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Resumen 

 

La cromatografía de gases bidimensional completa (GC × GC) ofrece información química 

detallada sobre analitos volátiles y semivolátiles de muestras complejas. Sin embargo, la 

alta complejidad de la estructura de datos, fomenta el desarrollo de nuevas herramientas 

para un manejo y análisis de datos más eficiente. Aunque ya se han presentado algunas 

herramientas para superar este desafío, es necesario mejorar. En este manuscrito, 

presentamos una librería que contiene el flujo de trabajo para el procesamiento de datos 

GC×GC básico, que se puede utilizar tanto para el procesamiento previo de señales, como 

para el análisis de datos multivariados. Los algoritmos de preprocesamiento realizan el 

suavizado de la señal, la corrección de la línea de base y la alineación de los picos, mientras 

que el análisis multivariado se realiza a través del análisis de componentes principales 

(MPCA). El software es capaz de preparar los datos cromatográficos para otras aplicaciones 

con otras herramientas quimiométricas, por ejemplo: análisis de conglomerados, regresión, 

análisis discriminante, etc. El rendimiento de este nuevo software se probó en un conjunto 

de datos experimental interno y en otros dos conjuntos de datos publicados y disponibles 

en literatura. 

 
Palabras clave: Metabolómica, análisis exploratorio, cromatografía bidimensional 
completa, caja de herramientas, procesamiento de señal. 
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Abstract 

 

Comprehensive two-dimensional gas chromatography (GC×GC) offers detailed chemical 

information about volatile and semivolatile analytes from complex samples. However, the 

high complexity of the data structure encourages the development of new tools for a more 

efficient data handling and analysis. Although some tools have already been presented to 

overcome this challenge, there is still need for improvement. In this manuscript, we present 

a toolbox containing a pipeline for end-to-end basic GC×GC data processing which can be 

used for both, signal pre-processing and multivariate data analysis. The pre-processing 

algorithms perform signal smoothing, baseline correction, and peak alignment, while the 

multivariate analysis is done through Multiway Principal Component Analysis (MPCA). The 

software is capable to prepare the chromatographic data for further applications with other 

chemometric tools, e.g.: cluster analysis, regression, discriminant analysis, etc. The 

performance of this new software was tested on in-house experimental dataset and on two 

other published datasets. 

 

Kew words: metabolomics, exploratory analysis, comprehensive two-dimensional gas 

chromatography, toolbox, signal pr 
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ABSTRACT: Comprehensive two-dimensional gas chromatography (GC×GC) offers detailed chemical information about 

volatile and semivolatile analytes from complex samples. However, the high complexity of the data structure encourages the 

development of new tools for a more efficient data handling and analysis. Although some tools have already been presented 

to overcome this challenge, there is still need for improvement. In this manuscript, we present a toolbox containing a pipeline 

for end-to-end basic GC×GC data processing which can be used for both, signal pre-processing and multivariate data analysis. 

The pre-processing algorithms perform signal smoothing, baseline correction, and peak alignment, while the multivariate 

analysis is done through Multiway Principal Component Analysis (MPCA). The software is capable of preparing the 

chromatographic data for further applications with other chemometric tools, e.g.: cluster analysis, regression, discriminant 

analysis, etc. The performance of this new software was tested on an in-house experimental dataset and on two other published 

datasets. 

 

KEYWORDS: metabolomics, exploratory analysis, comprehensive two-dimensional gas chromatography, toolbox, signal 

processing 
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1. Introduction 

Gas chromatography (GC), and particularly comprehensive two-dimensional gas chromatography, have come practically a 

mandatory technique for the analysis of the volatile and semivolatile compounds in matrices of high chemical complexity 

samples [1]. In GC×GC, the enhanced separation power is achieved by two capillary columns with preferably orthogonal 

separation capabilities, connected by the modulator. The modulator periodically concentrates a (coeluting) fraction of the eluate 

coming from the first column (first dimension, 1D) and next, reinjects this fraction as a narrower band into the second column 

(second dimension, 2D). Therefore, compounds that would coelute in conventional GC can be potentially separated in  GC×GC 

system [2,3]. Because of the benefits provided by GC×GC, it has been widely applied in forensic [4], environmental [5], fuel 

[6], and metabolomics analysis [7]. 

Apart from the enhanced peak capacity of the GC×GC  and the better elucidation of the chemical fingerprint from complex 

samples, isomers and homologous series are usually identified more easily in the two-dimensional chromatograms, e.g.: the 

roof-lite effect of hydrocarbons, and therefore the non-ambiguous identifications of unknowns is also improved [8,9]. However, 

GC×GC-MS can be coupled to multichannel detectors, such as mass spectrometers, which results in a large amount of data, 

e.g.: up to 2 GB raw files per sample in GC×GC-MS, and therefore efficient data handing tools are necessary [10–12].  

Chemometrics use mathematical and statistical methods to analyze multivariate chemical data [13,14]. However, the efficient 

application of chemometrics in chromatography usually requires a previous pre-processing of the signals to reduce or mitigate 

undesirable artifacts, such as instrumental noise (e.g.: detectors' signal fluctuation and retention time shifts across multiple runs) 

and chemical noise (e.g.: column bleeding and peak saturation) [15]. The common pre-processing algorithms used in 

GC/GC×GC to correct for column bleeding and signal fluctuation are baseline correction and signal smoothing [15]. For 

GC×GC, the algorithms for correction of retention time shifts across samples should handle shifts in both 1D and 2D, such as 

the two-dimension correlation optimized warping (2D-COW) [16], parametric time warping (DTW) [17], distance and spectrum 

correlation optimization (DISCO and DISCO2) [18,19], graph-based multiple alignment (BIPACE 2D) [20]. 

