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A B S T R A C T

Somatic embryogenesis (SE) has been routinely used as mass micropropagation technique, and as a model
system for investigating the structural, physiological, and molecular events occurring during somatic embryo
development. Successful in vitro SE is related to the quality and yield of somatic embryos obtained. In cacao
(Theobroma cacao L.) SE, the efficiency of somatic embryo production has improved with secondary SE.
However, the low number of somatic embryos able to conversion into viable plantlets is still low. Then, two
morphological types of normal mature somatic embryos can be identified during cacao secondary SE. The first
type shows white appearance and high conversion potential (75%), while the second type shows translucent
appearance and exhibit low conversion potential (15%). In order to investigate the proteins that can be asso-
ciated to conversion potential in cacao somatic embryos, the mass spectrometry HDMSE proteomic approach was
used. At least 60 proteins showed differences in abundance levels in cacao white somatic embryos, when
compared to translucent. An increased abundance of Beta-glucosidase, NAD(P)-linked oxidoreductase and
Electron transfer flavoprotein proteins were observed in white somatic embryos. Moreover, in translucent so-
matic embryos were observed an increased abundance of Cytochrome P450 and Pathogenesis-related proteins.
Using white somatic embryos as a model, we suggest that carbohydrate metabolism process and the redox
regulation are involved in the control/regulation of somatic embryo quality. These new findings may improve
cacao SE protocol, as well as the understanding of the role of pivotal metabolic pathways associated to this in
vitro morphogenetic route.

1. Introduction

Cacao (Theobroma cacao L.) is a tropical plant, which play a relevant
role in both the stability of tropical ecosystems and in the economy of
millions of small-holder farmers (Araújo et al., 2011). Cacao beans are
rich source of polyphenols and represent the main raw material for the
multi-billion-dollar chocolate industry (Maximova et al., 2014).

Plant propagation through somatic embryogenesis (SE) is an effec-
tive method to large-scale clonal propagation (Jin et al., 2014; Li et al.,

1998), which can be incorporated into breeding programs. Cacao SE is
well characterized (Alemanno et al., 1997; Li et al., 1998; Maximova
et al., 2008; Maximova et al., 2002), and somatic embryo-derived
plants have been tested under field conditions, revealing similar growth
patterns to those from plants propagated by seeds (Maximova et al.,
2008).

Secondary SE protocol for efficient somatic embryos production
have been established (Minyaka et al., 2008). However, somatic em-
bryos still exhibit very low conversion potential into plantlets, which is
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a limitation for the commercial application of this technique.
Considering that somatic embryo developmental patterns are si-

milar to zygotic embryos in terms of morphology, biochemistry, de-
siccation tolerance, and germination (Alemanno et al., 1997), several
studies have been carried out comparing cacao zygotic and somatic
embryos, using zygotic embryos as a reference model (Niemenak et al.,
2015; Noah et al., 2013).

Conceptually, developmental stages of somatic and zygotic embryo
are divided into two main metabolic stages: the first is a morphogenetic
stage that is characterized by cell division and the onset of cell differ-
entiation; the second is a metabolic stage or maturation phase that is
characterized by biochemical activities, which involves the accumula-
tion of major storage products and the preparation for desiccation,
dormancy, and germination/conversion (Leljak-Levanić et al., 2004;
von Arnold et al., 2002; Harada et al., 2010). In this last phase, somatic
embryos achieve both morphological and physiological maturity,
which, guarantee satisfactory post-embryonic performance. Therefore,
the conversion potential is considered to be programmed during em-
bryo maturation (Dodeman et al., 1997).

The early conversion steps in somatic embryos depends both on
activation of enzymatic system that mobilizes nutrient elements, and
the storage compounds accumulated during maturation phase (Stasolla
and Yeung, 2003). Insufficient accumulation of storage compounds and
enzymatic imbalances in somatic embryos were earlier suspected to
cause poor conversion potential in cacao (Alemanno et al., 1997).

Previous studies of comparative proteomic analysis of somatic and
zygotic embryos in cacao showed that the most important difference
between the two types of embryos is related with carbohydrate meta-
bolism. Thus, zygotic embryos display a high glycolytic activity while
somatic embryos showed the important increased of TCA (tricarboxylic
acid) cycle proteins, which is related with intensive aerobic/respiration
pathway activity (Noah et al., 2013). On the other hand, it was ob-
served high expression of stress-/defense- related proteins in somatic
embryos, the authors suggest that they are resilient to the stress im-
posed by in vitro culture (Niemenak et al., 2015).

Despite the similarities between these two types of embryogenesis,
some key differences exist, and, zygotic embryos may be nourished via
phloem and simultaneously development of a normal endosperm tissue.
In SE, embryos are dependent on exogenous carbohydrate supply and
morphological stages occurs without the surrounding embryo sac and
the simultaneous development of a normal endosperm tissue. In addi-
tion, one marked difference between somatic and zygotic embryos is
the availability of storage compounds such as carbohydrates, lipids and
proteins (Rode et al., 2012).

