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A B S T R A C T

Alumina-supported Ni-promoted W oxides, carbides and nitrides were presulfided and employed for reducing
pollutants and increasing the quality of an extra-heavy crude oil during catalytic upgrading reactions. These
materials were prepared by temperature programmed reaction using reactive gases and varying the (Ni/
(Ni+W)) atomic ratio from 0.00 to 1.00. Catalysts were characterized by XRD, SEM, HRTEM and N2 physi-
sorption. In order to study the effect of the atomic ratio in the conversion of the model molecule thiophene, room
pressure HDS tests were used. The catalysts with best performances during thiophene HDS were tested in the
upgrading of a Venezuelan extra-heavy crude oil characterized by having high asphaltenes, S and N contents,
affecting competitiveness in the global market. These results were compared with a commercial NiMo catalyst.
API gravity of crude oil, CHNS elemental analysis, 13C- and 1H NMR of crude oil and asphaltenic fraction, in
addition to flocculation threshold of asphaltenes, were studied in order to verify variations in physicochemical
properties of oil due to catalytic upgrading and to seek evidence of pollutants reduction and improvement of
quality during this process. NiW catalysts with atomic ratio (Ni/(Ni+W)=0.50 showed remarkable perfor-
mance during thiophene HDS and heavy oil hydrotreatment, improving API gravity and reducing S content,
modifying chemical nature of crude oil and asphaltenes, as it was revealed by results of elemental analysis, H/C
ratio, flocculation threshold, Caro/Cali and Haro/Hali ratios. However, no significant variations were found in N
contents of crudes and asphaltenes revealing poor HDN performance, apparently due to Na traces from the W
precursor remaining in the final NiW catalysts.

1. Introduction

The decreasing availability of conventional crudes as a consequence
of the increase of global population has imposed the need to improve
the quality of heavy oils in order to satisfy world demand and also meet
the stringent environmental regulations. The hydrotreatment (HDT)
process has been considered as an alternative for meeting these goals
[1]. The conventional catalysts based on Ni- or Co-promoted Mo sul-
fides have shown severe deactivation during processing of the heavy
feedstocks, due to factors such as high metal, S and N contents, and
additionally by the deposition of coke as a result of high content and
low stability of the asphaltenes [2]. All these reasons have motivated
scientists and engineers to propose new active phases for the catalysts

used for this purpose.
Transition metal carbides and nitrides have been investigated due to

their interesting electronic structure in addition to good performance
and stability in HDT processes and also during aquathermolysis for
reducing viscosity of heavy crudes [3–8]. Catalysts based on Mo and W
carbides and nitrides have exhibited similar or higher hydro-
desulfurization (HDS) or hydrodenitrogenation (HDN) activities than
conventional catalysts [9–11]. Generally, these materials can be pre-
pared by means of temperature programmed reactions, in which car-
biding and nitriding gaseous agents transform the oxidic precursor into
the respective metallic carbide or nitride [4–6,10,12–15]. The metal
carbides and nitrides have also been supported on alumina, silica,
zeolites and other conventional supports, to overcome their low surface
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areas as bulk catalysts [16–19]. The bimetallic materials have also been
prepared and tested in HDS and HDN processes and have shown high
performance and selectivity, in some cases exceeding the conventional
catalysts [20–29].

The general term “heavy crude” is applied to those oils with less
than 20 °API [30] and this type of feedstock can be described as a
colloidal solution, which consists of three fractions: oils, resins and
asphaltenes, the latter two being present as aggregates. These resins and
asphaltenes aggregates are stabilized by weak physical interactions, the
latter being in the center of the micelle and the former in the periphery
as a dispersing agent [31]. This behavior is caused by the aromatic
nature of the asphaltenes, in addition to their higher molecular mass
and complexity. The asphaltenes are characterized by having large
polyaromatic fragments and due to their molecular planarity they can
be stacked on each other to form bigger units in the absence of resins
(during hydroconversion). As a consequence, asphaltenes present in
heavy feedstocks can lead to problems of stability due to coagulation
and precipitation during the transport and processing of the loads
[32,33].