Data handling in GC×GC-MS, especially the pre-processing step, is usually performed by commercial software, and a minor 

percentage is done using open source tools [21,22]. For instance, over 85% of data analysis has been performed with the vendor 

or commercial software in metabolomics research, as manually calculated from the suplemental material from [23]. Although 

the open-source toolbox Guineu [24] and R2DGC [24] have been developed for data handling and pre-processing of GC×GC 

using single-and/or multichannel detection, there is still a need for extended workflow pipeline that also performs data analysis 

using chemometrics. In this stream, the RMet toolbox has been proposed as an end-to-end pipeline to process GC/GC×GC-MS 

data [25]. One of the main advantages of RMet is that it presents a Graphical User Interface, which makes the analysis easier 



4 
 

for inexperienced users. In contrast with command line toolboxes, GUI based ones do not allow an easy way to run multiple 

sets of parameter combinations until convergence is reached, as usually needed in order to tune parameters. Moreover, in the 

RMet toolbox, discriminant analysis is performed only by building a partial least squares-discriminant analysis model. 

Supervised models, as PLS-DA, have to be built carefully, since one of the main disadvantages is model overfitting [26].  

Data analysis in GC/GC×GC has been commonly performed by pixel-based level, or by peak picking approaches [11,27,28]. 

The pixel-based approach performs the data analysis directly in the two-dimensional chromatogram which can be considered as 

a pixel image, obtained at the retention times in 1D and 2D, respectively  [29]. Conversely, the peak picking approach picks, 

integrates, and then organizes the individual peaks of the chromatograms in a peak table where the variances of the areas can 

be analyzed between multiple samples. There are advantages and drawbacks for both, pixel-based and peak picking approaches, 

and the decision about which approach to choose depends on the goals of the study. For instance, data analysis based on peak 

picking handles significantly fewer variables than in the pixel-based approach, which is an advantage for data analysis using 

the conventional univariate statistic. However, the quality of the data depends on the efficient selection and integration of the 

peaks, which can be problematic for highly coeluting peaks. Furthermore, the two-dimensional structure of the chromatograms 

is not seen straightforwardly as with a pixel-based approach is. Therefore, interpreting the chromatographic differences between 

samples can be less intuitive than the pixel-based approach.  

In this work, we present the toolbox RGC×GC which was developed for data processing in GC×GC-MS, based on the open-

source R environment. This toolbox contains an end-to-end pipeline for the most common processing techniques that are 

required for GC×GC, such as baseline correction, signal smoothing, and two-dimensional peak alignment. Moreover, the pixel-

based analysis can be performed using the multiway principal component analysis (MPCA). On the other hand, the data can be 

exported in a more compatible format to be used with external toolboxes for chemometrics. In order to validate the RGCxGC 

toolbox, the performance of this open-source is demonstrated with three datasets in total. Two datasets were retrieved from 

literature, and one was in-house created. 

2. Materials and methods 

2.1. Methods 

2.1.1. Biological material and its maintenance  

The Myrothcium sp strains were obtained from "Collection of Bahia Microorganisms " (CCMB) with 0069/06 identifier. 

This strain was isolated by researches involved in the SisBiota project “Saprobic fungi bioprospection in the northeast of 

PPCIO/semiarid region for the control of infectious diseases in plants: resistance indduction” leaded by Sérgio Florentino 

Pscholati PhD. The strain was kept in Petri dishes containing 20 mL of carrot-maize-agar (CMA) culture media at (25,0 ± 
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1,0) ºC in a growth chamber (Eletrolab, model EL202) with 12 h of photo-period. 

 

2.1.2. Fungal Inoculation and Headspace Extraction 

PDA culture media (25 mL) was placed in 50 mL polypropylene centrifuge tubes using angulation (elevation of 1,5 cm). 

The tube cap was modified with a 15 mm diameter hole and PTFE septa held by the aluminum ring. 

Inoculation was made from Petri dishes with the fully grown fungal cells, and sterile distilled water was used to wash the 

surface of the plate. The plate was scraped with a sterile glass handle to obtain the spore suspension. The suspension was 

liquated and the concentration of 2.4 × 105 spores / mL was determined using a Neubauer chamber and an optical 

microscope. Then, 50 μL of the suspension was inoculated in a flow chamber into the tubes containing the culture medium. 

Tubes were kept at (25,0 ± 1,0) ºC in a growth chamber (Eletrolab, model EL202) with 12 h of photoperiod. 

A solid-phase microextraction (SPME) was performed from the third  day of culture to the seventh day of culure. 

The SPME assay containing a DVB / CAR / PDMS (Divinylbenzene / Carboxene / Polymethylsiloxane 50/30 mm, Supelco) 

fiber was placed into the tube headspace for 35 min at (25,0 ± 1,0) ºC.  

2.1.3. GCxGC-QMS 

A set of columns consisting of HP-5MS 30 m × 0,25 mm × 0,25 µm (Supelco) connected to a Supelcowax 1 m × 0.10 mm 

× 0.10 µm (Supelco) with a 1 m × 0.25 mm deactivated silica capillary being used as the loop. The modulation period was 

set to 5.0 s. For GC×GC-QMS  experiments were used a temperature program with the following parameters, 60 ºC - 165 ºC 

@3 ºC/min; 165 ºC - 260ºC @20 ºC/min; 260 ºC (5 min); flow rate 0,6 mL/min (Helium 5.0 carrier gas); splitless injection 

mode, ion source temperature 200°C, interface temperature 260°C; voltage 0,9 kV; mass range 50-380 m/z; acquisition rate 

25Hz and electron ionization (70 eV). For GC×GC-QMS data acquisition, GCMSsolution version 5.3 software (Shimadzu, 

Tokyo, Japan) and GCImage version 2.0 software (Zoex - Houston, TX, USA) were used for the analysis of two-

dimensional chromatograms.  

2.1.4. Tentative identification 

For tentative identification, a two-dimensional chromatographic run was performed before the experiment with standards 

of homologs n-alkanes (C8-C20, Sigma Aldrich). 2 μL of the standard solution was transferred to a vial and the SPME fiber 

was exposed during 15 min after chromatographic desorption. The NIST 2008 spectra library (NIST – Gaithersburg, MD, 

EUA) was used (considering 80% of similarity) and comparison was made with the van den Don and Kratz retention index 

[30]. 
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2.2. Software implementation 

The basic workflow of the RGCxGC package is composed of three main steps; data importing, pre-processing and 

multivariate analysis. First, the raw Network Common Data Form (NetCDF) chromatogram is imported with the “read_chrom” 

function, in which the user needs to set the modulation time in which the GC×GC data was acquired. Next, you can perform 

smoothing and baseline correction using the function “wsmooth” and “baseline_corr”, respectively. Then, peak alignment from 

a single sample can be done using the “twod_cow” function, based on the two-dimensional correlation optimized warping 

(2DCOW) algorithm. Alternatively, multiple sample alignments can be performed with the “batch_2DCOW” routine, where 

the first chromatogram will be considered as the reference while aligning the remaining chromatograms. After pre-processing, 

MPCA can be performed on the dataset using the “m_prcomp” function, which provides the scores and loadings matrices and 

the summary with the explained and cumulative variance per Principal Component (PC). In the case of the loading matrix, they 

can be plotted using “plot_loading” and retrieved with the “scores” functions, while the “print” function you can access to the 

MPCA summary. The toolbox pipeline is summarized in Fig. 1. Library methods, and their arguments and comments,  are 

summarized in Tab 1. 