During cacao SE it is possible to recognize two different types of
normal mature somatic embryos with well-defined and developed hy-
pocotyl and cotyledons: the white somatic embryos type which show
enhanced conversion potential, and translucent embryos type that show
limited conversion potential (Li et al., 1998). Previous studies per-
formed by our research group with EET 103 and EET 111 cacao

genotypes, showed that white somatic embryos conversion rate was
90% and 76% respectively, while translucent embryos conversion rate
was 17.8% and 15%. In addition, the proportions of two somatic em-
bryos types during SE is about 50% in EET 103 cacao genotype, despite
this is genotype-dependent feature (data no show).

Thus, in the present study we used a proteomic approach, involving
2D-nanoESI-HDMSE technology, in order to compare normal somatic
embryos with white and translucent morphological appearances in
cacao at the equivalent developmental stage (cotyledonary-staged).

2. Material and methods

2.1. Plant material

The present study was performed with the cacao genotype “EET
103”, which is classified into the ‘Nacional’ genetic group. This geno-
type is known for its high productivity and is considerate as “Cacao de
Aroma” fine flavor (Seguine and Meinhardt, 2014).

2.2. Somatic embryogenesis

Secondary SE was obtained from cotyledons of somatic embryos
previously established in vitro as described by Maximova et al. (2002),
using cacao genotype EET 103. All culture media were composed by
DKW (Phytotechnology Lab, Overland Park, KS, USA) basal salts, as
described by Driver and Kuniyuki (1984) The embryo development
(ED) culture medium was supplemented with MgSO4, as described by
Minyaka et al. (2008).

Cotyledons from mature somatic embryos were excised and sub-
cultured in SCG (secondary callus growth) culture medium for 14 days.
This culture medium was supplemented with DKW vitamins, 20 g L−1

glucose, 9 μM 2,4-dichlorophenoxyacetic acid (2,4-D; Sigma-Aldrich),
1.2 μM kinetin (Kin; Sigma-Aldrich) and 0.2% (w/v) Phytagel® (Sigma-
Aldrich, St. Louis, MO, USA). Cultures from SCG culture medium were
transferred to ED culture medium plant growth regulators-free, and
subcultured every 21 days. After 45 days in culture, normal cotyle-
donary somatic embryos were classified into two types: white and
translucent (Fig. 1). The weight of a normal somatic embryo was about
40–50 mg. There was no significant difference between weight of white
and translucent somatic embryos (data not shown). Three independent
experiments were carried out with three biological replicates. Samples
(500 mg, about 12 normal somatic embryos) of two types of mature
somatic embryos per biological replicate were frozen in liquid nitrogen
and stored at −80 °C for 2 months until protein extraction.

2.3. Proteomic analyses

2.3.1. Total protein extraction
Proteins extractions for each somatic embryo type were carried out

in biological triplicate (500 mg) according to Carpentier et al. (2005),

Fig. 1. Somatic embryogenesis of cacao genotype EET 103. (A) Somatic embryos. (B) White somatic embryo at cotyledonary stage. (C) Translucent somatic embryo at cotyledonary stage
(bar = 2.0 mm).
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with modifications. Samples collected were frozen in liquid nitrogen,
pulverized in a bead mill and subsequently transferred to clear 10-mL
micro tubes containing 5 mL of extraction buffer (50 mM Tris-HCl pH
8.5, 5 mM EDTA, 100 mM KCl, 2% (v/v) β-mercaptoethanol, 30% w/v
sucrose, and 1 mM PMSF) and 5 mL of buffer-saturated phenol (pH
7.8). The extracts were homogenized by vortexing for 15 min and in-
cubated on ice for 30 min followed by centrifugation at 12,000 × g for
30 min at 4 °C.

The phenolic phase was recovered and homogenized with 5 mL of
extraction buffer by vortexing for 15 min followed by centrifugation at
12,000 × g for 30 min at 4 °C. The phenol phase was collected and
proteins were precipitated with 5 mL of 100 mM ammonium acetate in
methanol at −20 °C overnight. The resulting protein pellet was washed
three times with cold 100 mM ammonium acetate and twice with cold
acetone. Finally, the proteins were solubilized in 0.3 mL of solubiliza-
tion buffer (7 M Urea; 2 M Tiourea; 2% IPG buffer; 3% CHAPS; 1.5%
DTT) by mild vortexing and stored at −20 °C until proteomic analyses.
The protein concentration was estimated using the 2-D Quant Kit (GE
Healthcare) using bovine serum albumin (BSA, GE Healthcare) as a
standard.

2.3.2. Protein digestion
The samples were prepared as described by Reis et al. (2016), and

desalted on Vivaspin® 500 (polyethersulfone (PES) membrane, 5000
molecular weight cut-off; GE Healthcare, Little Chalfont, UK). Briefly,
the membranes were saturated with 50 mM ammonium bicarbonate
(Sigma-Aldrich) at pH 8.5 and centrifuged at 15,000g for 20 min at 8 °C.
This procedure was repeated three times. Finally, 50 μL of sample was
left on the membrane, collected and used for tripsin digestion.

