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RESEARCH ARTICLE
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ABSTRACT
After many years of illegal hunting and commercialization, the populations of the Black
caiman (Melanosuchus niger) have been recovering during the last four decades due to the
enforcement of a legislation that inhibits their international commercialization. Protecting
nesting sites, in which vulnerable life forms (as reproductive females, eggs, and neonates)
spend considerable time, is one of the most appropriate conservation actions aimed at
preserving caiman populations. Thus, identifying priority areas for this activity should be
the primary concern of conservationists. As caiman nesting sites are often found across the
areas with difficult access, collecting nest information requires extensive and costly fieldwork
efforts. In this context, species distribution modeling can be a valuable tool for predicting the
locations of caiman nests in the Amazon basin. In this work, the maximum entropy method
(MaxEnt) was applied to model the M. niger nest occurrence in the Mamirauá Sustainable
Development Reserve (MSDR) using remotely sensed data. By taking into account the M. niger
nesting habitat, the following predictor variables were considered: conditional distance to
open water, distance to bare soil, expanded contributing area from drainage, flood duration,
and vegetation type. The threshold-independent prediction performance and binary predic-
tion based on the threshold value of 0.9 were evaluated by the area under the curve (AUC)
and performing a binomial test, respectively. The obtained results (AUC = 0.967 � 0.006 and
a highly significant binomial test P< 0:01) indicated excellent performance of the proposed
model in predicting the M. niger nesting occurrence in the MSDR. The variables related to
hydrological regimes (conditional distance to open water, expanded contributing area from
drainage, and flood duration) most strongly affected the model performance. MaxEnt can be
used for developing community-based sustainable management programs to provide socio-
economic benefits to local communities and promote species conservation in a much larger
area within the Amazon basin.
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1. Introduction

After more than 40 years since the ban of harvesting
and commercialization of the fauna in Brazil (Federal
Law 5197/67), Melanosuchus niger populations have
considerably increased [1]. Since 2000, the species has
been categorized in the IUCN Red List as “lower risk-
conservation-dependent” ones [2]. In 2007, the
Brazilian population of M. niger was transferred from
the species list in Appendix I to that in Appendix II of
CITES [3], allowing their closely controlled trade [4].
The current demographic status of this species relies
on the intensive management of wild individuals and
educational plans aimed at their sustainable use and
conservation [5]. However, due to a number of

challenges, such as the difficulty of defining suitable
conservation areas, lack of funding, and poor law
enforcement, all conservation initiatives have been
restricted to few areas within the Amazon basin.

Protecting caiman nesting sites where the most vul-
nerable life forms (as reproductive females, eggs, and
neonates) remain for prolonged periods is of high
importance for conservation actions [6]. Because nesting
sites are often located in the areas with difficult access,
species distribution models (SDMs) can be a valuable
tool for predicting caiman nesting occurrence. These
statistical models allow using species occurrence data
to determine ecological requirements and predict their
potential distributions [7–9]. In ecology a nd
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conservation, the maximum entropy method (MaxEnt)
has been successfully applied to species distribution
modeling using presence-only data. MaxEnt requires
a set of the occurrence coordinates of known species
and layers of predictor variables. The main advantages
of usingMaxEnt are as follows: (i) the input can consist of
presence-only data; (ii) continuous and categorical data
can be incorporated into the model as input variables;
(iii) importance of the individual variables can be eval-
uated; (iv) interactions between different variables can
be assessed; and (v) accurate predictions can be
obtained even at small sample sizes [10–13].

Considering nests as the organisms whose spatial
distributions are determined by environmental vari-
ables, MaxEnt can be applied to model caiman nest
occurrence at a local scale. In addition, presence-only
data are convenient for modeling the caiman nest
occurrence while dealing with pseudo-absence across
the areas with difficult access where nests may be
located. However, the use of the MaxEnt method to
predict crocodilian nest occurrence worldwide has not
been considered. To the best of our knowledge, only
a pioneering work was conducted in the Brazilian
Amazon basin to model the M. niger nest occurrence
using topographic and land-cover variables [14]. The
application of remotely sensed data (aerial photogra-
phy, satellites, and unmanned aerial vehicles or
“drones”) in locating M. niger nesting sites is also
gaining popularity. By using optical imagery, an open-
water stability index was proposed to show a positive
correlation between the M. niger nest abundance and
the hydrologically stable water bodies in the Brazilian
Amazon basin [14,15].