2.2.1. Importing data 

This initial step is an adaptation of the Skov routine [31], this procedure is about how to extract and handle chromatographic 

signals. In the importing function, an option to import specific retention times ranges in both dimensions were included (see 

x_cut and y_cut) see Tab. 1. First, the chromatogram has to be exported from vendor software into a NetCDF file. This file 

extension is commonly used in scientific approaches [32]. The exported chromatogram contains the retention time and the Total 

Ion Current (TIC). Due to NetCDF architecture, data is stored into one-dimensional arrays, therefore, the signal is accessed 

through the arrays named scan_acquisition_time and total_intensity. Since the acquired data by both mass analyzers, time of 

flight and quadrupole, converge in a NetCDF file, they can be imported and analyzed with the proposed toolbox. Thus, the 

retention time is divided by sixty to transform the signal from seconds to minutes. Before the one-dimensional array is folded 

into a more familiar two-dimensional chromatogram, the sampling rate is evaluated to be homogenous. In other words, the 

software ensures that the entire run has the same sampling rate since non-integer sampling rates leads to unpaired data points 

over the chromatographic run.  

Once the one-dimensional vector is stored in memory, the routine proceeds to fold it into a two-dimensional chromatogram. 

Each modulation period creates a matrix C(I, J), where I is the mass spectra scans, acquired in a given modulation and J is the 

modulation index. The number of mass spectra scans is related to the sampling rate (Hz) of the mass analyzer. Therefore, in 

order to calculate the total number of modulations, the total number of scans is divided by the number of scans per modulation. 
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Finally, once the number of scans per modulation (I) and the total number of modulations (J) are calculated, the one-dimensional 

array is folded into a two-dimensional matrix. Usually, a chromatographic run contains incomplete modulation scans at the end 

of the run, these scans are removed previous to create the two-dimensional chromatogram while printing a message. 

In GC, solvent effect and column bleeding are almost unavoidable [1]. Therefore, in order to remove parts of the 

chromatogram that do not contain significant information, the user can provide the retention time range that they would like to 

keep. Another example is large chromatographic runs, where a cleaning ramp at high temperatures is included at the end of the 

run, producing large values at 1D. Here, the user can avoid importing the last part of the chromatogram by changing the “x_cut” 

argument. 

 

Figure 1. The proposed pipeline of non-targeted GCxGC-MS data analysis workflow in the RGCxGC toolbox. First, 

chromatograms are imported with the “read_chrom” function. Next, the user can pre-process them by smoothing, baseline 

correction, and peak alignment with the “wsmooth”, “baseline_corr” and “twod_cow” functions, respectively. Then, 

chromatograms from multiple cohorts are gathering in a single object, before to be subjected to multiway principal component 

analysis. On the other hand, the user is able to export all chromatograms with the “unfold_chrom”, in order to perform different 

statistical analysis. While the dashed lines enclose the functionalities implemented in the RGCxGC toolbox, the external parts 

show functionalities of external R toolboxes 
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Table 1. Description of the main functions presented in the RGCxGC toolbox, classified by task aim. Each function has a short description, and the full argument list and default 

argument value.  *The reference is included in the functions that are adapted from other, in cases when the function is built from scratch, the reference is left in blank. 

 

Aim Task Function name Function description Arguments Argument description Reference* 

  

  

 Importing 

data and 

visualization 

  

Read raw 

chromatogram 
read_chrom 

This function reads the 

netCDF file and retrieves 

the values in the 

scan_acquisition_time and 

total_intensity variables. 

Then, with the provided 

sampling rate and 

modulation time, the 

chromatogram is folded 

into a numerical matrix 

(two-dimensional 

chromatogram) 

name 
The name of the netCDF file which 

the data will be retrieved 

[31] 

mod_time 
The modulation time of the 

chromatographic run 

sam_rate 

The sampling rate of the equipment. If 

sam_rate is missing, the sampling rate 

is calculated by the dividing one by 

the difference of two adjacent scan 

time 

per_eval 

An integer with the percentage of the 

run time to be evaluated, if the 

sampling rate is homogeneous 

   x_cut 

The retention time range in the first 

dimension to be maintained while 

importing data. 
- 

   y_cut 

The retention time range in the first 

second to be maintained while 

importing data. 

Plot two-dimensional 

chromatogram 
plot 

This function receives a 

two-dimensional matrix 

with TIC signals and plots 

them into a contour or 

filled contour plot 

type 

A single character indicating the type 

of chromatogram representation. By 

default, type= "f" for a filled contour, 

if type = "c" only contours or isolines 

will be displayed. 

- 

Preprocessing 

Smoothing wsmooth 

This function takes a raw 

two-dimensional 

chromatogram and 

performs the weighted 

Wittaker smoother routine. 

It smooths with linear or 

quadratic penalty alongside 

the first dimension, based 

on Whittaker smoother 

chromatogram A two-dimensional chromatogram  

penalty 

The penalty order. Only penalty of 

first (penalty = 1) and second-order 

(penalty = 2) are allowed. By default, 

it is performed with the first penalty 

order. 