The Orinoco Oil Belt (Faja Petrolifera del Orinoco as so-called in
spanish) located at south of Venezuelan territory, between the Guárico,
Anzoátegui and Monagas states, is the largest reservoir of heavy crude
oil in the world, with more than 297 billion barrels (Official Gazette of
the Bolivarian Republic of Venezuela, 2011). This includes an extension
of 55,314 km2 and a current exploitation area of 11,593 km2 divided
into four large areas, being these from west to east: Boyacá, Junín,
Ayacucho and Carabobo, and in turn segmented into 29 blocks of ap-
proximately 500 km2 each [34].

Carabobo crude oil, previously called Cerro Negro which has been
the subject of numerous studies, was used as feedstock in this work,
since this crude is characterized by being extra heavy with an API
gravity of 8.2°, product of biodegradation by bacteria present in oil
reservoirs, and also for having high sulfur and nitrogen contents. In
addition, this crude has up to 11wt% of asphaltenes, which do not
present precipitation problems that could affect production or trans-
port. These properties affect its economics and positioning in the global
market, due to the expensive refining processes usually used to obtain
the more valuable lighter products from heavy crude oil, and also
special maintenance and processing requirements of crudes with high
heteroatoms contents [1,35–40]. In this contribution, the main objec-
tive was to analyze the potential of sulfided catalysts derived from
oxides, carbides and nitrides to catalytically modify the chemical nature
of the asphaltenes and also to reduce pollutants during Carabobo extra-
heavy crude oil upgrading due to its economic and political relevance to
Venezuela and the world. Hence, we first compared catalytic perfor-
mances of pre-sulfided W oxides, carbides and nitrides promoted by Ni
in the thiophene HDS reaction and then, the best catalysts obtained
from either precursor were tested for upgrading of extra-heavy crude oil
in order to analyze their potential to reduce N and S content whereas
studying their influence on API gravity and aromaticity in heavy
feedstocks along with their effect on the asphaltenic fraction.

2. Materials and methods

2.1. Synthesis and characterization of catalysts

Alumina-supported NiW carbides and nitrides were prepared from
oxidic precursors obtained by successive incipient wetness impregna-
tion method from aqueous solutions of sodium tungstate dihydrate and
nickel nitrate hexahydrate. Tungsten impregnation was carried out first

and then nickel impregnation. The solutions were prepared using ap-
propriate amounts of the precursor salts to obtain Ni/(Ni+W) atomic
ratios varying from 0.00 to 1.00, and a total of metal oxide loading of
15 wt% on Al2O3, in accordance to our previous reports [41]. Thermal
calcination treatments at specific temperatures were applied with the
aim of obtaining the desired metal oxide phases. Subsequently, the
oxidic precursors were loaded into a quartz reactor and heated at 700 °C
for 2 h under a flow of NH3 (100%, 100mL/min) or either a mixture of
CH4/H2 (20 vol% of CH4 in H2, 100mL/min), which leads to the for-
mation of nitride and carbide phases, respectively, as reported else-
where for Al2O3-supported FeW carbides and nitrides [42]. The surface
of each sample was passivated to avoid mass oxidation employing a
flowing mixture of 1 vol% O2 in Ar at 50mL/min during 45min. The
prepared oxides, carbides and nitrides are denoted as NiW, NiWC, and
NiWN, respectively, while the presulfided materials are denoted as
NiWS, NiWCS and NiWNS.

X-ray diffraction (XRD), nitrogen physisorption, scanning electron
microscopy coupled to an energy dispersive X-ray analyzer (SEM-EDX)
and high resolution transmission electron microscopy (HRTEM), were
used to establish the relationship between physical, chemical and
structural properties with the catalytic performance.