In this study, we applied the MaxEnt technique to
model the probability of crocodilian nest occurrence
in the Mamirauá Sustainable Development Reserve
(MSDR) using a set of environmental variables reflect-
ing the following three grouping factors: habitat avail-
ability, limiting habitat, and disturbance. Its objective
was to determine whether MaxEnt could be used to
predict the locations of M. niger nesting sites, which
might provide information on the conservation and
sustainable use programs in the MSDR. Our specific
goals were (1) to predict areas suitable for M. niger
nesting in the MSDR; (2) to suggest a threshold for
prioritizing a low false positive (or commission) error;
and (3) to determine the most effective environmen-
tal variables for predicting M. niger nesting site
distributions.

2. Materials and methods

2.1. Study area

The MSDR represents the world largest protected area
developed for wetland environmental conservation. It
is situated in the Central Amazon basin at the

confluence of the Solimões (Amazon) and Japurá riv-
ers. It is located near the Tefé municipality and
570 km apart from Manaus (the capital city of the
Amazonas State, Brazil), covering approximately
11,240 km2 (central coordinates: 2º160S and 65º410W)
(Figure 1).

The study area is located in a floodplain subjected to
the streams of nutrient-rich silt-laden water caused by
the large monomodal flood pulse of Solimões-Amazon
river with a mean amplitude of the water level equiva-
lent to approximately 10 m [16–18]. The high-water
(HW) season spans from May to middle-July; and the
receding water phase starts in July and lasts up to
September. The low-water (LW) season lasts from
September and November; and the rising water phase
begins in December and ends in May [19].

In the MSDR, M. niger nesting peaks between
September and November; the incubation stage (lasting
approximately 85 to 90 d) occurs between September
and January; and hatching is observed between
November and January [15,20]. M. niger females selec-
tively build their nests either near the edges of flood-
plain lakes that remain stable during the incubation
period or on the floating meadows formed by the inter-
twined grasses within the water bodies [15,20,21].

2.2. Nest presence records

In the MSDR, ground nest surveys were conducted at
distances from the water edge below 20 m during the
LW seasons of 2007 and 2008. M. niger nests were
searched by walking along the shores of 66 water
bodies; 12 of these water bodies were surveyed in
the nesting periods of both years [14].

A total of 231 M. niger nests were found close to the
shores of 44 surveyed water bodies during the 2007
(n ¼ 148) and 2008 (n ¼ 83) nesting periods and then
georeferenced using the Global Positioning System
(GPS) with a 5-m positional accuracy. The nests were
built very close to the water edge (Mean = 2.0 � 3.3 m)
[14]. Out of 231 nests, only 80 ones were used to avoid
spatial correlations between different points. The field-
based spatial distribution of theM. niger nest occurrence
is shown in Figure 2.

2.3. Data acquisition and image classification

Optical imagerywas acquired in the red (R: 0.63–0.69 µm),
green (G: 0.76–0.90 µm), and blue (B: 1.55–1.75 µm)
bands using the Thematic Mapper (TM) sensor onboard
the Landsat-5/TM satellite. TM images for the MSDR
region (path 1, row 062) were freely available at the U.S.
Geological Survey (USGS) database http://earthexplorer.
usgs.gov accessed on 8 January 2018). TM images with
a 30-m spatial resolution were acquired on 2007–07–24
(HW season) and 2007–09–10 (LW season) for classifica-
tion purposes. The criteria for image selection were
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minimum cloud coverage, water season, and water level.
Water levels were recorded at the Mamirauá Lake gau-
ging station (03º060S and 64º470W) in 2007 [18,22]. The
images acquired on 2007–07–24 and 2007–09–10 corre-
spond to the water levels of 34.05 and 25.73 m,
respectively.