[33] 

lambda 
smoothing parameter: larger values 

lead to more smoothing 
 

Baseline correction baseline_corr 

It corrects the baseline of 

the chromatogram based 

on ALS 

chromatogram A two-dimensional chromatogram [34] 
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Peak alignment twod_cow 

It aligns a sample 

chromatograms against a 

reference chromatogram by 

two-dimensional 

correlation optimized 

warping algorithm 

sample_chrom 
A two-dimensional chromatogram 

which will be aligned 
[35] 

ref_chrom 
A reference two-dimensional 

chromatogram 
 

segments 

Two integers with the number of 

segments in which the first and second 

dimension will be subdivided, 

respectively. 

 

max_warp 
A two integer vector with the 

maximum warping parameter 
 

Multivariate 

Analysis 

Multiway Principal 

Component Analysis 
m_prcomp 

It performs a multiway 

principal component 

analysis on the given two-

dimensional 

chromatograms. Before to 

perform the calculation, 

each given chromatograms 

are unfolded to a one-

dimensional vetor 

chrom 
Multiple chromatograms or batch ones 

aligned 
 

center 

A logical value indicating whether the 

variables should be shifted to be zero 

centered. True is set by default and is 

strongly suggested not to change to 

False. 

 

scale 

a logical value indicating whether the 

variables should be scaled to have unit 

variance before the analysis takes 

place. The default is True to give the 

same variable importance in 

chemometrics. 

[36] 

npcs 

An integer indicating how many 

principals components are desired to 

maintain.The default is 3 principal 

component 

 

Retrieve scores from 

MPCA 
scores 

exports the scores matrix 

of the previously MPCA 

performed 

Object The result of m_prcomp function - 

Plot MPCA loadings plot_loading 

This function takes the 

loadings of MPCA and 

eval if a certain variable 

was removed previous to 

compute the MPCA and 

fill the removed variables 

with cero (zero variance 

variables). 

Object The result of m_prcomp function 

- 

type 

The value type of loadings, “p” for 

positive, “n” for negative, and “b” for 

negative and positive loading values 

pc 
The number of the principal 

component to the plot 
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2.2.2. Visualization 

As described by Reichenbach [37], the GC×GC image visualization consists of colored pixels layers. In this case, interpolation 

techniques are used for a two-dimensional image view. The interpolation function evaluates the collection of TIC at the C(I) and 

C(J) coordinates, and then approximate the contours with the computed interpolation. On the other hand, is common in 

chromatography that the signals contain highly similar intensities, or a certain group of chemical entities produces signals several 

times higher than the rest of the molecules. Therefore, in this library, the user has two options to display two-dimensional 

chromatograms, filled contour, and contour plot. While contour plot displays low and high-intensity TIC signals as isolines with 

a white background, filled contour assigns a different color to the background, which may obscure low-intensity signals. In 

other words, analyte concentrations are not usually evenly distributed in the sample, they may produce a large range of signal 

intensities. Thus, analytes with greater concentrations my opaque the visualization of the analytes with lower concentrations. 

To overcome this issue, the user can choose the contour plot to display low signal intensities. 

Moreover, the color palette must be taken into consideration in this type of graphical representations, since they play the main 

role by capturing reader attention [38]. Building an effective color ramp may be difficult for inexperienced users. We encourage 

users to employ the colorRmps package [39]. On the other hand, users with more programming skills can create a color palette 

from scratch, as explained in [38]. 

2.2.3. Pre-processing 

High throughput chemical equipment achieves a great level of detail, in which external artifacts are also included, such as 

instrument variability or sample matrix effect. Therefore, the analysist has to eliminate undesirable information to convert the 

raw data into useful information, because it has a huge effect on the downstream analysis [11,21,29]. Consequently, several pre-

processing techniques have been developed in order to remove chemical and instrument noise. In general, pre-processing 

techniques include three basic modules: smoothing, baseline correction, and peak alignment. 

2.2.3.1. Smoothing 

Denoising signals enhance the signal to noise ratio (S/N) in the chromatogram, increasing both accuracy and precision 

analytical results. Although the pioneers in smoothing were Savitzky and Golay with the local likelihood approach [40,41], 

Whittaker smoother was introduced as a general-purpose algorithm in chemistry,  showing better performance [33]. Whittaker 

smoothing works in the time domain by discrete penalized least squares taking into consideration data fidelity of original data 

and roughness of the fitted data. This algorithm starts with a supposition of a noisy signal y and a smoothed signal z that fits y. 

The roughness (R) of the smoother can be described as the sum square of z R = ∑i (zi – zi-1)2. Moreover, the lack of fitting can 



11 
 

be expressed as the sum of squares of differences S = ∑i (yi  - zi)2. Finally, the governing equation of Whittaker smoother can 

be stated as: 

𝑄 = 𝑆 +  λR 

Where λ is a user given multiplicative factor to the roughness. The aim of Whittaker smoother is to find the combination of 

z that minimizes Q. While the user gives λ larger values, z will be more smoothed. Different results by varying λ are showed in 

[42]. These advantages account for automatically boundaries adaptation, missing values and sparse handling, and good 

computational efficiency in a desktop computer. The Whittaker routing is available through the “wsmooth” function. 

2.2.3.2. Baseline correction  

The baseline drift in GC/GC×GC is mostly caused by column bleeding or complex mixtures that cannot be separated [11]. In 

order to remove this type of noise, baseline correction removes the baseline noise and centering the signal around zero. The 

proposed library implements baseline correction by asymmetric least squares algorith. Eilers proposed the baseline correction 

by adapting Whittaker smoothing to calculate the trend of the baseline [43]. In this extension, weights (ω) are introduced, stated 

as. 

                                                                   𝑄 = ∑ 𝜔𝑖  ( 𝑦𝑖−𝑧𝑖)2
𝑖

+  λ ∑ (∆2𝑧𝑖)2
𝑖  

While ordinary least squares obtain the residual based on the difference of the raw and fitted signal (y - z), and the sign of the 

residuals has the same effects over the penalties, the asymmetric least squares give more weight to negative residuals than 

positive residuals. This approach is considered based on the positive residuals are obtained when a peak is detected. Therefore, 

the analytical peak signal has not had to be distorted. In contrast, negative residuals are more penalized. As stated above, weights 

are assigned based on the sign of the residual as follows: ωi = p if yi > zi and ωi = 1 – p. Here, p is introduced as a user parameter. 

In cases when the fitted signal is greater than the raw signal, weights are the difference of ωi = 1 – p as proposed by Eilers [43]. 