Trypsin protein digestion was carried out as described by Calderan-
Rodrigues et al. (2014). For each 50 μL of sample, 25 μL of 0.2% (v/v)
RapiGest® (Waters, Milford, CT, USA) was added, vortexed for 5 s and
heated in an Eppendorf Thermomixer® Comfort device at 80 °C for
15 min. Then, 2.5 μL of 100 mM dithiothreitol (DTT) was added and
placed in the thermomixer at 60 °C for 30 min. The tubes were placed
on ice (30 s), and 2.5 μL of 300 mM iodoacetamide (IAA) was added,
followed by vortexing for 5 s and incubation in the dark for 30 min at
room temperature. The digestion was carried out by adding 20 μL of
trypsin solution (50 ng μL−1; V5111, Promega, Madison, WI, USA)
prepared in 50 mM NH4HCO3 pH 8.5. The samples were placed in a
thermomixer at 37 °C overnight. For RapiGest precipitation, 10 μL of
5% (v/v) trifluoroacetic acid (TFA, Sigma-Aldrich) was added and
vortexed for 5 s incubated at 37 °C for 90 min (without shaking) and
centrifuged at 4000 × g for 30 min at 8 °C. Finally, 100 μL of super-
natant was collected and transferred to the Total Recovery Vial (Waters,
USA) for proteomics analysis.

2.3.3. Mass spectrometry analysis
A nanoAcquity UPLC connected to a Synapt G2-Si HDMS mass

spectrometer (Waters) was used for ESI-LC–MS/MS analysis. Peptide
mixtures were separated by liquid chromatography using 1 μL of di-
gested samples in scouting runs. Normalization among samples was
based on total ion counts. The peptide mixture was first loaded into a
nanoAcquity UPLC 5 μm C18 trap column (180 μm× 20 mm) and then
into a nanoAcquity HSS T3 1.8 μm analytical reversed-phase column
(100 μm × 100 mm) at 600 nL min−1, with a column temperature of
60 °C.

For peptide elution, the binary gradient consisted of water (Tedia,
Fairfield, Ohio, USA) and 0.1% formic acid (Sigma-Aldrich, St. Louis,
MO, USA) as mobile phase A, and acetonitrile (Sigma-Aldrich) and
0.1% formic acid as mobile phase B. Gradient elution started at 7% B up
to 40% B in 90.09 min and from 40% B to 85% B until 94.09 min,
maintained at 85% until 98.09 min, then decreased to 7% B until
100.09 min and maintained at 7% B to the end at 108.09 min.

Mass spectrometry was performed in positive and resolution mode,
35,000 FWMH, and the transfer collision energy ramped from 19 V to

45 V in high-energy mode; cone and capillary voltages of 30 V and
2800 V, respectively; and a source temperature of 70 °C. In TOF para-
meters, the scan time was set to 0.5 s in continuum mode with a mass
range of 50–2000 Da. The human [Glu1]-fibrinopeptide B (Sigma-
Aldrich) was used as an external calibrant. Data-independent acquisi-
tion (DIA) scanning with added specificity and selectivity of a non-
linear ‘T-wave’ ion mobility device was performed (HDMSE) (Heringer
et al., 2015).

2.3.4. Proteomics data analysis
Progenesis QI for Proteomics Software v.2.0 (Nonlinear Dynamics,

Newcastle, UK) was used to process the MSE data. The analysis was
performed following parameters: one missed cleavage, minimum frag-
ment ion per peptide equal to 1, minimum fragment ion per protein
equal to three, minimum peptide per protein equal to 1, fixed mod-
ifications of carbamidomethyl (C) and variable modifications of oxi-
dation (M) and phosphoryl (STY) groups, and a default false discovery
rate (FDR) value at a 4% maximum, a score greater than five, and
maximum mass errors of 10 ppm. A protein databank from Theobroma
cacao was used, obtained from UniProt database (http://www.uniprot.
org/taxonomy/3641). Label-free relative quantitative analyses were
performed by the ratio of protein ion counts among contrasting sam-
ples. After the Progenesis analysis and to ensure the quality of results,
only proteins present in 3 of 3 runs and with coefficients of variation
less than 0.3 were selected. Proteins common to all treatments were
filtered based on a fold change of log2 determined by the overall
coefficient of variance for all quantified proteins across all replicates.
Proteins differentially abundant were classified as up-regulated when
log1.2 was 2 or greater and as down-regulated when log1.2 was −2 or
less. Functional annotation based on protein gene ontology was per-
formed using the Blast2Go software v3.0 PRO (Conesa et al., 2005) and
UniProtKB (www.uniprot.org) databases. The subcellular localization
of the proteins was predicted through TargetP and UniprotKB data-
bases.