A digital elevation model (DEM) with a spatial reso-
lution of 3 arc-s (or about 90 m at the Equator) derived
from the Shuttle Radar Topographic Mission (SRTM)
data was used for producing a local drainage direction
(LDD) grid. The SRTM DEM was freely available for the
MSDR region at the USGS database (accessed on

25 January 2018). Google EarthTM high-resolution
images were applied to the visual interpretation of
classification results. Other sources of imagery, such as
an ALOS/Palsar L-band radar, were used by [23] for
determining the vegetation structure and inundation
patterns in the MSDR. We used data georeferenced to
the Universal Transverse Mercator geographic coordi-
nate system and World Geodetic System WGS84.

A K-means clustering algorithm [24] was utilized to
perform unsupervised image classification. We defined
the parameters clusters ¼ 30 and iterations ¼ 10 based
on the trial and error approach. The selected parameters

Figure 1. Study area. On the top: MSDR location (red area) in Central Amazon, Brazil. In the background, bottom part: MSDR
limits are drawn on the SRTM image (red line).
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allowed better distinguishing between different spectral
patterns in the visual interpretation of classification
results. Optical images obtained in the red, green, and
blue bands (RGB) from the TM were separately classified
for the LW and HW seasons using the K-means algo-
rithm implemented in the Spring 5.3 software [25].

After classification, 30 clusters were visually regrouped
in separate classes for each TM image using Google
EarthTM and Landsat-5/TM. Three land-cover classes
were defined for each TM image: (1) open water compris-
ing water surfaces free from floating and emerging vege-
tation; (2) bare soil comprising areas of bare soil, sparse
grass, and exposed lake substrates; and (3) vegetation
comprising trees as well as arboreal and herbaceous
plants that were either subjected or not to flooding.

2.4. Predictor variables

We used five predictor variables derived from remotely
sensed data (Table 1) considering the literature key

aspects for the M. niger nesting occurrence in the
Brazilian Amazon region [26]. The relationship between
the predictor variables and the M. niger nesting habitat
is provided in Table 2. We classified these predictor
variables in accordance with three grouping factors: (1)
habitat availability, which includes a conditional dis-
tance to open water (CDOW) and vegetation type (VT);
(2) limiting habitat, which includes a distance to bare soil
(DBS) and expanded contributing area from drainage
(ECAD); and (3) disturbance, which includes flood dura-
tion (FD) (for more information on each predictor vari-
able, see the subsections below). The maps
exemplifying the predictor variables used in this study
are provided in Figure 3.

2.4.1. Habitat availability factor
CDOW is used as a proxy for the open water stability
and is a non-linear function of two auxiliary variables:
the distances to the open water in the low (DOWl)
and high (DOWh) water seasons. Both variables are

Figure 2. Spatial distribution of the M. niger nest occurrence during the 2007 and 2008 nesting seasons in the MSDR.
(a) Localities of the M. niger nests (white crosses) on the Landsat-5/TM (R:5, G:4, B:3) image during the LW season
(2007–09–10). (b) Detailed view of the M. niger nest occurrence (white crosses) close to the edges of the small water
bodies. Adapted from: http://earthexplorer.usgs.gov.

Table 1. Specifications of the remotely sensed data used for modeling the distribution of suitable M. niger nesting sites in the
MSDR.
Factor Variable Sensor Wave band Spatial resolution (m) Revisiting time (d) Temporal availability

Habitat availability CDOW Landsat-5/TM 0.40–3.0 µm 30 16 1984–2013
6.0–15.0 µm 120

VT ALOS/Palsar L – (23.5 cm) 10–100 46 2006–2011
Limiting habitat DBS Landsat-5/TM 0.40–3.0 µm 30 16 1984–2013

6.0–15.0 µm 120
ECAD SRTM DEM X – (3.1 cm) 30–90 Global DEM Feb. 11–22,

C – (5.3 cm) 2000
Disturbance FD ALOS/Palsar L – (23.5 cm) 10–100 46 2006–2011
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continuous, whose values at a point of the scene are
the Euclidian distances from this point to the nearest
open water class on the LW and HW season TM
classified images, respectively. CDOW was computed
using the Spring 5.3 software [25].