Although asymmetric least squares offer advantages, such as short computational times, parameter flexibility, the parameters 

have to optimize by hand. This function is available in the library through the “baseline_corr” command. 

2.2.3.3. Peak alignment 

The retention shift in chromatography is an unavoidable source of experimental variation [21]. Retention shift can be caused 

by stationary phase decomposition, column change during usage, or different modulation temperatures over the experiment. As 

described above, this software follows the stream of pixel-based analysis. Therefore, 2DCOW algorithm was implemented [35]. 

eq. (1) 

eq. (2) 
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Basically, the 2DCOW works by splitting the sample (A) and reference (B) chromatogram of X(I, J) dimensions into m segments 

for both dimensions (1D and 2D), respectively. The new partitioned matrix can be stated as ni and nj with column nodes in the 

first {e0, e1, ···,  𝑒𝑛𝑖
}, and the second {{f0, f1, ···, 𝑓𝑛𝑗

}} column, which are a segment subset of {1, 2, ···, I} and {1, 2, ···, J}, 

respectively. Each grid from the partitioned matrix, for the sample and the reference chromatogram, can be expressed as  {(ek, 

fl) : k = 0, 1, ···, ni ; l = 0, 1, ···, nj}. At each row ek of A, a new row vector Ã𝑒𝑘
= (Ã𝑒𝑘1, Ã𝑒𝑘2, ···,  Ã𝑒𝑘𝐼) is obtained, with the 

jth component Ã𝑒𝑘𝑓 through. 

Ã𝑖𝑘𝑗 =  ∑ 𝐴𝑒𝑓𝑊 
𝑒 − 𝑒𝑘

ℎ⁄ ∑ 𝑊 𝑒 − 𝑒𝑘 ℎ⁄

𝑛

𝑒=1

⁄

𝑛

𝑒=1

 

This routine requires one pair of arguments for each of the first and second dimensions that are called segment length, which 

is the number of sections to split the chromatogram and slack, which is the maximum warping level. In the proposed library, 

there are two functions to perform two-dimensional peak alignment, “twod_cow” and  “batch_2DCOW”. While the first 

command can align a single chromatogram against a reference, the second routine can align a set of chromatograms to a 

reference. Regarding the reference chromatogram, it has to keep high peak similarity between sample chromatograms since the 

signals should match to perform the alignment, a more detailed explanation about criteria to choose the target chromatogram is 

provided in [11,15]. One of the main advantages that provides 2DCOW is the interpolative warping of the warped region and 

the reference in order to maximize the correlation between them, correcting the retention time shifts. 

One strategy to select the reference chromatogram is to create an artificial chromatogram by summing or averaging pixels of 

a set of chromatograms from different groups. In the proposed toolbox, we provide the “ref_chrom” function, which receives 

multiple chromatograms and computes a new temporal chromatogram to be employed as the reference. 

2.2.4. Multivariate analysis 

Multivariate methods are capable of misultaneously analyzing multiple varialbes in order to expose group-wise variation. 

There are two flavors for multivariate analysis focused on statistical learning, supervised and unsupervised analysis. Supervised 

analysis requires prior information about the sample space composition, a predicted variable, which commonly is the sample 

class, to train the model. In contrast, the unsupervised approach does not need extra information about sample composition to 

compute its routines and creates a discrimination model. In consequence, supervised approaches receive more information about 

group arrangement, and usually show better results than unsupervised techniques [44]. Concerning to multivariate analysis, the 

toolbox presents multiway principal component analysis. Also, RGCxGC presents capabilities to export chromatographic data 

eq. (3) 
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in a compatible format to be used in external toolboxes. For example, the exported chromatograms can be subected to the partial 

least squares-discriminant analysis available in the mixOmics toolbox [45].  

Principal Component Analysis is probably the most unsupervised analysis in many areas with dimensional reduction 

purposes. It was introduced in 1901 by Karl Pearson [46]. In chemometrics, PCA has been widely applied for pattern recognition. 

An adaptation of PCA, is MPCA explained by Wold [36], which can deal with higher-order data. Although there are methods 

that can analyze high-order data, the authors conclude that the same results can be obtained by unfolding the data into two-way 

matrices [47,48]. In the case of GC×GC, as stated above, each chromatogram consists of a two-way matrix of dimensions A(I, 

J), being I the number of modulations per run, and J the number of scans per modulation. the unfolding procedure is carried out 

as follows: the modulation I +1 is concatenated after the modulation I, and so on for all modulations. As a result, the two-

dimensional chromatogram has been unfolded into a one-dimensional row-wise vector. All chromatograms are subjected to this 

procedure in order to obtain a two-way matrix where the columns are the retention times and rows are samples. Then an ordinary 

PCA can be performed.  

The PCA then decomposes X(q,r) into a score (S) and loading (L) matrices, so that X = SLT. Score matrix is the projection in 

the reduced multivariate space spanned by principal components, and it is related to the (chromatographic) differences among 

the samples. On another hand, the loading matrix explains the relationship between variables, where positive values refer to 

similarities between variables and negative values denote differences in variables across samples [49]. The MPCA can be 

performed with the “m_prcomp” command. 

Once data was subjected to MPCA, the user can access the chromatogram projection into the principal component space 

(scores matrix) by the “scores” command. Differently in the loading matrix, each eigenvector contains all input variables. Then, 

each principal component should be interpreted as a two-dimensional chromatogram. Thus, each eigenvector is retrieved from 

MPCA and folded again into a typical GC×GC chromatogram. This task is carried out by the “plot_loading” command. Finally, 

one extra parameter in MPCA is the explained variance, which can be retrieved through the “print” command. 

2.2.4.1. External discriminant analysis.  

Although PCA based techniques are one of the most unsupervised algorithms, GC×GC data can also be subjected to 

supervised algorithms, such as the Partial Least Squares-Discriminant Analysis (PLS-DA) which is one of the most common 

classification model widely applied in chemometrics [50]. Therefore, in order to ensure a set of discriminant analysis that can 

be performed once the chromatograms are exported, we also include the PLS-DA analysis. the RGCxGC library can export 

chromatograms in a friendly structure to communicate with external libraries. In this work, we extend our analysis by testing 
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our datasets with PLS-DA available in mixOmics [45]. Even though, more external libraries can be used to employ any desired 

classification algorithm such as hierarchical clustering, artificial neural networks or supporting vector machine. 