Crystalline structures of all catalysts were determined using a
SIEMENS D5005 diffractometer with Cu-Kα radiation (λ=1.545 A), Ni
filter and step rate of 0.025°/s. XRD patterns were obtained between 30
and 80°/2 θ and phases identification was done using the ICDD-JCPDS
data base [43].

Textural analysis was carried out with a MICROMERITICS-ASAP
2010 automatic analyzer at liquid N2 temperature. Prior to the ex-
periments, samples were degassed overnight under vacuum at 60 °C.
Specific surface areas were calculated through the BET method, while
total pore volume was estimated from the total adsorption of nitrogen
at 0.98 relative pressure.

Microstructural images and elemental compositions were obtained
for non-presulfided and presulfided carbide and nitride samples with an
atomic ratio value of 0.50 employing a field- emission JEOL JSM-6390
microscope coupled to an OXFORD model 7582 microanalyzer. The
choosing of these catalysts was based in their relevant performance
during thiophene HDS tests (see below). Sample analysis was carried
out using both powder and cross-sectioned pellets, which were fixed to
graphite stubs and covered with gold sputtering to enhance their con-
ductivity.

Selected bimetallic carbides and nitrides samples were also ana-
lyzed by HRTEM using a JEOL model JEM 2010 instrument operated at
200 keV and LaB6 filament. The wet suspension method was used to
prepare samples for observations. Catalysts were ground and afterwards
dispersed using ultrasound in a mixture of ethanol/water (60 vol%). A
holey carbon coated copper grid was used to place a drop of the sus-
pension and let it dry before introducing the sample to the microscope.

2.2. Catalytic tests and reaction products characterization

2.2.1. Thiophene hydrodesulfurization
Catalytic tests on thiophene HDS of the catalysts activated under a

CS2/H2 mixture (1 vol% CS2) at 300 °C for 2 h were carried out in a
fixed bed reactor at 400 °C and atmospheric pressure. The reaction
products were monitored using a VARIAN FID-GC model 3700, with a
PORAPAK-Q80/100 packed column that operates at 170 °C using N2 as
a carrier gas.
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2.2.2. Catalytic extra-heavy oil upgrading
Catalytic upgrading of extra-heavy crude oil was carried out in a

batch reactor, with a stirring system, temperature control and H2 supply
line. In this reaction, presulfided oxide, carbide and nitride were used
as catalysts with atomic ratio of Ni/(Ni+W)=0.50 based on their
performance in thiophene HDS. Presulfiding was done ex situ with a
CS2/H2 mixture (1 vol% CS2). After pretreatment, 500mg of the pre-
treated catalyst and 50 g of crude were placed in the reactor vessel of
250mL capacity and pressurized with H2. The catalytic upgrading re-
action was carried out at 1000 psi of pressure and 320 °C for 4 h and
500 rpm of stirring. Results were compared with a commercial NiMo
catalyst, denoted here as CCS-2.

2.2.3. Characterization of upgraded crude oil and asphaltenes
API gravity, 13C and 1H NMR spectra of the crude oil and their as-

phaltenic fractions were studied in order to verify variations in che-
mical nature. Sulfur and nitrogen contents were also obtained by CHNS
elemental analysis to seek for evidence of pollutant reduction during
this process. Finally, flocculation threshold (UF) was determined for
asphaltenes to analyze variations in asphaltenes stability.

The asphaltenic fractions were precipitated from a sample of the
original crude and from the products obtained after the hydrotreating
reactions by the addition of 40 volumes of n-heptane. In each case, the
mixture was mechanically stirred for 6 h and then left to stand for 24 h.
Subsequently, the precipitate, consisting of asphaltenes and resins, was
filtered. This precipitate was washed with n-heptane in a soxhlet ex-
tractor. Finally, the solid was taken to the vacuum drying system, he-
ated by means of a bath with glycerin at a temperature of approxi-
mately 60 °C and finally the asphaltenes were stored in amber glass
vials under N2 atmosphere, calculating the percentage of solid from of
the initial crude volume.

