30 cm depth, for soil texture, total phosphorus (mg kg−1), and potassium, 
magnesium, calcium and sodium concentrations (mmoleq kg−1), collated at 
ForestPlots.net and based on intensive soil sampling from each RAINFOR plot 
that used standardized field and analytical protocols25,28. Because silt, clay and 
sand content (%) are strongly correlated, soil texture was expressed as the first two 
axes of a principal component analysis. The first axis was negatively and strongly 
correlated with sand content, whereas the second was negatively correlated with 
clay (Supplementary Table 2).

Stand structure variables. We also included descriptors of stand structure as 
covariates in our models, including mean wood density, mean potential tree size 
and number of stems, all of which have been shown to shape productivity and 
biomass in tropical tree communities15. We extracted wood density data from the 
Global Wood Density database29,61, selecting data for Mexico, Central America 
and South America. The data were matched to each stem in the plot data at the 
species level. In cases where this information was unavailable, data were matched 
to the average of species values for that genus. We then calculated the mean wood 
density value across all stems in a plot. To estimate the potential tree size, we used 
data from Coelho de Souza et al.10 spanning 577 single-census plots from across 
Amazonia, for the potential size that each genus could achieve. These values were 
assigned to each individual tree based on its identity. We then derived the mean 
potential tree size for each plot, averaged across stems. The number of stems per 
plot was calculated as the average number of individuals with a diameter at breast 
height >10 cm across multiple censuses.

Statistical analyses. To investigate the strength of the relationship between each 
measure of ecosystem functioning (that is, productivity and biomass) and the 
set of diversity metrics in each plot, we conducted: (1) bivariate Kendall’s τ non-
parametric correlation tests; (2) generalized least-squares (GLS) modelling; and  
(3) Kendall’s τ pairwise partial correlation tests. For bivariate correlations, as 
testing the relationships for the range of biodiversity metrics involved ten tests  
for each dependent variable, P values were adjusted for multiple comparisons  
using the false discovery rate63 (Supplementary Table 3).

Environmental variables also influence the diversity of an ecosystem20,64 and 
its ability to process and store carbon25, and may therefore obscure relationships 
between diversity and ecosystem functioning. To account for the effects of 
multiple environmental variables, we constructed GLS models where ecosystem 
functioning was modelled as a function of metrics related to diversity, climate, 
edaphic conditions, functional composition and structural variables. To avoid 
multicollinearity among variables in the model, we confirmed that variance inflation 
factors were less than five65 for each explanatory variable. We account for spatial 
autocorrelation in the GLS analyses by specifying a Gaussian spatial autocorrelation 
structure, which is consistent with the shape of the semivariograms for biomass 
and productivity across this network of plots49. We created separate models 
for productivity, biomass and each diversity metric. For each response variable 
(productivity and biomass), we generated a set of models including all of the 
possible combinations of variables related to climate, soil, functional composition 
and stand structure, and selected the best model (referred to as the climate–soil–
structure model) based on the AIC. To investigate the additional contribution 
that diversity made to explaining variation in both productivity and biomass, each 
single diversity metric was then added individually to the climate–soil–structure 
model. We then compared the climate–soil–structure model with models also 
including each single diversity metric: a difference in AIC > 2 compared with the 
climate–soil–structure model indicated that a model had improved support. Finally, 
we added pairs of diversity metrics, representing both taxonomic and evolutionary 
diversity (Supplementary Fig. 10), into a single model to investigate whether a more 
complex model provides better predictive ability over single diversity metric models. 
Phosphorous and cation concentrations were log-transformed before analysis. To 
allow comparisons of the strength of significance of the explanatory variables, they 
were all standardized to a mean of zero and a standard deviation of one.

We also examined the effects of the diversity metrics on wood productivity and 
aboveground biomass using partial correlation analyses including the variables 
selected in the best-performing climate–soil–structure model. Partial correlation 
analyses were used to determine the correlation between two variables while 
eliminating the effect of potentially confounding variables66.

