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The aim of this research was to implement a geographical information system with multi-criteria de-
cision making methods, to select the most feasible location for installing wind power plants in conti-
nental Ecuador. In addition, a standardization process was performed, which consists of establishing an
overall performance index to evaluate the results. Finally, the Pearson correlation coefficient is used to
analyze mutual correspondence between multi-criteria decision making methods.

In this research, different selection criteria which include meteorological parameters (wind speed, air
density), relief (slope), location (distances to substations, road network, urban areas, transmission lines,
charging ports) and environmental parameters (vegetation coverage), have been considered.

The results of this research revealed that the site with the highest overall performance index is the
Andean region of Ecuador, with an area of more than 617.5 km?. The outcome of the overall performance
index indicates that the four selected multi-criteria decision making methods provided similar results,
where the value was equal to or greater than 75% of the maximum punctuation of an ideal location. In
this context, the methods analyzed converge to similar solutions and indicate that the multi-criteria

decision making method is a powerful tool for selecting ideal locations for wind farms.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Energy consumption is one of the clearest measures of progress
and social welfare. In this way, the function of the current economic
model that depends on continuous expansion requires an equal
growth in the demand of energy to be sustainable. However, an
important concept related to this issue is the “energy crisis”, which
occurs when the price in the supply of energy resources rises
within an economy. The energy crisis is currently of concern, due to
the world’s demands on the limited natural resources that are used
to power industrial societies. These resources are diminishing as
the overall demand rises. These natural resources are available in
limited supply as either they are finite, dependent on climatic
conditions or dependent on finite resources. Consequently fossil
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fuels are a finite resource, which reveals the fact of the energy crisis
in the world’s economy. Additionally, the excessive use of oil, gas
and coal (or so called fossil fuels), produces more carbon dioxide
(COy) than the planet can maintain, which leads to global warming
and ecological unsustainability. In this regard, many countries
worldwide introduce renewable energy systems in their energy
supply sources, to produce reliable and environmentally friendly
energy.

A key feature of the expansion of renewable energies, on 2014
around the world was the investment of $131.3 BUS$ in developing
countries [1,2]. In the case of Ecuador, the development of the en-
ergy sector has entered into a new phase since 2011 [3]. Ecuador is
rich in renewable energy resources such as wind, solar, geothermal
and biomass. These energy resources have not been explored in the
past due to a solid fossil fuel energy supply. Nowadays, Ecuador is
transforming the energy mix in order to fulfill the country’s energy
demand with renewable energy resources and environmentally
sustainable standards. The main changes in the energy mix are an
increase in an optimal and sustainable manner of access to primary
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energy resources, while changing residential and commercial
consumption patterns, as well as transportation possibilities, to
more efficient ones. For this reason, 5227 MW of renewable energy
power will be installed by 2022, which represents an investment of
9.128 BUSS$, and will cover 83.61% of the country’s energy demand
[3]. In the case of wind energy, Ecuador has explored the land’s
resources in the Andean, Coastal and Island regions according to
the Wind Atlas published by the Ministry of Electricity and
Renewable Energy of Ecuador (MEER) [4].

Wind power is considered the energy implantation source with
the fastest growth in the world [4,5], according to five important
factors listed below:

oThe need linked to the progressive depletion of fossil fuels and
the search for sustainable energy development without
compromising future generations.

ePotential for sufficient wind resources on various parts of the
earth.

eTechnological capability to develop increasingly efficient wind
turbines.

oThe vision of the pioneers in this field, who in the second half of
the last century led the technological development bringing us
to the current situation.

e The policies to facilitate the implementation of wind energy,
both in terms of administrative procedures and compensation
for producers.

One of the inherent difficulties of wind power and renewable
energy is the fitful nature of production. A conventional energy
source power plant can be located anywhere and does not depend
on where and how the fuel supply stands. Instead, wind farms must
be located where the wind is most available. In addition, the wind
farm location is subjected to the wind resources assessment, where
the wind turbines on average work above 3 (m/s) wind speed [4],
[6]. Therefore, it is vital to choose the best location for wind farm
settlement with rigorous considerations, such as electrical and
communication infrastructures and environmental and economic
feasibility.

This shortcoming can be dealt with by adopting a multi-criteria
decision making (MCDM) method. MCDM methods are important
tools for the selection of wind farm locations, because of their
ability to provide adequate solutions. The evaluation of MCDM
methods compares different elements according to their charac-
teristic properties in order to select the best wind farm localization
alternative (distance to urban areas, distance to distribution sub-
stations and transmission lines, land uses, distance to ports, air-
ports or terminals transport, slope, wind speed, air density, etc.)
[7-12].

The application of MCDM methods has been conducted in many
disciplines. For instance, Pohekar and Ramachandran [8] and Ho
[10] performed an applications review, which integrated the Ana-
lytic Hierarchy Process (AHP). In addition, there are many examples
of the application of MCDM methods in renewable energy sources
research, such as: Gwo-Hsiung et al. [13], who studied the use of
MCDM for new energy system development in Taiwan by AHP and
the Preference Ranking Organization Method for Enrichment Of
Evaluations (PROMETHEE). The decision makers (DSS) and PROM-
ETHEE II for new renewable energy exploitations have been applied
by Georgopoulou et al., [14]. Pohekar and Ramachandran [8] pub-
lished a review for a sustainable energy-planning project, which
included MCDM methods such as PROMETHEE, AHP, Elimination
and Choice Expressing Reality (ELECTRE), Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS), Fuzzy, etc. More
recently, Amy et al. [15], developed a model based on AHP associ-
ated with benefits, opportunities, costs and risks (BOCR), to

perform a strategic selection of wind farms in China. The VIKOR
method to investigate the selection of a renewable energy project
in Spain has been applied by San Cristobal [16].