API gravity and specific gravity were determined using a RUDOLPH
density meter model DDM 2911. Specific gravity values were obtained
at 20 °C and used to determine the specific gravity with respect to water
at 4 °C (0.999840g/mL), while the API gravity were determined at
15.56 °C (60 °F) directly with the equipment.

The 13C- and 1H NMR spectra of crude oil and asphaltenes samples
were taken with a BRUKER Advance 300MHz Nuclear Magnetic
Resonance Spectrophotometer. Chloroform was used as solvent.

The chemical composition was obtained with a FISONS elemental
analyzer model EA 1108, which determines the mass percentage of C,
H, N and, S in the sample. The analysis was done using an amount of
sample of 10mg, an absolute precision<0.3%, an absolute reprodu-
cibility< 0.2% and a time of 15min. This analysis allowed the study of
the changes associated with respect to S and N contents, as well as in
the H/C ratio, which is an indicative of aromaticity of crude oil. H/C
ratio was calculated as follows:

⎜ ⎟= ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

H/ C wt% H
wt% C

·
C
H

atomic weight

atomic weight

The determination of the UF of asphaltenes fraction was made by
the asphaltenes Oliensis Spot test, preparing solutions in toluene of
approximately 3 g/L, taking aliquots of 2.0 mL, which were titrated
with n-heptane under constant agitation, applying in each addition of
titrant the proof of the stain on the filter paper, until obtaining a brown
ring. This test provides an indication of the stability of asphaltenes and
the degree to which asphaltenes interact with each other [44]. Finally,
from the UF, which is the amount of n-heptane (in volume) necessary to

observe the stain on the filter paper, it was determined the percentage
of n-heptane needed for promoting the precipitation of asphaltenes
from the toluene solution, according to the following equation:

=
+

n-C (%) UF
UF  V

x 100 %7
aliquot

3. Results and discussion

Fig. 1 shows XRD results for Al2O3-supported NiW oxidic, carbides
and nitrides precursors. All samples presented three peaks at 2θ=39.4,
46.1 and 67.1° corresponding to (2 2 2), (4 0 0) and (4 4 0) crystal-
lographic planes of γ-Al2O3 (PDF card number 10-0425) [43]. On the
other hand, the diffractograms of the bimetallic NiW oxides catalysts
(Fig. 1A) did not reveal any bimetallic oxides formation, e.g. NiWO4

(PDF card number 72-0480) [43], likely due to the high dispersion of
the metals in the γ-Al2O3 matrix or it could be due to the small size of
crystals making them undetectable for this technique, as reported ear-
lier for analogous catalysts [23,24,41,45,46]. On contrary, the diffrac-
tion signals for the bimetallic NiW carbides catalysts (Fig. 1B) were
attributed to a mixed phases Ni2W4C, which crystallizes as face-cen-
tered cubic (PDF card number 20-0796) [43] and a segregated mono-
metallic phase, W3C, which crystallizes in a cubic system (PDF card
number 42-0853) [43,47,48]. Note that the main XRD signal of the W3C
phase at 39° almost disappears upon increasing Ni content in the
samples (Fig. 1B), while other peaks remain. This could be due to re-
moval of the (2 0 0) plane of this compound and preferential growth
along the (2 1 1) plane (XRD peak at 44°). Similarly, signals for the
bimetallic NiW nitrides catalysts also showed the segregation of a
monometallic phase of tungsten, W4.6N4, which is different to that
shown by the monometallic catalyst ((Ni/(Ni+W))= 0.00). This
phase crystallizes in the hexagonal system (PDF card number 77-2001)
[43] and showed reflections at 2θ=36.3, 46.3 and 64.3° associated to
(1 0 1), (1 0 5) and (1 1 0) crystallographic planes, respectively. It is
worth to mention that for bimetallic catalysts with an atomic ratio of
(Ni/(Ni+W))= 0.50 an intense signal of Ni4N was observed. This
segregation of monometallic species is in agreement with our previous
results for Mo catalysts, as differences in formation enthalpy of the
monometallic carbides or nitrides can give rise to this type of phe-
nomena [41]. On the other hand, a bimetallic mixed phase, NiWN2, was
also identified, coincident with that reported by Rico et al. [49] and
Subramanya Herle et al. [13] which is an hexagonal phase, and is
isostructural to that found for the equivalent compound of Fe.