Analyses were performed with the R statistical software (version 3.1.1)67, using 
the vegan68, picante69, BiomasaFP70, nlme71 and ppcor66 packages.
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Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The permanently archived data package of the plot-level diversity, aboveground 
biomass, wood productivity and genus-level phylogeny are available from https://
www.forestplots.net/en/publications#data.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis - Multiple DNA sequence alignments, were conducted using MAFFT (v.6.8226) followed by manual adjustments in Mesquite; 
- To generate a maximum likelihood tree, rbcL and matK sequences were combined using RAxML v.7.2.7 on the Cipres server (https:// 
www.phylo.org); 
- Bayesian Markov Chain Monte Carlo (MCMC) was conducted using BEAST (v.1.8.2) on the CIPRES server; 
- Branch-lengths and divergence times were assigned using TreeAnnotator; 
- Taxonomic diversity metrics were calculated using vegan package (v. 2.0-1.0) in the R statistical software (v. 3.1.1); 
- Phylogetneic diversity metrics were calculates using picante package (v. 1.6-2) in R; 
- Aboveground biomass and wood productivity were calculated using BiomsaFP package (v. 1.1) in R; 
- Generalised Least Square models were conducted using nlme package (v. 3.1-117) in R; 
- Model selection was conducted using MuMIn package (v. 1.15.1) in R; 
- Partial correlation analyses were conducted using ppcor (v. 1.0) in R.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Once the paper is accepted the permanently archived data package of the plot-level diversity, aboveground biomass, wood productivity and the genus-level 
phylogeny will be available from https://www.forestplots.net/pt/produtos.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We used a newly constructed pan-Amazon phylogeny including 526 genera based on two chloroplast DNA gene regions and 90 long-
term monitoring plots across Amazonia to investigate the relationships between tree diversity and ecosystem function. This study 
provides the first evidence that evolutionary diversity is related to wood productivity at large spatial scales in natural ecosystems, 
suggesting that there is a synergy between preserving diverse forests that encompass greater evolutionary heritage and protecting 
ecosystem function.

Research sample Plots were all 1 ha in size (except for two plots of 0.96 ha) and located in structurally intact and old-growth closed-canopy forest.

Sampling strategy We used all 90 inventory plots from lowland moist forests on well-drained soils across the Amazon Basin.

Data collection Forest plots were established between 1975-2010 and were all monitored for at least two years, with regular recensuses and a mean 
total monitoring period of 16.1 years. All trees and palms with diameter at breast height (dbh) greater than 10 cm were included in 
the analyses, records of tree mortality and identifications of recruits were conducted using uniform and standardized protocols. 
Data were extracted from the ForestPlots.net database, which curates tree-by-tree records.

Timing and spatial scale Plots were established between 1975-2010, monitored for at least 2 years and all 1 ha in size (except for two plots of 0.96).

Data exclusions Our analyses were restricted to continuous lowland, terra firme, moist Amazonian forests and restricted to a single biome with 
relatively coherent pool of genera with similar evolutionary stories and ability to disperse and mix across Amazonia over geological 
timescales. We excluded plots in montane, swamp, seasonally dry, white-sand and savannas.

Reproducibility All attempts to repeat the analyses were successful.

Randomization We included environmental variables as covariates in our Generalized Least Square models.

Blinding Blinding was not used in this study as it is not appropriate in a large-scale ecological study such as this.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions This study was conducted in structurally intact and old-growth closed-canopy forest with mean annual temperature varying from 

23.8 to 27.2 Celsius degrees and cumulative watter deficit from 0 to - 473.4.

Location Forest plots were all located in Amazonia lowland old-growth forests, please see Appendix 1 for detailed information.

Access and import/export Fieldwork in Amazonia has been conducted by, and in collaboration with, many South American institutions over many years to 
generate the long-term inventory record, in compliance with appropriate national laws. Permits for fieldwork iclude: Peru, from 
the Peruvian Protected Areas Authorithy (SERNANP), permits 001-2011, 008-2013, 021-2014; from the Peruvian Forest Service 
(SERFOR) permits 0198-2011, 0148-2012, 383-2012, 077-2014; Bolivia, from Ministerio de Medio Ambiente y Agua (MMAyA) 
permit (026/2009); and Brazil, from the Brazilian Research Council (CNPq) permit (00048/2013-5).

Disturbance No disturbance were caused by the study.
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Materials & experimental systems
n/a Involved in the study
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Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq
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MRI-based neuroimaging
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