The following conditional rule was used to define
the CDOW. For any point x of the scene:

CDOWðxÞ ¼ 1000 if DOWhðxÞ ¼ 0;
DOWlðxÞ otherwise:

�
(1)

If the point x is immersed in water during the HW
season, a constant value of 1000 is assigned; other-
wise, DOWl(x) is used. This approach penalizes the
unstable water bodies whose DOWl values are greater
than the DOWh ones (Figure 4). CDOW allows distin-
guishing between the parts of the open water edge
affected by the change in the water level and the
stable non-affected parts.

VT is a categorical variable obtained by [23] for the
MSDR. Five land-cover classes were defined: three for
vegetation types (“Chavascal”, “Low Várzea”, and “High
Várzea”), one for permanent water surfaces (“Water
Bodies”), and one for transient areas (“Herbaceous/Soil”).
For more details on the definition of each class and the
procedure utilized for obtaining this variable, see [23].

2.4.2. Limiting habitat factor
Bare soil represents the water-land interface of
unstable water bodies that becomes exposed at the
peak of the LW season. DBS is a continuous variable,
whose value at a point of the scene is the Euclidian
distance from this point to the nearest bare soil class
on the LW season TM classified image.

ECAD is used as a proxy for the total water volume
and represents one of the key factors for determining
the water flow velocity. ECAD is a continuous variable,
whose value at a point of the scene is the area of the
smallest hydrological basin that contains this point.

ECAD requires an LDD grid, a contributing area attri-
bute, and a drainage network. In this work, the SRTM
DEM was pre-processed to remove all sinks (local mini-
mum) and produce a hydrologically consistent LDD.
Using a multi-criteria methodology to automatically
extract the drainage network [27], morphometric
(from DEM) and hydrological (from DEM and LDD)
attributes were determined. In the next step, the classi-
fication based on a decision tree was used, as defined
by [27]. The drainage network and contributing area
were combined to produce an ECAD (supplementary
Figure S1). ECAD was computed using the TerraHidro
4.2 [28] and Envi/IDL 5.0 (Exelis Visual Information
Solutions, Boulder, Colorado) software packages.

2.4.3. Disturbance factor
The flooding of large rivers causes natural perturbations
while affecting environmental systems. FD is a categorical
variable obtained by [23] for the MSDR. The followingTa
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eight classes were defined: 0, [1, 39], [40, 104], [105, 124],
[125, 174], [175, 294], [295, 364], and 365. Formore details
on using this variable, see [23].

2.5. Modeling procedure

Modeling was performed by applying the MaxEnt soft-
ware for species distribution version 3.4.1 (https://bio
diversityinformatics.amnh.org/open_source/maxent/,
accessed on 15 June 2018) [13,29]. A model prioritiz-
ing the 2007 nesting period was utilized because the

number of M. niger nesting females in the study area
was higher in 2007 than in 2008, while the egg mor-
tality rate due to flooding was lower in 2007 than in
2008 [14]. By using the M. niger nesting presence
records and a set of predictor variables, MaxEnt
could approximate the unknown probability distribu-
tion or suitability of the M. niger nest occurrence over
the scene [30].

Among all probability distributions over the scene
that satisfy a set of statistical properties or “con-
strains”, MaxEnt selects the one (so-called MaxEnt

Figure 3. Maps of the predictor variables used for modeling M. niger nest occurrence in the MSDR. Detailed views of the same
area are provided for: (a) CDOW, (b) DBS, (c) ECAD, (d) VT, and (e) FD.
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probability distribution) with the maximum entropy.
For species distribution modeling, MaxEnt uses “fea-
tures” that are mathematical transformations (linear,
quadratic, product, threshold, or hinge) of the predic-
tor variables. The constrains impose that the mean of
each feature should be close to its empirical average
at the nest presence localities [13]. Here, we used the
linear, quadratic, and hinge transformations because
the current training sample size was between 15 and
79 (for the information on the training sample size,
see below).