Both SEM-EDX- and HRTEM images of the carbided and nitrided
NiW catalysts with an atomic ratio of (Ni/(Ni+W))= 0.50 were car-
ried out. This atomic ratio was selected due to its outstanding thiophene
HDS performance as will be seen below. Figs. 2 and 3 show the images
obtained for carbide and nitride NiW catalysts in powder and pellet
form and before/after presulfurization process, where the expected
elements were observed: Ni, W, Al, and O, in addition to traces of Na
from the tungsten precursor. For carbides, specifically in the form of
powder and non-sulfided pellets, it was possible to distinguish some
particles whose composition suggests the presence of a mixed carbide,
due to the simultaneous detection of W and Ni. In addition, the pre-
sulfided pellet showed signals of S (see Fig. 2C), suggesting the possible
formation of a carbo-sulfided species or a metal sulfide in the top of the
catalyst matrix. On the other hand, for nitrides, particles whose com-
position suggested the formation of a bimetallic nitride were found. In
both powder and pellet non-sulfided catalysts (Fig. 3A and B,
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respectively), in addition to the elements mentioned for the carbide, the
presence of N was also observed. This characterization technique con-
firms the XRD results. Analogous to the carbides, the nitride also ex-
hibited the presence of S in the presulfided pellet (see Fig. 3C) and
traces of Fe were also found, which could have been a product of
contamination in the sample at the time of the pellet fracture with a
steel spatula. On the other hand, from the elemental analysis by EDX it
was possible to obtain the values of the experimental atomic ratios for
the powdered catalyst and the sulfided pellet. These results are sum-
marized in Table 1 and it can be seen that the atomic ratio found

experimentally agrees with the nominal value ((Ni/(Ni+W))= 0.50)
for both samples. A small decrease in the content of both C and N in
carbided and nitrided catalysts was also observed, respectively, this
accompanied by the appearance of S in the sample product of pre-
sulfiding. However, as it will be seen later from HRTEM results, the
crystalline structure of both carbide and nitride prevails even after this
treatment, which indicates that the sulfurization occurs only at the
surfaces. Samples from the HDT experiments could not be recovered
and thus were not assayed. As reported before [42], it is likely that the
surfaces of the carbides/nitrides became further sulfided and thus the

Fig. 1. XRD patterns of the Al2O3-supported NiW catalysts with different atomic ratios (Ni/(Ni+W)): (A) Oxides; (B) Nitrides; (C) Carbides.
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actual active phase could be CoMoS like structures supported on the
carbide/nitride bulk phases. However, the proportion of sulfide surface
phase to the bulk phase should be negligible, as revealed by XRD [50].

Fig. 4 shows HRTEM images of a presulfided pellet corresponding to
the NiW carbide catalyst with an atomic ratio of 0.50. Particles with
interplanar spacing of 2.28 Å, which is attributed to the plane (4 2 2) of
the cubic Ni2W4C (see Fig. 4B and C), agree with the mixed phase found
by XRD (see Fig. 1). While in Fig. 4D two particles were found that
exhibited the plane (5 1 1) of the same carbided phase. The results
obtained by XRD and HRTEM together with SEM-EDX evidenced the