3. Results and discussion

Cacao SE represents an important method for clonal propagation
and provides an in vitro experimental system for studying embryo de-
velopment (Maximova et al., 2005). However, many cacao genotypes
are recalcitrant to SE (Minyaka et al., 2008), being the embryo con-
version the most inefficient step of this process (Traore et al., 2003).

As previously presented, in cacao is possible to observe two dif-
ferent morphological types of somatic embryos with contrasting con-
version potential. (Alemanno et al., 1997; Pila, 2013). Thus, the white
appearance in cacao somatic embryos is a highly desirable feature,
which allow the early detection of somatic embryos with satisfactory
post-embryonic performance. In Persian walnut, which also presents
these different somatic embryos phenotypes, it were identified two
protein bands (20 and 11.7 kDa) in white somatic embryo that were
absent in translucent somatic embryos, which could be considered as a
marker for normal maturation of somatic embryos (Jariteh et al., 2015).

Comparative label free proteomic analysis between white and
translucent somatic embryos revealed qualitative and quantitative dif-
ferences between samples. Protein data from white somatic embryos
were contrasted against protein data from translucent somatic embryos.
The prior list of differentially abundant proteins for white and trans-
lucent embryos presented a total of 1667 identified proteins. From the
total proteins, 1339 were present in both samples and across all re-
plicates. Proteins present in both samples were grouped according
differences in abundance levels of at least 2-fold. Therefore, 25 proteins
from white somatic embryos were up-regulated in relation to translu-
cent somatic embryos, whereas 35 proteins from white somatic em-
bryos were down-regulated when compared to translucent somatic
embryos.

Beta-glucosidase (4.78 fold), NAD(P)-linked oxidoreductase (3,5
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fold) and Electron transfer flavoprotein (9.31 fold) proteins were the
proteins with highly significant difference in abundance in white so-
matic embryos compared to the translucent. In contrast, two subunits of
Cytochrome P450 (12.65 and 8.66 fold) and Pathogenesis-related pro-
teins (3.61 fold) proteins were the proteins with highly significant
difference in abundance in translucent somatic embryos compared to
white (Table 1).

Protein groups with differences in abundance levels were associated
with GO categories on Level 2. GO functional categories indicated that
proteins associated with “metabolic process”, “single-organism pro-
cess”, “cellular process”, “localization”, “signaling”, “regulation biolo-
gical process”, “response to stimulus” and “biological regulation” were
annotated according to “biological processes” category. “Catalytic ac-
tivity”, “binding”, “structural molecular activity” and “electron carrier
activity” were the most representative categories annotated according
to “molecular function” category. In addition, “cell part”, “membrane”,
“cell”, “membrane part”, “organelle part”, “macromolecular complex”
and “supramolecular fiber” were the main annotated categories ac-
cording to “cellular component” category (Fig. 2).

The up- and down-regulated proteins showed a similar number of
proteins into the groups related to “biological processes” and “mole-
cular function” categories, while the up-regulated proteins in white
somatic embryos were the most populated into “supramolecular fiber”
group, which is classified into “cellular component” category.

The “supramolecular fiber” is the fibrillar network outside the outer
periclinal walls, which is known as the extracellular matrix surface
network (ECMSN) that is characteristic for SE (Šamaj et al., 2005).
During zygotic and SE, the proteins associated with this network have
remarkable physiology functions, attributable to signal transduction,
formation of tensions influencing cell shape, cell proliferation, cell
differentiation and regulation of cell–cell (apoplastic) and cell to cell
(symplastic) information flow (Bobák et al., 2004; van Engelen and de
Vries, 1992). The detailed significance of this ECMSN proteins is still
under study, but it has been suggested that these proteins participate
during embryo development (Chapman et al., 2000). Several studies
have been showed that ECMSN proteins can be considered a specific
molecular marker for embryogenic competence and they also play an
important role in intracellular and intercellular signaling, and control
the cell and division and cell expansion during embryogenic develop-
ment (Bobák et al., 2004; Dubois et al., 1992; Pilarska et al., 2014).

The high number of proteins into “supramolecular fiber” group offer
speculative insights that related to ECMSN proteins with suitable so-
matic embryos development in cacao. Nevertheless, understanding the
regulation and participation of these ECMSN proteins in this process
requires significant efforts.

Functional classification based on protein Gene Ontology (GO) was
performed. Protein annotation was carried out according to biological
processes (Table 1). Some proteins were associated with various bio-
logical processes. In the present study, a comparative label free pro-
teomic analysis was performed in order to investigate the differences in
conversion ability between white and translucent normal somatic em-
bryos. The biological significance associated to biochemical functions
of proteins that were differentially abundant between the two types of
normal somatic embryos, are discussed in the terms of the 3 main
functional GO categories: “carbohydrate metabolic process”, “oxida-
tion-reduction process” and “response to stimulus”.