Supplementary Figure S2 illustrates the operation of
MaxEnt using two presence records and one hypothe-
tical predictor variable. It starts with a uniform distribu-
tion while omitting the predictor variable information.
During training, the program increases the probability
distribution value at presence. After convergence, the
sites or cells without presence, but with an equal envir-
onmental value (the light grey ones) are assigned
a probability distribution value identical to that of the
sites with the nest presence. The other cells (the dark
grey ones) are assigned a non-zero probability distribu-
tion value because of the regularization technique used
by MaxEnt. According to the maximum entropy princi-
ple, the MaxEnt probability distribution of supplemen-
tary Figure S2 results in only two values due to the
predictor variable range size of two. In the perspective
display, we see that the MaxEnt probability distribution
has two smooth plateaus in agreement with this
principle.

In addition to the MaxEnt probability or raw dis-
tribution, MaxEnt also returns the so-called cumulative
and logistic distributions. The former specifies the

omission rate, and the latter determines the probabil-
ity of the nest occurrence [29].

A special threshold was used to convert the contin-
uousMaxEnt prediction into binary ones, delimiting the
suitable versus unsuitable areas for nesting. For a given
threshold, the binary prediction sensitivity is the fraction
of all correctly predicted positive instances (or presence),
while the binary prediction specificity is the fraction of
all correctly predicted negative instances (or absence).
The sensitivity also corresponds to the true positive rate.
The quantity 1 – sensitivity, also called the false negative
rate, is the omission error, while the quantity 1 – speci-
ficity, also called the false positive rate, is the commis-
sion error. Once a threshold value is selected, the
fraction of the predicted scene sites is called the pre-
dicted area for that particular threshold [13,31].

To illustrate how the training omission and predicted
area vary with the threshold value, their corresponding
curves are plotted in the same two-dimensional space.
When the threshold values on the x-axis are used to
obtain binary predictions from the cumulative distribu-
tion, the predicted omission curve represents the first
diagonal, and we can predict a similar omission for the
training samples [32].

By utilizing a set of threshold values, a receiver
operating characteristic (ROC) curve may be plotted
and used to evaluate the MaxEnt prediction perfor-
mance. In this curve, the sensitivity is plotted on the
y-axis and 1 – specificity on the x-axis for all possible
thresholds. When the available data are presence-
only, a set of random background sites is used instead
of the absence localities to compute the specificity.
The AUC is considered a threshold-independent mea-
sure of the model performance [13].

The AUC ranges from 0 to 1; the closer is its magni-
tude to 1, the better is the model at predicting the
species localities, whereas the values close to 0.5 indi-
cate that the model is not informative and that its pre-
dictive ability is not better than that of the random
prediction [31,33]. Poor model performance is observed
at AUC values between 0.5 and 0.7; reasonable/moder-
ate model performance is observed values between 0.7
and 0.9; and excellentmodel performance is obtained at
AUC values greater than 0.9 [33].

We used the bootstrap resampling technique with
100 runs for model training and testing because our
sample size was smaller than this number. This tech-
nique allows testing the model while taking advan-
tage of all available data. These multiple runs result in
training omission and predicted area curve with error
bars. In the same way, they produce the AUC mean
and standard deviation across the models. The boot-
strap technique draws a random sample by uniform
selection while replacing elements from the original
sample until a random sample of the same size is
obtained [34]. After removing the duplicate records

Figure 4. CDOW plotted along the normal to the edges of the
(a) stable and (b) unstable water bodies.
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having the same geographic coordinates, only
63 M. niger nest presence localities were used during
the run. We set aside 25% (15) of the nest presence
localities as the test sites and the remaining localities
(48) as the training sites. To reduce the processing
time without deteriorating the modeling perfor-
mance, the default option for the maximum number
of background points (10,000) was set.