presence of a mixed carbide of Ni and W. In Fig. 4E, the plane (0 0 2) of
the hexagonal WS2 also becomes evident with an interplanar distance
value of 6.20 Å. This finding confirmed the presence of sulfur species in
the catalyst matrix. On the other hand, HRTEM images of the nitride
catalyst are shown in Fig. 5. In agreement with the XRD results, two
different tungsten nitride phases were detected. Thus, Fig. 5B presents
particles with interplanar distance of 2.37 Å, associated to the plane
(1 0 2) of the phase W4.6N4, while Fig. 5F shows another particle with
interplanar distance of 3.79 Å, due to the plane (0 0 4) of the same
phase. A second tungsten nitride phase of W2.2N2 stoichiometry was

Fig. 2. SEM-EDX images of catalysts based on Al2O3-supported NiW carbide (Ni/(Ni+W)=0.50): (A) Powder of catalysts without presulfurization and, cross-
sectional image of a pellet before (B) and after presulfurization (C).
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detected by means of the interplanar distance 2.72–2.74 Å corre-
sponding to the (0 0 4) plane (Fig. 5C and 5E). The mixed nitride NiWN2

was not evidenced by this technique, and only one of the two nickel
nitrides reported by XRD was found in the HRTEM images: Ni4N by the
2.16–2.18 Å interplanar spacing assigned to the (1 1 1) plane (Fig. 5G
and 5H). As in the case of the carbides, it was observed the presence of

WS2 slabs (Fig. 5D), identified by the presence of the interplanar dis-
tance of 6.20 Å from the (0 0 2) plane. In general, the HRTEM results
confirmed the findings by XRD (see Fig. 1).

The specific surface area (Sg) and pore volume (Vp) did not show
significant variations with the increase in the Ni content, neither for the
nitrides nor for the carbides (Table 2). However, it was observed a

Fig. 3. SEM-EDX images of catalysts based on Al2O3-supported NiW nitride (Ni/(Ni+W)=0.50): (A) Powder of catalysts without presulfurization and, cross-
sectional image of a pellet before (B) and after presulfurization (C).
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diminution of surface area with respect to the fresh support, probably
due to a dilution effect. Although, the formation of metal carbides and
nitrides supported in the form of crystals on a support such as alumina
could lead to clogging of the pores and therefore to the loss of area [23],
no evidence of this was found in our catalysts since the pore volume
remained almost constant as the atomic ratio varied.

The effect of the metal atomic ratio on the thiophene HDS activity

for each of the presulfided systems (oxides, carbides and nitrides) was
evaluated and is presented in Fig. 6. Both the initial and the steady state
activities are reported. The bimetallic presulfided oxide exceeded the
performance of the monometallic catalysts, with the maximum of sy-
nergy being at an atomic ratio value of 0.33, similar to that found for
the analogous catalysts of the series of Mo [42]. However, this result
differs from that found by Kishan et al. [51] for catalysts based on NiW
sulfides, who reported the increase of the catalytic activity with the Ni
content, finding the maximum at a Ni:Mo=0.66. This may be asso-
ciated with the fact that the authors used chelating agents during the
synthesis, thus modifying the active phase and therefore its catalytic
performance. On the other hand, the carbides and nitrides showed si-
milar synergetic effects, but the maximum occurs in both cases at an
atomic ratio of 0.50, the effect being more pronounced in the case of the
nitrided catalysts. The behavior in the carbided and nitrided catalytic
systems during thiophene HDS can be attributed to the formation of the
mixed species Ni2W4C and NiWN2, which were found by XRD in the
carbides and nitrides with the same atomic ratio, in addition, to the
presence of WS2 slabs. The possibility of the formation of carbo- or
nitro-sulfided species is not discarded, because in HRTEM analysis the
presence of both species in the same area of the sample was detected
(see Figs. 4 and 5). The catalytic behavior of sulfides may be associated
with the presence of a mixed NiWS phase in accordance with that re-
ported by Lacroix et al. [52].