2.3.  Benchmarking 

In order to evaluate the performance with large GC×GC-TOF/MS data, we perform a benchmarking of every important 

algorithm in RGCxGC package with chromatograms from the Salmonella dataset, in order to simulate a large scale experiment. 

The Salmonella dataset was chosen since the mass analyzer used in this study was a time of flight, which has higher resolution 

and also is dimensional higher.  We measured the computational time elapsed to perform the desired routine from 1 sample, 

with an upper limit of 100 samples with increments of 10 samples per step, except in the first increment where it was 9 samples. 

The benchmarking was performed in a computer with an Intel Core i7 2.7 GHz processor with a Linux based operating system.  

2.4.  Application 

The proposed software was fully tested with a real laboratory experiment based on microbial antagonism and two published 

datasets. The first datasets came from research focused on the discriminant analysis of chronic typhoid carriers acquired with a 

TOF mass analyzer [51]. While the second datasets were related to antiphytopathogenic interaction of different yeast strains 

against P. digitatum acquired with quadrupole mass analyzer [52]. The third dataset was previesly described in the method 

section (2.1.).  

One principal advantage to work with the published dataset is the verification of the software performance through the 

comparison with real datasets, and being able to show the capability to work with different mass analyzers (Tab. 2). This is an 

important characteristic because a more sophisticated mass analyzer (TOF) provides more resolution, making data analysis the 

most computational challenging task. 

Table 2. Description of the dataset analyzed with the proposed RGCxGC toolbox. While the dimensions of the single 

chromatogram are given by A(I, J), the dimensions of the entire datasets are given by A(I, J, K) where K represents the number of 

samples in each experiment. 

Datasets Samples 
Number of 

categories 

Chromatogram 

dimensions 

A(I,J) 

Mass 

Analyzer 
Reference 

Salmonella  30 3 A(500, 709) TOF  [32] 

Penicillium 18 2 A(150, 368) Quadrupole  [52] 

Myrothecium 38 5 A(125, 381) Quadrupole in-house 
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3. Results and discussion 

In the following section, we present the performance of the RGCxGC package with three different datasets collected with 

different mass analyzers. We have also performed a supervised analysis (PLS-DA) to confirm the connection of RGCxGC with 

external tools. 

3.1.  Salmonella dataset 

The Salmonella dataset was downloaded from MetaboLights database with the MTBLS579 identifier [32]. Chromatograms 

were downloaded and manually checked for consistency; those with different dimensions specified in Tab 2, were removed. 

The entire data comprises 30 blood plasma samples with two main categories related to carriage diagnosis, control samples, and 

Salmonella sp. carriage. Moreover, in the second category, authors collected samples from two different etiological agents; S. 

typhi and S. Paratyphi A. a representative chromatogram, based on the number of peaks detected, is presented in the Figure 2A. 

All chromatograms were smoothed with a quadratic penalty and a λ equal to 10. Then, the baseline correction was performed 

with a correction factor equal to 1000. For the two-dimensional alignment, a sample of confirmed S. Paratyphi sample carriage 

(07_GB, MetaboLight identifier) was chosen to be used as a template and the remaining chromatogram was aligned against it. 

First and the second dimension was divided into 20 and 40 segments, respectively. The maximum warping values for the first 

and second dimensions were 2 and 8, respectively. Prior to principal component analysis, chromatograms were mean-centered. 

Samples groups do not present a clear classification in the projected principal component space. Also, the explained variance 

for this dataset is the lowest (< 15%) obtained by MPCA in the first two principal components (Fig. 2B and 2C) and there is not 

a clear difference between the two etiological agents. This poor differentiation between S. typhi and S. Paratyphi A carriage 

patients maybe for the chromatogram similarity and the performance of the statistical learning algorithm. Subsequently, 

chromatograms were subjected to a supervised learning algorithm, PLS-DA. For this analysis, the aligned chromatograms were 

exported by unfolding them into a matrix. This matrix represents the explanatory variables, while the carriage status represents 

the predicted variable. The PLS-DA was performed according to the mixOmics procedure [45]. In contrast with the MPCA 

results, the PLS-DA model defines clusters between control and carriage patients (Fig. 2D). Furthermore, the model also clusters 

the two different etiological agents (S. paratyphi A and S. typhi). The classification improvement can be explained for the type 

of statistical learning employed. In the case of PLS-DA, it is a supervised algorithm, which is trained with the correct sample 

category. It is not surprising since supervised algorithms show better performance than unsupervised algorithms. Even though, 

the explained variance is not higher than the 15%. 
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3.2.  Penicillium dataset 

Raw chromatograms were provided by the authors of the antiphytopathogenic yeast strains experiment [53]. Penicillium 

digitatum is a pathogen that infects citrus fruits, causing product degradation within the product's storage, transportation, and 

market. For this reason, microbial activity was tested against different yeast strains by a coculture experiment in triplicates. 

Yeast strains, with validated high and low antagonist activity, were selected for downstream analysis. 

All chromatograms were baseline corrected with a correction factor equal to 0.5. Then, chromatograms were smoothed with 

a linear penalty and a λ equal to 2 (Fig. 2E). For the peak alignment process, a consensus chromatogram was computed by 

averaging the pixel values for multiple chromatograms, as explained above, and the remaining chromatogram was aligned 

against it. The maximum warping value for the first and second dimension were 4 and 10, respectively. Prior to principal 

component analysis, chromatograms were mean-centered.  

The separation achieved by MPCA was clearly notorious. In this context, the total explained variance between the first two 

PC was 60.48% (Fig. 2F and 2G). While all low activity yeast strains are clustering at the negative PC1 scores, all high active 

antagonist yeast strains clustered in positives values. Furthermore, triplicates of each high active yeast strains were clustered 

together, expressing replicate and strain similarities. For example, the strain pe2 (Saccharomyces cerevisiae ACB-PE2) has 

different profiles than cat1 and kd1, (S. cerevisiae ACB-CAT1 and S. cerevisiae ACB-KD1) together. 