A statistical summary of the MaxEnt nesting prob-
ability of occurrence was prepared in accordance with
the following five arbitrarily defined probability classes:
very low (� 0:1), low (]0.1, 0.4]1), medium (]0.4, 0.6]),
high (]0.6, 0.9]) and very high (> 0:9). A predictive map
was generated by choosing a threshold value of 0.9 to
classify the nesting sites with high probabilities of
occurrence. A corresponding one-tailed binomial test
was performed to determine whetherMaxEnt predicted
the testing sites significantly better than the random
prediction. The 1-sided p-value corresponding to the
observed sensitivity was computed for the null hypoth-
esis stating that the testing sites were not predicted
better than by the random prediction with a probability
specified by the observed fractional predicted area for
that threshold [13]. The Jackknife test was performed to
determine the relative importance of the individual
predictor variables in terms of AUC values [11].

3. Results

The predicted logistic distribution of the M. niger nest
occurrence in the MSDR is shown in Figure 5. The
visual interpretation of the image suggests that the
model successfully detected M. niger nests in the
studied region. The areas with high probabilities of
the M. niger nest occurrence are mostly located near
the edges of the small water bodies, which are pre-
ferred by M. niger females for building their nests. The

mean omission curve of the training data matched
very well the predicted one (supplementary Figure
S3). In the ROC curve, the mean training AUC value
was 0.967, and the standard deviation was 0.006,
indicating highly satisfactory model performance.

By using the five arbitrarily defined probability classes,
84.0% of the study area had very low (� 0:1) potential
for M. niger nest occurrence; and 9.2% low (�0:1; 0:4�),
2.7%medium (�0:4; 0:6�), 2.9% high (�0:6; 0:9�), and 1.2%
very high (> 0:9) potentials. The predictive map for
the M. niger nest occurrence obtained at a threshold
value of 0.9 is displayed in Figure 6. This map indicates
that the stable edge of the slow-moving water bodies
possesses a high probability of the M. niger nest occur-
rence. In the threshold-dependent evaluation of the
model performance, the binomial test was highly signifi-
cant (P< 0:01) at a threshold value of 0.9, indicating that
our model predicted the testing sites significantly better
than the random prediction.

The most effective variable for predicting the testing
sites of M. niger nests was CDOW considering its high
AUC (supplementary Figure S4) and percentage con-
tribution (Table 3) provided by the MaxEnt program.
ECAD, FD, and VT were considered relevant for predict-
ing the testing sites, leading to moderate values of
AUC (supplementary Figure S4) and percentage con-
tributions (Table 3). The remaining DBS variable was
considered less useful for the predictive model.

4. Discussion

The MaxEnt program has become increasingly popular
among researchers, owing to its much better perfor-
mance as compared with that of other SDM approaches
[11]. It is freely available on the web, and its application
can be developed at little to no cost. In addition,MaxEnt
not only performs the model calibration, but also

Figure 5. Predictive map of the M. niger nest occurrence in the MSDR. (a) Predicted logistic distribution for M. niger nests.
(b) Detailed view of the water bodies where M. niger nests were built.
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provides easy-to-handle output data for model evalua-
tion or testing, such as the model performance (AUC),
predicted area, and relative importance of individual
variables (Jackknife test).

The application of M. niger nest modeling in the
conservation and monitoring areas requires high
model stability, accuracy, and reliability. The results of
model evaluation demonstrated that MaxEnt could be
efficiently used for predicting the M. niger nest occur-
rence in the MSDR and thus applied in the fields of
species conservation and sustainable use. The results
obtained with this model can simulate the probability
of nest occurrence throughout the years by substituting
the environmental variables for year 2007 with the cor-
responding variables for the studied year.

During monitoring the environmental conditions
across vast areas such as the Amazon basin, remotely
sensed data can provide an effective alternative for
costly fieldwork efforts. Hence, we utilized the Landsat-
5/TM imagery to assess the open water stability in the
MSDR, which is a good predictor of the M. niger nest
occurrence. TM images can efficiently describe the

interface between the open water and the surrounding
terrestrial features, such as soil and vegetation. While in
a previous study, a segment-based classification
method was used to characterize the water body stabi-
lity [15], in this work, a pixel-based method was utilized
to characterize the edge stability.