Fig. 4. HRTEM images of a pelletized catalyst based on Al2O3-supported presulfided NiW carbide (Ni/(Ni+W)=0.50) at different magnifications (A–C); and details
of WS2 slabs in a particle (D and E).

Table 1
Chemical composition of NiW/Al2O3 catalysts with nominal Ni/(Ni+W)
atomic ratio of 0.50 determined by SEM-EDX.

Catalyst Experimental atomic
ratio

(Ni/(Ni+W) ± SDc)

S (wt %) C (wt% ± SDc) N (wt% ± SDc)

NiWCa (0.490 ± 0.010) (9.2 ± 0.2)
NiWCSb (0.580 ± 0.020) 1.63d (7.0 ± 0.7)
NiWNa (0.494 ± 0. 009) (4.1 ± 0.4)
NiWNSb (0.580 ± 0. 020) 1.30d (3.3 ± 0.4)

a Passivated.
b Presulfided.
c SD=Standard deviation.
d Single measurement.
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Regarding pollutant reduction and upgrading of heavy oil, results
for the H/C ratio are illustrated along with the content of S and N in the
Carabobo crude oil and the asphaltene fraction, before and after the
HDT reaction using oxide, carbide and nitride catalysts with atomic
ratio of 0.50 (Fig. 7). First, it can be noticed that in all cases the ele-
mental composition of S, N and H/C ratio of the crude did not vary
significantly after the HDT, which could be due to the enrichment of
some fractions at the expense of others. However, it can be observed
that the reaction did cause important changes in the asphaltenes H/C
ratio (Fig. 7B), evidencing a decrease of those derived from commercial
catalyst CCS-2 and NiWS, and an increase for NiWCS, indicating that
the asphaltenes derived from this reaction is more aliphatic than its
analogues, which shows the ability of the carbide catalyst to perform
hydrogenation or cracking of aromatic compounds. On the other hand,

NiWNS performance led to asphaltenes whose H/C ratio and S and N
contents did not vary significantly from those obtained for the crude
without HDT, in agreement with 13C- and 1H NMR and UF results, as
shown below. However, a small increase in API gravity was detected.

Sulfur content decreased in asphaltenes derived from reactions
using NiWCS and NiWS catalysts, leading us to conclude that these
catalysts could perform reactions for the transformation of the heaviest
fraction of this complex matrix, as previously reported [53]. In contrast,
the conventional catalyst did not avoid S accumulation in this heavy
fraction and transformed it into a more aromatic material. Furthermore,
13C- and 1H NMR confirmed results from H/C for the NiWCS catalyst
(see Figs. 8 and 9), by showing a high content of aliphatic carbons and
protons in hydrotreated crude oil (Figs. 8A and 9A). This is in contrast
to the corresponding asphaltene results (Figs. 8B and 9B) which re-
vealed a predominant aromatic nature suggesting that this catalyst
could perform asphaltenes transformation through reactions of cracking
or dealkylation of aromatic or poly-condensated rings, usually asso-
ciated to resin or asphaltene molecules, as it was earlier reported by
several researchers, releasing saturated compounds and enriching other
fractions of the crude with low molecular weight saturated hydro-
carbons [41]. This result is of particular importance to obtain high
value-added products from heavier fractions of crude.

Specific gravities and API gravity values of the crude oil before and
after HDT are shown in Fig. 10. Results obtained for the NiWS and
NiWCS catalysts are remarkable and exceeded the performance of the
commercial catalyst CCS-2 in the improvement of these properties. An
increase of almost 25% in the API gravity for this heavy crude is re-
levant since it could result in the lowering of handling and transpor-
tation costs, due to the reduction in the consumption of solvents

Fig. 5. HRTEM images of a pelletized catalyst based on Al2O3-supported presulfided NiW nitride (Ni/(Ni+W)=0.50). A, B, C, E and F show particles of different
phases of W nitride, (D) show WS2 slabs in a particle, and (G and H) correspond to Ni nitride particles.