Furthermore, a PLS-DA classification we also conducted, as a supervised approach. For this analysis, the aligned 

chromatograms were exported by unfolding them into a matrix. This matrix represents the explanatory variables, with 

antiphytopathogenic activity being the predicted variable. In this case, the MPCA and PLS-DA results show high similarities, 

moth models can differentiate high and low strain activities in the first projected dimension. The PLS-DA was not able to 

separate yeast strains with low antagonist activity, it classifies all strains into a single cluster (Fig. 2H). 
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Figure 2. The grid shows the results of the three datasets analyzed with the proposed toolbox; Salmonella (A, B, C, and D), 

Penicillium (E, F, G, and H) and Myrothecium (I, J, K, L). The first row shows the representative two-dimensional TIC 

chromatograms, the second row presents the MPCA scores, the third row displays the MPCA loadings, and the fourth row displays 

the PLS-DA scores. The results of unsupervised discriminant analysis by MPCA, of the Penicillium (F) and Myrothecium (G) 

datasets, present a clear separation between categories (edges in blue) in the two first PC’s, with an explained variance greater 

than 50%. On the other hand, the MPCA cannot explain the differences between the Salmonella (B) dataset categories. In the case 

of supervised classification with PLS-DA, the model can discriminate between categories for all datasets (D, H, and L). 
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3.3.  Myrothecium dataset 

The Myrothecium dataset was locally made with the aforementioned methodology in the method section (2.2). The 

Myrothecium genus plays a major role for combating white mold in soybeans. Therefore, the MYL volatilome kinetics were 

explored. The entire data comprise 38 samples with two main categories, control (Bco) and Myrothecium (MYL) culture 

kinetics. Within the MYL category, there were five subcategories in concordance with days that the fungus has grown in the 

culture media. 

For the peak alignment process, the chromatogram from the MYL culture on the fifth day was selected as a representative 

chromatogram, and the remaining chromatograms were aligned against it (Fig. 2I). The maximum warping value for the first 

and second dimension were 4 and 10, respectively. Prior MPCA, chromatograms were mean-centered.  

In the MPCA score plot, the separation between control and antagonism samples was clearly appreciated (Fig. 2J and 2K). 

Thus, the accumulated explained variance in the two first principal components of this model was about 70%. In contrast with 

the two previously discussed datasets, in this case, groups were separated by the second PC. Therefore, for metabolite annotation, 

compounds with the highest eigenvector values were annotated, resulting in 48 metabolites with higher values of similarity than 

80% in the database (see Annexed). Between the annotated metabolites, several chemical species were found that were 

previously described to have fungal biocontrol activity. For example, the presence of phenylethyl alcohol, α-curcumeno and α-

terpineno that were described in Trichoderma genus control [54]. In the same manner, these compounds had also been reported 

to be produced by Memnoniella genus, which can induce pathogen resistance in plants through its volatilome [55]. Moreover, 

phenylethyl alcohol was also found in antimicrobial extracts from the Glicladium genus [56]. 

Finally, we also performed a PLS-DA model on the in-house  Myrothecium dataset. As stated earlier, the pre-processed 

chromatograms were exported by unfolding them into a two-way matrix. The PLS-DA, also present consistency with the MPCA, 

with a rotation in the latent variables (Fig. 2L). In other words, in contrast with the MPCA that captures the variance in the 

second projected variable (PC2), the PLS-DA captured the experiment variance in the first projected variable (latent variable). 

Moreover, both models can also explain intra-day antagonism variability. 

3.4. Computational efficiency 

In order to simulate a large scale experiment, we performed the benchmarking of the main functions of the proposed toolbox. 

Then, chromatograms of the Salmonella dataset were chosen due to the higher dimensions, as described in Tab 1. All available 

functions showed to have a linear increment in the elapsed time to be performed (Fig. 3). Moreover, the longest time required 

to perform a chemometric routine with 100 samples was 82 minutes was the “twod_cow” routine. This was expected since peak 
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alignment is the most time-consuming task and the major bottleneck in this type of analysis, since different algorithms and 

parameters may be tested before useful information can be extracted from the raw signals. In the case of the MPCA routine, the 

benchmarking showed to have the second longest elapsed time, requiring 17.5 min to analyze 100 samples. Furthermore, 

functions that manage graphical components (“plot” and “plot_loading”) require over 3 minutes to display 100 samples. On the 

other hand, the rest of the functions did not need half of a minute to work with the maximum number of samples tested. In 

comparison with similar alignment methodologies for GC×GC, this procedure is the most time-consuming routine [57]. For 

example, in the case of a MATLAB pixel-by-pixel alignment, between 10 to 20 min were required to align a 1 sample [57]. In 

the case of RGCxGC package, with the same time range, 10 to 20 samples can be processed. 

Figure 3. Benchmarking results of the main functionalities of the RGCxGC toolbox. The head of each figure represents the 

function name that was tested. In order to create a similar situation of a big scale experiment, we tested the elapsed time for 

each function from 1 to 100 chromatograms samples in increments of 10 samples, except for the first step where the increment 

was 9 samples. All functions present a linear increment while the number of samples increases. Meanwhile “m_prcom” and 

“twod_cow” require 20 and 82 minutes to process 100 samples, the rest of the functions requires less than 5 minutes to process 

100 samples. 
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4. Conclusions 

In this manuscript, we presented a novel end-to-end workflow for non-targeted GC×GC-MS exploratory data analysis by signal 

processing and with statistical learning algorithms. The currently available functions for signal processing in the RGCxGC 

package are compiled with baseline correction, smoothing, two-dimensional peak alignment. While for statistical learning, the 

multiway principal component analysis was implemented for unsupervised classification and partial least squares discriminant 

analysis was tested. Furthermore, we provide a generic manner to connect with other libraries in order to provide a wide 

spectrum of possible classification algorithms, such as linear discriminant analysis, artificial neuronal networks. The presented 

software showed to be capable to process a considerable amount of data (> 1 GB). Also, the longest required time for the desired 

routine to be performed was less than 2 hours. This is an advantage for large-scale experiments, such as metabolomics studies, 

to overcome the bottleneck of data analysis. On the other hand, the characteristic of free open source implementation could help 

with research reproducibility and reduce the dependence of private license depending software. Our approach was successfully 

tested in two published datasets and one in-house dataset. The key benefit of this implementation is to avoid multiple software 

in non-target studies. In addition, the software is continuously checked and maintained by package developers and CRAN team, 

in order to ensure long term user availability and avoid obsolescence. The proposed library, as well as a detailed user manual 

and a complete tutorial, is freely available and can be found at https://cran.r-project.org/web/packages/RGCxGC/index.html. 
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Appendix 

Suplemental table. Tentative identification of detected metabolites by Myrothecium sp. with spectral similarity > 80%. 