High spatial resolution images can be obtained
using very high-resolution sensors ( � 1 m), such as
IKONOS and Quickbird ones [35], but they are rela-
tively expensive. As was suggested in a previous study
[15], multitemporal radar imagery was used in this
work to obtain data on VT along with FD in the
MSDR [23]. By operating under the adverse weather
and illumination conditions as well as dense vegeta-
tion cover, radar sensors have been widely applied to
map the flooding areas beneath the forest canopy
and macrophyte cover [36,37] in the wetlands.
Although optical imagery can be used to map floating
macrophytes and flooded forests in the wetlands [38],
only radar sensors can resolve the cloud cover [37].

While the previous study relied mainly on the open
water stability to model M. niger nest occurrence [14],
the obtained Jackknife test results indicated the impor-
tance of other hydrological variables (ECAD and FD) and
vegetation for nest distribution modeling in addition to
the open water stability. CDOW was specially designed
to characterize the open water edge stability, represent-
ing the permanent water bodies whereM. niger females
place their nests and remain to protect them from pre-
dators. It is a non-linear function of DOWl and DOWh
and has no counterparts in the current MaxEnt model-
ing implementation. Hence, using DOWl and DOWh

Figure 6. Threshold-dependent evaluation of the model performance. (a) Probability of the M. niger nest occurrence in the
MSDR equal or greater than 0.9 (red areas) plotted over the predicted logistic distribution map (gray scale). (b) Detailed view of
the water bodies where M. niger nests are built.

Table 3. Environmental variables used during modeling; their
units and percentage contributions.

Code Variable Unit
Percentage
contribution

CDOW Conditional distance to open water m 61.5
VT Vegetation type – 4.2
DBS Distance to bare soil m 1.9
ECAD Expanded contributing area from

drainage
km2 19.2

FD Flood duration – 13.2
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instead of CDOW asMaxEnt inputs would produce a less
accurate output.

In addition to predation, flooding is considered
a major factor contributing to crocodilian egg mortality.
Caiman nests should be built at a safe distance from the
water bodies to protect the eggs from predation (which
occurs at larger distance from water bodies) and flood-
ing (which occurs at proximity to water bodies) [39,40].
Although caiman eggs appear to be highly resistant to
occasional flooding [[20], the M. niger female strategy is
to build their nests in the areas that remain hydrologi-
cally isolated for a long period of time during annual
water rising. Thus, these areas are subjected to shorter
flood events throughout the incubation period [15].

Vegetation is considered a potentially suitable
nesting habitat as M. niger females place their nests
near the permanent water bodies surrounded by for-
est [15,20,41]. Vegetation can serve as a source of
protection for eggs from excessive solar radiation
and the material utilized by caiman females for build-
ing their nests. Owing to the high importance of
flooding regimes and vegetation to the caiman nest-
ing habitats, we hypothesize that the combination of
deforestation and climate change will produce
a negative impact on the M. niger nest occurrence in
the Amazon basin.

M. niger females are known to avoid building their
nests close to the bare soil areas [15]. Although our
Jackknife test results did not indicate high importance
of DBS to model predictions, this variable can delineate
the areas with less preference for M. niger to place their
nests. The results predicted with our model showed that
the unstable water bodies surrounded by bare soil were
accurately estimated at a low probability of theM. niger
nest occurrence. Its limitation is that the visual interpre-
tation of bare soil should be performed during the driest
period of the year or before the herbaceous growth.
Some herbaceous types, such as grass (Paspalum and
Eichinochloa), can be also used to delimit unsuitable
environments for M. niger nests. In contrast, floating
meadows (“matupás”) were previously referred as
appropriate nesting areas for M. niger species [15].
However, it remains difficult to differentiate grass from
“matupás” using remotely sensed data.

Climatic variables previously used for the character-
ization of the M. niger nesting habitats included tem-
perature [20,21] and precipitation [41,42]. Whereas
temperature affects the duration of the caiman repro-
ductive season and building of nests, precipitation
affects the availability of food, caiman egg predation
and mortality rates, and caiman skewed sex ratios.
Global climate data are freely available on the web for
ecological modeling purposes (http://www.worldclim.
org/bioclim). Remotely sensed data can be also applied
to determine temperature (AVHRR and MODIS) [43] and

precipitation (TRMM, GPM andMODIS) values [44]. Here,
we did not include climatic variables because the avail-
able data were not suitable for the mapping scale in the
present study.