Table 2
Surface area and pore volume of Al2O3-supported NiW carbides and nitrides.

Atomic ratio (Ni/(Ni+W)) Sg (m2/g) Vp (m2/g)

Carbides Nitrides Carbides Nitrides

0.00 150 150 0.44 0.46
0.10 131 129 0.45 0.44
0.33 141 151 0.48 0.52
0.50 145 156 0.50 0.53
1.00 117 128 0.39 0.41

γ-Al2O3 246 0.43
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employed for transportation. NiWNS only improved the API gravity by
4% and this could be related with the low amount of bimetallic nitride
phases, since it was not found in HRTEM results.

Nitrogen removal was negligible during catalytic upgrading of the
Carabobo crude oil with these materials and this could be due to the
presence of Na, derived from the W precursor salt. It is well known that
alkaline metal ions do have a negative effect on the catalytic properties
of supported conventional HDS catalysts. In particular, an earlier report
[54] mentioned that Na ions clearly serves as a poison for the HDN
activity of hydrotreating catalysts, since this metal affects the acid
function which interacts preferentially with basic nitrogen compounds,
thus reducing the HDN activity. We are not aware of any reports on the
effect of alkaline metals in the case of carbides or nitrides of transition
metals, but as the effect is on the acid-base properties of the support,
probably the same applies in the present case.

The UF revealed that all catalysts affected the stability of asphal-
tenes (Fig. 11), following the order of stability as follows: NiWS <

NiWCS < CCS-2 < NiWNS. Since the more aromatic the less stable
the asphaltene will be to the addition of linear hydrocarbons of low
molecular weight, asphaltene obtained using NiWS catalyst showed the
smallest value of UF. Meanwhile, the NiWNS and NiWCS catalysts could
reduce problems associated to instability of asphaltenes derived from
similar feedstocks during processing or handling and also transform
asphaltenes into lighter and higher value fractions, which would posi-
tively affect its positioning in the market, since, as it was mentioned
before, S contents, API gravity and yields to lighter fractions have direct
impact on crude oil prices.

4. Conclusions

The performances of alumina-supported NiW catalysts based on
presulfided oxides, carbides and nitrides catalysts were analyzed during
catalytic upgrading of a Venezuelan extra-heavy crude oil. XRD, SEM-
EDX and HRTEM results revealed the formation of Ni2W4C (cubic) and
NiWN2 (hexagonal), segregation of monometallic phases and the pre-
sence of WS2 slabs. The presulfided carbided and nitrided catalysts with
an atomic ratio Ni/(Ni+W) of 0.50 had the highest catalytic activity in
thiophene HDS. Moreover, the carbided catalyst showed potential to
perform pollutant reduction resulting in a decrease of S content in an

Fig. 6. Effect of the atomic ratio on the catalytic performance in HDS of thio-
phene in both initial (A) and steady state (B) activities of presulfided oxides,
carbides and nitrides Al2O3-supported NiW catalysts.

Fig. 7. Effect of HDT on elemental composition of (A) Carabobo crude oil and
(B) asphaltenes with NiW-based catalysts vs. commercial catalysts.
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extra-heavy feedstock, especially in the heaviest fraction (asphaltenes).
However, HDN results were less promising, likely due to the presence of
sodium in W precursor. The catalysts had influence on the chemical
nature of crude oil and the asphaltenes, as shown by aromaticity in-
dicators such as H/C ratio, and 13C- and 1H NMR results. Some prop-
erties of crude oil of particular strategic importance such as API gravity
and the flocculation threshold of asphaltenes were also improved.
These results expose the potential of these materials to improve the
quality of extra-heavy crude oils and also to enrich lighter fractions by
cracking asphaltenes, reducing S content and increasing API gravity,
which could expand its opportunities in the global crude oil market.
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