# 
¹tr ²tr Match 

LTPRILit LTPRIExp Compound CAS 

(min) (min) (%) 

1 6.533 0.007 92 926 943 3,7-dimetil-1,6-octadieno (R-citroneleno) - 

2 7.95 0.025 84 993 994 4-ciclohepten-1-ona - 

3 8.367 0.016 91 1008 1007 Acetado de 3-Hexenila 3681-71-8 

4 8.867 0.009 94 1018 1020 
4-metil-1-(1-metiletil)-1,3-ciclohexadieno (α-

terpineno) 
99-86-5 

5 9.117 0.008 88 1023 1027 
1-metil-4-(1-metiletil)-ciclohexeno (para-ment-1-

eno) 
5502-88-5 

6 9.117 0.012 94 1025 1027 1-metil-4-(1-metiletil)-benzeno (para-cimeno) 99-87-6 

7 9.2 0.033 97 1030 1040 2-etil-1-hexanol 104-76-7 

8 9.283 0.01 85 1046 1042 3,4-dimetil-1,5-ciclooctadieno 21284-05-9 

9 11.367 0.011 83 1117 1109 (3E)-4-etil-3-nonen-5-ino 74685-67-9 

10 11.867 0.031 81 1125 1122 3,7-dimetil-6-octenal (β-citronelal) 106-23-0 

11 12.617 0.068 97 1136 1142 feniletil álcool 60-12-8 

12 13.2 0.033 89 1158 1155 (2Z)-6-metil-2-undeceno - 

13 14.033 0.04 81 1181 1176 4-etil-benzaldeído 4748-78-1 

14 17.45 0.033 92 1258 1249 1-decanol 112-30-1 

15 18.783 0.015 86 1280 1276 1-(eteniloxi)-decano 765-05-9 

16 19.45 0.015 84 1299 1289 5-butil-4-noneno 7367-38-6 

17 21.617 0.031 91 1351 1341 1,1-dimetil-2-nonilciclopropano 41977-38-2 

18 22.2 0.007 89 1357 1355 1-undecanol 112-42-5 

19 22.45 0.008 82 1365 1361 undec-(8Z)-enal - 

20 22.783 0.007 83 1376 1369 2-dodecanol 10203-28-8 

21 23.45 0.007 89 1384 1386 4,8-dimetiltridecano 55030-62-1 

22 23.617 0.009 84 1393 1390 2-butil-1-octanol 2/8/3913 

23 23.783 0.011 90 1403 1394 diepi-α-cedreno 469-61-4 

24 24.117 0.013 95 1398 1403 

[1S-(1α,2β,4β)]-2,4-diisopropenil-1-metil-1-

vinilciclohexano - 

(β-elemeno) 

25 24.2 0.008 93 1409 1405 1,1,3-trimetil-2-(3-metilpentil)ciclohexano - 

26 24.617 0.009 86 1411 1415 1-tetradecino 765-10-6 

27 24.867 0.008 91 1421 1421 (E)-3-tetradeceno 41446-68-8 

28 25.117 0.011 82 1418 1428 α-santaleno - 

29 25.2 0.012 82 1424 1430 β-barbateno - 

30 25.617 0.012 84 1433 1440 α-bulneseno 3691-11-0 
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31 26.033 0.012 83 1458 1451 

(3Z,6E)-3,7,11-trimetil-1,3,6,10-dodecatetraeno 

(α- 26560-14-5 

farneseno) 

32 26.117 0.009 84 1443 1453 propanoato de citronelil 141-14-0 

33 26.533 0.009 85 1466 1463 9a-metildecahidro-2H-benzo[a]ciclohepten-2-ona - 

34 26.7 0.012 81 1475 1467 

4-metileno-1-metil-2-(2-metil-1-propen-1-il)-1-

vinil- - 

cicloheptano 

35 26.95 0.012 85 1472 1474 Biciclo[10.1.0]tridec-1-eno - 

36 27.117 0.013 82 1485 1478 8,8-dimetil-9-metileno-1,5-cicloundecadieno - 

37 27.283 0.016 86 1480 1482 
1-(1,5-dimetil-4-hexenil)-4-methil-benzeno (α-

curcumeno) 
644-30-4 

38 27.7 0.01 84 1483 1492 isobutirato de citronelil 97-89-2 

39 27.867 0.012 84 1503 1496 
1-metil-4-(4-metilpentil)-3-ciclohexeno-1-

carboxaldeído 
- 

40 27.95 0.013 86 1499 1499 
2,6,10,10-tetrametilbiciclo[7.2.0]undeca-2,6-dieno 

- 

(cariofileino-(I3)) 

41 28.117 0.011 84 1501 1503 butirato de citronelil 141-16-2 

42 28.7 0.013 87 1518 1517 cis-α-bisaboleno 29837-07-8 

43 30.033 0.012 81 1557 1551 
(1E,5E)-1,5-dimetil-8-(propan-2-

ilideno)ciclodeca-1,5-dieno 
15423-57-1 

44 30.367 0.013 83 1567 1559 6,10-dimetil-dodeca-1,6-dien-12-ol - 

45 30.7 0.011 82 1574 1567 11-tridecin-1-ol 33925-75-6 

46 32.95 0.027 80 1635 1632 

(4,8,8-trimetildecahidro-1,4-metanoazulen-9-

il)metanol 1139-17-9 

(Isolongifolol) 

47 34.283 0.025 81 1683 1676 1,3-di(ciclohexil)but-1-eno - 

48 35.117 0.028 87 1706 1704 4-isopropil-1,6-dimetilnaftaleno (cadaleno) 483-78-3 

 