In this work, some false negative or omission errors
may be generated due to the classification bias related
to the open water class during the LW season.
A misinterpretation of the open water class can result
in a wrong assignment of the open water instability to
a given area and thus in a low probability of theM. niger
nest occurrence. In local studies, drones can be used to
provide high spatial and temporal resolutions at low
charge, although at the cost of reduced spatial cover-
age [45].

On the other hand, some false positive or commis-
sion errors may be due to the poor differentiation
between the lakes and channels in the study area.
We incorporated EACD into the model to represent
the total water volume and indirectly the water flow
velocity. M. niger nesting females appear to prefer
heavily vegetated and slow-moving water bodies
where they can remain for prolonged periods
[[20,46,47]. Using ECAD for distinguishing them from
the fast-moving water bodies was found to be a valid
alternative. The results obtained using our model
showed that most edges of the large rivers had
a low probability of the M. niger nest occurrence. For
future studies, we suggest including (in addition to
EACD) the connectivity between the lakes and the
main water flow to avoid some commission errors.

In this work, we decided to select a threshold value
of 0.9 to reduce the model sensitivity, predicted area,
and commission errors. The binomial test of omission
conducted at this threshold rejected the null hypoth-
esis. In the context of conservation initiatives, we
assumed that the false positive errors would prioritize
unnecessary areas with costly actions. Potential areas
for the M. niger nest occurrence may be monitored
throughout the years until the estimated probability
crosses the threshold.

Human-induced disturbance is known as a relevant
factor affecting environmental systems [48]. Caiman
nesting habitats outside the protected areas can be
disturbed by various human activities, such as com-
mercial hunting, mining extraction, agriculture (crops
and livestock production), hydropower production,
and tourism infrastructure. In such situations, crocodi-
lian nesting tends to be restricted to the areas with
relatively little disturbance [49]. In the extreme cir-
cumstances, the enormous pressure exerted on the
crocodilian nesting sites by human activities may limit
the recovery of the wild population [49]. Here, we
have not included anthropogenic disturbance into
the model because the study area represents
a sustainable development reserve (SDR), which is
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based on the sustainable use of natural resources. In
SDRs, it is feasible to combine sustainable harvesting
programs with conservation initiatives [5].

In the MSDR, whereas M. niger females stay in the
heavily vegetated and difficult to access nesting lakes
while moving into the forest at short distances during
the HW season [20,50], adult and sub-adult males are
often found in the relatively accessible parts of the
reserve [50]. The results of previous studies suggested
that harvesting sub-adult and adult males had little
impact on the reproductive potential of the popula-
tion due to the polygynous mating system [50–52]. In
future studies, predictions can be combined with the
information on the characteristics of reproductive
population (especially M. niger nesting females) in
other areas within the Amazon basin where the devel-
opment (or maintenance) of proper zones for species
conservation and sustainable use is accompanied by
creating socio-economic benefits to humans. This
information can be obtained from the local commu-
nities engaged in caiman hunting [5] or providing
basic training and support to local residents [15].

5. Conclusion

Conserving viable populations ofM. niger in the Amazon
basin on a wide scale remains a challenging task. It
requires the identification of priority areas, in which
research efforts should be performed. However, to be
successful,M. niger conservation initiatives must involve
community-based sustainable management programs
to provide socio-economic benefits to the local commu-
nities. The results of modeling performed in this work
revealed that MaxEnt could accurately predict M. niger
nest occurrence in the MSDR and efficiently demon-
strate the influence of environmental variables on
the M. niger nest distribution. The proposed MaxEnt
method can be also applied to other areas within the
Amazon basin where M. niger populations develop (or
maintain) proper zones for species conservation and
sustainable use. Predictions can be combined with the
information on the distribution of theM. niger reproduc-
tive population obtained from the local communities.

Note

1. The interval denoted �a; b� comprises all the rational
numbers that are > a and � b.
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