3.1. Carbohydrate metabolic process

Proteins associated to carbohydrate metabolism (Table 1) were
significantly up-regulated in white somatic embryos when compared to
translucent somatic embryos. Within this functional category, enzymes
involved in sucrose metabolism (sucrose synthase, 3.21-fold) and in
energy metabolism (beta-glucosidase, 4.78-fold), fructose-bisphosphate
aldolase, 3.45-fold and 3,4-dihydroxy-2-butanone kinase, 2.54-fold
were identified.Ta
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Sucrose can be incorporated into the cell metabolism only after the
hydrolysis (Tognetti et al., 2013); the first step is the cleavage of the
glycosidic bond by either sucrose synthase (SuSy) or invertase (Inv)
resulting in the hexoses production. These hexoses are essential energy
sources for the deposition of different storage products and tissue
growth (Rolletschek et al., 2004).

Somatic embryo development is a complex multi-step process which
demand high energy (Dinakar et al., 2012; Iraqi and Tremblay, 2001;
Konrádová et al., 2002; Lipavská et al., 2000). During early stages,
establishment and growth of embryo structures prevails (Hakman,
1993) while later stages, such as maturation, are characterized by de-
position of storage compounds (Iraqi et al., 2005; Konrádová et al.,
2002; Lipavská and Konrádová, 2004; Verdier and Thompson, 2008).
Thus, a transition from metabolic to storage status has been proved to
be accompanied by changes in activities of sucrose metabolism enzymes
(Iraqi, 2001). Metabolic status is mainly characterized by high Inv ac-
tivities (Konrádová et al., 2002; Winter and Huber, 2000), while storage
status is characterized by SuSy activity (Businge et al., 2013; Déjardin
et al., 1997a,b; Yaseen et al., 2013). In addition to a function in starch

biosynthesis, SuSy is also correlated with cell wall synthesis (Delmer
and Amor, 1995; Koch, 2004; Tognetti et al., 2013) and play a role in
the respiratory pathway (Ishizaki et al., 2006).

In the present study, SuSy proteins were up-regulated in white so-
matic embryos (2.31 fold) in comparison to translucent somatic em-
bryos. Previous, comparative proteomics analysis of cacao somatic and
zygotic embryogenesis showed that SuSy enzyme was expressed in
lower abundance in somatic embryos (Noah et al., 2013). This fact was
ascribed to a possible disturbance in carbohydrate metabolism, re-
sulting in irregularities in storage compound and cell wall metabolism.
However, these results are possibly a consequence of culture conditions.
Corroborating our results, SuSy had a prominent role in the transition
from metabolic to storage status in Norway spruce. Therefore, these
authors concluded that low Inv activity accompanied by high SuSy
activity could be considered as an indicator of embryo quality
(Konrádová et al., 2002).

Likewise, studies in Spruce embryo development showed that an
imbalance on Inv and SuSy activities by replacing sucrose by glucose
and fructose in the maturation medium, resulted in an alteration of

Fig. 2. Functional classification of proteins with difference in abundance
level in cacao somatic embryos by Blast2GO software based on universal
gene ontology (GO) annotation terms. Up-regulated and down-regulated
proteins in white somatic embryos compared to translucent somatic em-
bryos. The proteins were related to at least one annotation term within the
GO category: (A) Biological process. (B) Molecular Function. (C) Cellular
component. The histograms represent the number of proteins associated to
level 2 GO categories.
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storage accumulation and, consequently, in a reduction of somatic
embryo production and germination capacity (Iraqi, 2001). These
findings suggest that a high SuSy activity result in to a suitable starch
accumulation in somatic embryo. Consequently, the deposited starch in
the mature somatic embryo will expected to provide energy to the
embryo metabolism during conversion and thereby enhance plantlets
vigor.

In the present work, specific enzymes for glycolysis (beta-glucosi-
dase (4.78-fold), fructose-bisphosphate aldolase (3.45-fold) and 3,4-
dihydroxy-2-butanone kinase (2.54-fold)) were up-regulated in white
somatic embryos. In a similar way, Noah et al. (2013) and Niemenak
et al. (2015) found that proteins involved in metabolic processes, in-
cluding glycolysis were expressed in zygotic and somatic embryos of
cacao, suggesting that glycolysis enzymes activity could be associated
with the energy demand required for embryo development in the sto-
rage phase.

Beta-glucosidase, one of the enzymes responsible for glycolysis, was
up-regulated in white somatic embryos. This enzyme plays important
roles in plant physiology, including the conversion of plant growth
regulators such as cytokinin, gibberellin and auxin, into an active form
(Brzobohaty et al., 1993) as well as the activation of chemical defense
compounds (Jones et al., 2006; Halkier and Gershenzon, 2006; Suzuki
et al., 2006). Fructose-bisphosphate aldolase was also found up-regu-
lated in white somatic embryos. This enzyme plays different roles in the
processes of plant cell proliferation, growth, development, photo-
synthesis and stress resistance (Konishi et al., 2004; Lu et al., 2012;
Zeng et al., 2013).

These results suggest a possible positive correlation between the
conversion potential of cacao somatic embryos with enzymes related
with carbohydrate metabolic process and as a result, the storage com-
pounds accumulation. In somatic embryos of Persian walnut, it was
observed that the white somatic embryos accumulate a great number of
starch grains in epidermal cells, and the translucent lack of them
(Jariteh et al., 2015). Thus, we can suggest that an increase in specific
proteins in the somatic embryos could result in an increase in metabolic
proteins (enzymes) accompanying the storage compounds accumula-
tion, which guarantees the conversion ability. However, more studies
need to be performed to test this hypothesis.

3.2. Oxidation-reduction process

Recent evidences revealed that cellular signaling pathways are
regulated by the intracellular redox state (Kamata and Hirata, 1999).
The plant cell apparently has redox sensors, which detect deviations
from redox homeostasis prior to the development of major imbalances
(Dietz and Scheibe, 2004). These redox changes affect growth and de-
velopment through signaling networks due to the reprogramming of the
transcriptome, proteome and metabolome (Dietz, 2014; Go and Jones,
2013). The model for redox homeostasis depends on the reactive
oxygen species (ROS) activity which, acts as a metabolic interface for
signals derived from metabolism and the environment (Dietz, 2003;
Foyer and Noctor, 2005). In SE, it has been shown that redox state
represents a key metabolic switch which triggers the induction phase,
by means of the regulation of embryogenic competence (Dos Santos
et al., 2016; Go and Jones, 2013; Kamata and Hirata, 1999; Mohamed
and Stasolla, 2015; Stasolla, 2010; Vieira et al., 2012) and embryo
development (Pullman et al., 2015; Stasolla et al., 2004).

In the present study, the white somatic embryos proteins associated
with redox process category (Table 1) were both up- and down-regu-
lated, although these groups were represented by different proteins. On
one hand, the up-regulated proteins were represented byNAD(P)-linked
oxidoreductase superfamily protein (2.49-fold) and oxidoreductase,
zinc-binding dehydrogenase (3.5-fold). On the other hand, the down-
regulated proteins were represented by NADH-ubiquinone oxidor-
eductase-related (2.92 fold), NAD(P)-linked oxidoreductase super-
family protein (3.26-fold), Geraniol dehydrogenase 1 (3.63-fold),

Cytochrome p450 79a2, putative (8.66 fold) and Cytochrome P450,
family 706, subfamily A, polypeptide 6, putative (12.5 fold).

These results revealed the simultaneous presence of both oxidized
and reduced forms of electron carriers in somatic embryos. Enzymes
such NAD(P)-linked oxidoreductase, NADH-ubiquinone oxidor-
eductase-related and oxidoreductase, zinc-binding dehydrogenase are
continuously produced not only as products of various metabolic pro-
cesses but also in response to specific signals from culture conditions
(Downs and Heckathorn, 1998; Gäbler et al., 1994; Ishizaki et al., 2006;
Kamata and Hirata, 1999; Kocsy et al., 2013). This enzymes-set has also
been found present in different somatic embryos developmental stages
in other species (Lindemann and Luckner, 1997; Morel et al., 2014),
and the equilibrium promote the optimal growth and development
(Kocsy et al., 2013). Accordingly, the imbalance of these enzymes can
affect both redox state of antioxidants and ROS formation, which,
through a redox signaling pathway, leads to the metabolism repro-
gramming of many compounds, including sulphur, nitrogen and car-
bohydrates containing organic compounds (Kocsy et al., 2013).

Another proteins widely up-regulated in translucent somatic em-
bryos was Cytochrome P450 (12.65 fold and 8.66 fold). Cytochromes
P450 represent a family metabolic enzymes, found in all kingdoms
showing expressive diversity in their chemical reactions (Bolwell et al.,
1994; Mizutani, 2012; Mizutani and Ohta, 2010; Schuler et al., 2006).
Cytochromes P450 (P450s) are involved in essential housekeeping
functions and metabolism of most phytohormones, including auxins,
gibberellins, cytokinins, brassinosteroids, abscisic acid, and jasmonic
acid, as well as many secondary metabolites (Werck-Reichhart et al.,
2002). P450 also play a significant role in plant defense responses
(Matthes et al., 2011; Schuler et al., 2006). Redox regulation is a central
control element in P450 metabolic pathways, since cytochrome P450
oxygenase reactions require cytochrome P450 reductase to transfer two
electrons from NADPH to their substrate (Xu et al., 2015).

Thus, it can be suggested that the up-regulation of P450 in trans-
lucent somatic embryos, when compared to white somatic embryos,
might generate a redox imbalance, which often trigger an oxidative
burst (De Gara et al., 2010; Dietz, 2003; Foyer and Noctor, 2005).

In Arabidopsis, it was suggested that the overexpression of P450
proteins was associated with seed growth (Fang et al., 2012). Although
P450 proteins functions have been underreported in SE process, based
in our results, it could be suggested that P450 s are closely involved in
metabolic pathways that regulate cacao somatic embryo development.
However, more studies are necessary to define P450 proteins functions
during cacao SE.

An intensive redox activity is apparently necessary for optimal so-
matic embryo maturation, if enzymatic apparatus are carefully ba-
lanced. Any imbalance in redox homeostasis have crucial consequences
into cell function and it may induce severe damage in the embryo de-
velopment and therefore in the embryo quality. In this sense, our results
suggest that white somatic embryos could contain a more adequate
enzymatic apparatus to regulate cellular redox homeostasis.

3.3. Response to stimulus

The presence of higher levels of proteins associated to response to
stimulus may reflect a cell response to signal molecules for embryo
development and their adaptation to environmental conditions during
in vitro culture (Jin et al., 2014; Zeng et al., 2007). The perception of/
and response to these stimulus sets off various signal cascades that
eventually might result in healthy somatic embryos (Fehér, 2003, 2015;
Zimmerman, 1993).

In our results, we observed the expression of two subunits of RAB
GTPase protein: RAB GTPase A5E isoform 1, which was up-regulated
(3.15 fold), and RAB GTPase H1E isoform 2 (Fragment), which was
down-regulated (4.12 fold). RAB GTPases proteins are regulators of
intracellular vesicular transport and the trafficking of proteins between
different organelles of the endocytic and secretory pathways (Zerial and
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McBride, 2001). Membrane trafficking is required for a variety of cel-
lular functions, such as storage-protein accumulation, cell differentia-
tion and growth, secretion of protein and polysaccharide components of
the cell wall and cell plate, and for the morphogenesis, which depends
on spatial and quantitative control of cell expansion (Lycett, 2008;
Rutherford and Moore, 2002).

In addition, it has been evidenced that Rab GTPases expression is
modulated in response to variations in levels of phytohormones such as
ethylene (Moshkov et al., 2003) and abscisic acid during plant devel-
opment and germinating seedlings (Cui et al., 2013; Nishimura, 2004).
In maritime pine embryogenesis, RAB GTPases were expressed in early
stages of embryo development; the transcript was detected in early
developmental stages of zygotic embryogenesis and the amount of
transcript was progressively reduced in later stages (Gonçalves et al.,
2007; Tzafrir et al., 2002).

In the present study, RAB GTPases were down-regulated in white
somatic embryos when compared to translucent embryos. RAB GTPases
seem to play a role during embryo development; however, the higher
levels of these proteins are related with early developmental embryo
stage. Thus, we can suggest that the translucent somatic embryo were
unable to follow a complete developmental program, which is a re-
quisite for embryo conversion ability.

Also in the present study, eukaryotic aspartyl protease (APs) family
protein (2.62-fold) showed a similar expression pattern with patho-
genesis-related (PR) proteins (3.21-fold). Both were up-regulated in
translucent somatic embryos compared to white somatic embryos.

Aspartyl protease has been studied in different plant species.
Nevertheless, their biological functions are not as well identified. In
general, it is related with plant senescence, programmed cell death,
stress responses and plant reproduction (Simões and Faro, 2004) Be-
sides, plant aspartyl protease participation in storage protein degrada-
tion during the mobilization of reserve proteins in seed germination
was proposed in wheat (Belozersky et al., 1989), rice (Asakura et al.,
1997) and cacao (Voigt et al., 1997). On the other hand, the high ac-
tivity of these enzymes is common in non-germinated seeds, but
nevertheless in suitable concentrations their activity has been proved to
be essential during the seed development and germination (Palma
et al., 2002).

During Arabidopsis embryogenesis, an aspartic protease was identi-
fied, which play a significant role as an anti-cell-death component by
processing and activating a polypeptide that functions as a survival
factor (Ge et al., 2005). Comparative proteomic studies of cacao so-
matic and zygotic embryos revealed that, aspartic proteases were more
abundant in the torpedo stage of zygotic embryos. Therefore it was
suggested that this protein could be a marker of the onset of embryo
maturation (Niemenak et al., 2015; Noah et al., 2013) since that as-
partic protease play important role for storage protein processing
during seed development (D’Hond et al., 1993; Voigt et al., 1997).

In the present study, we analyzed mature somatic embryos.
However, the accumulation of aspartic protease in translucent somatic
embryo might be an indication that although both somatic embryos
types were collected in the same morphological developmental stage,
they may not be in equivalent physiological stages. Translucent somatic
embryo has accumulated aspartic protease proteins in similar patterns
with early zygotic embryos.

Pathogenesis-related (PR) proteins have been identified as produced
by the host plant, but induced by several pathogens (van Loon, 1985).
However, recent evidences show that these proteins display additional
functions, including response to environmental stress and oxidative
signals (Mur et al., 2004; Sabater-Jara et al., 2014), hormones signaling
(Sessa et al., 1995), role in developmental processes and enzymatic
activities in secondary metabolism (Liu and Ekramoddoullah, 2006).
Direct SE in Cichorium was accompanied by an increase in the level on
PR proteins expression in the culture medium, suggesting that these
proteins could be correlated with SE process (Helleboid, 2000).

In fact, plant somatic cells respond to biotic and abiotic stress

factors by activating an array of defense mechanisms, which, switch
their developmental program to a specific physiological state that al-
lows the reprogramming of gene expression and therefore the acquisi-
tion of embryonic competence (Sabater-Jara et al., 2014; van Loon,
1985). Previous studies by Noah et al. (2013) and Niemenak et al.
(2015) found that cacao somatic embryos were more stressed than
zygotic embryos and PR proteins were expressed in higher abundance.
In addition, a large number of differentially regulated genes that encode
for transcription factors were related to stress responses in cacao so-
matic embryos when compared to zygotic embryos, suggesting that
restrict cotyledon development in somatic embryos is related with gene
stress responses expression (Maximova et al., 2014). Based on these
results, it could be hypothesized that PR proteins expression are in-
volved in cacao somatic embryo maturation pathways, where a subtle
imbalance could lead to abnormal embryo development.

In the present study, the higher abundance of proteins as Aspartyl
protease and RAB GTPases in translucent somatic embryos suggests that
their developmental physiological stages correspond to immature so-
matic embryo. On the other hand, the presence of higher levels of stress
response proteins may reflect a response to stressful in vitro conditions,
since that an increased level of these proteins may generate signal
molecules for embryo maturation and/or influence metabolism path-
ways.

3.4. Protein not assigned with the selected functional groups

In this work, electron transfer flavoprotein alpha isoform 1 (ETF)
(9.31-fold) was a highly up-regulated protein in white somatic embryos
that was not assigned in the main selected functional groups. ETF be-
longs to “energy metabolism” category and is associated with oxidative
phosphorylation.

During oxidative phosphorylation, ETF protein serves as a specific
electron acceptor for several dehydrogenases, including five acyl-CoA
dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase. ETF pro-
tein transfers electrons to the main mitochondrial respiratory chain via
ETF-ubiquinone oxidoreductase. These redox reactions release energy,
which is used to form ATP (Christie et al., 2015). In addition, ETF
protein was found in plants under stress conditions and when carbo-
hydrates as respiratory substrates are limiting. The ETF protein pro-
vides an alternate electron supply to the mitochondrial electron trans-
port chain, either by supplying alternative substrates: protein and lipids
or by promoting the metabolism of toxic products thereof, or both
(Araújo et al., 2011; Buer et al., 2013; Ishizaki et al., 2006).

Thus, the higher abundance of ETF alpha isoform 1 in white somatic
embryos suggest an intensive energy metabolism activity, which is in-
duced in order to break down of the carbohydrate supply in culture
medium. On the other hand, we cannot exclude the possibility that
under stress conditions or when the carbohydrate supply is inadequate,
the metabolism of plant cells is modified and alternative respiratory
substrates are metabolized to carry out the embryo development.

4. Conclusion

In this study, we report for the first time a comparative proteomic
data between two different cacao somatic embryos types with relevant
differences in somatic embryo conversion potential. Cacao SE is multi-
step complex process where embryo induction, development and ma-
turation depend on a series of factors encompassing salt composition,
plant growth regulators, culture conditions and internal response to this
stimuli. The proteomic analysis showed a large number of differentially
regulated proteins between withe and translucent somatic embryos.

Considering white somatic embryos as model, we found important
differences between the accumulation patterns of the proteins related to
carbohydrate metabolic process, which are involved in synthesis sto-
rage compounds. The accumulation of storage product is an important
event during embryo maturation and could be considered a marker for

L. Alexandra Pila Quinga et al. Scientia Horticulturae 229 (2018) 65–76

73



somatic embryo quality. At the same time, stress responses and oxida-
tion-reduction proteins were down-regulated in white somatic embryos.
Congruent with these results, it was observed that the same proteins
were down-regulated in later development stages of zygotic embryos,
but in later somatic embryo development these proteins continued up-
regulated. Based on these data, we can suggest that the cacao somatic
embryos are able to develop efficient redox homeostasis system for
controlling oxidative stress in order to reach the full development,
which determines the conversion potential.

In addition, we hypothesized that despite the morphological dif-
ferences between the two types of somatic embryos there are also re-
levant physiological differences. Translucent somatic embryos appar-
ently do not reach physiological maturity, which compromises the
conversion potential. This feature could be triggered by sub-optimal
media composition or inadequate culture conditions. Knowledge about
the differences in white somatic embryos compared to translucent so-
matic embryos might serve as a basis for manipulation of the culture
conditions in order to increase the frequency of white somatic embryos
and improve the cacao SE protocol.

Based in our results, and in order to improve the cacao SE protocol,
we can suggest investigations focusing in redox homeostasis in the
culture medium, through the supplementation of chemical agents with
antioxidant activity, such as glutathione, and/or the interaction with
different carbohydrate sources.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.scienta.2017.10.005.
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