The MCDM methods in this research were processed with
geographical information systems (GIS). The use of GIS allows the
organization, storage, manipulation, analysis and modeling of large
amounts of data from the real world that are linked to a spatial
reference shaped grid. GIS facilitates the incorporation of social,
cultural, economic and environmental criteria that leads to a more
effective decision making. Furthermore, when GIS is joined to
MCDM methods, it provides a good tool for selecting the optimum
site for wind farms. On the basis of these conditions, the MCDM
methods provide a range of techniques and procedures for struc-
turing the advantages, disadvantages and risks associated with the
decision making problem, evaluating the alternatives under spe-
cific considerations.

Several studies relating GIS-MCDM have been conducted about
new energy resources such as: Sanchez-Lozano et al. [17], who
evaluated solar farm locations in south-eastern Spain based on GIS
and MCDM methods, as well as AHP and TOPSIS. GIS with an AHP-
Ordered Weighted Averaging (OWA) aggregation function to derive
a wind farm land suitability index, to spot wind farm locations in
Oman has been developed by Al-Yahyai et al., [18]. Aydin et al. [19],
applied GIS-based on the OWA method for wind farm locations in
the west of Turkey.

This research aimed to analyze the most feasible location for
installing wind turbines based on GIS-MCDM. The area of study was
continental Ecuador, where no previous research has been con-
ducted. The MCDM methods applied to this research were the AHP
method that was implemented for calculating the weights, the
(OWA) Occupational Repetitive Actions (OCRA), VIKOR and TOPSIS.
An Overall Performance Index (OPI) has been applied to evaluate
the results. Finally, the mutual correspondence between MCDM
methods has been evaluated by a Pearson correlation coefficient.

The current research is structured as following: The Materials
and methods for the study is described in Section 2. The results are
presented in Section 3. The discussion of the results is described in
Section 4. The conclusions of the research are exposed in Section 5.

2. Material and methods
2.1. Geographic information systems

GIS has been used as a tool of research and application since the
1970s. It involves a number of academic fields including wind
technology. GIS are designed to store, retrieve, manipulate, analyze
and map geographical data [20]. Raster and vector are the two types
of coverage representation with which GIS operates. The raster is
represented by a rectangular grid called pixels that contains specific
information according to a specific geographic location. Vectors
maintain a geometric figure (points, lines and polygons), which
define limits that are associated with a reference system [17]. The
storage of this information is presented in a geodatabase which
provides order, structure and standardization of the data. All the
geographic information was processed as a raster in this research,
due to the continuous analysis of the spatial variables such as: wind
speed, terrain elevation, air density and vegetation cover among
others. GIS is a powerful tool in gathering and organizing spatial
data, as many successful examples to identify potential locations for
generating renewable energy emerge [20,21].

The raster processes are faster in the evaluation of problems,
including mathematical combinations such as the MCDM methods.
The MCDM in a GIS environment is based on criteria represented by
a layer of georeferenced cartographic information; therefore, every
point of the territory received a value regarding the object activity
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of the decision [21]. The ArcGIS software was used to rasterize and
standardize the data layers under linear and logistic functions in
this research. With this starting point and the inputs generated, the
multi-criteria analysis and the comparison of results were con-
ducted using R, which is a programming language specializing in
calculus and statistics.

2.2. Multi criteria decision making (MCDM) methods

Wind farm sitting is a MCDM problem. The selection is made by
a number of alternative locations in accordance with a set of criteria
and possibilities. MCDM methods are analytical tools employed to
judge the best alternative of a set of possibilities and easy to adapt
to different requirements. The MCDM methods can be broadly
divided into two categories; (i) multi-objective decision making
(MODM), and (ii) multi-attribute decision making (MADM). There
are also several methods in each of the above mentioned categories.
Priority based, outranking, preferential ranking, distance based and
mixed methods, are some of the popular MCDM methods
commonly used to select a location for renewable energies [8,10].

The AHP method has been widely applied in solving a variety of
problems, including applications related to planning renewable
energy installations [13,15,18]. In this article the AHP process has
been used to calculate the weight of the criteria to install wind
farms in different locations. The OWA, OCRA, VIKOR and TOPSIS
methods were used to evaluate the problem. These methods were
chosen because each alternative can be evaluated with the GIS
assessment criteria database. Finally, the Pearson correlation co-
efficient is used to perform the statistical comparison between the
different MCDM methods.

2.2.1. The analytic hierarchy process (AHP) method

The AHP is a structured technique to help people to deal with
complex decisions. It was developed by Thomas L. Saaty [9] in the
1970s and has been considerably improved since then. The AHP
identifies the important criteria for the decision making process. It
creates a hierarchical structure consisting of successive levels,
starting from the overall objective, sorting criteria and sub-criteria,
and ending with the proposed alternatives.

The method employs a pair-wise comparison measurement
mode to quantify the importance of each criterion or sub-criterion,

Step 1: Establish the criteria

using a nine point internal scale.

A great amount of information about the AHP method is found
in literature [8,9,22,23]. The AHP method steps used in this
research can be observed in Fig. 1.

2.2.2. The Ordered Weighted Averaging (OWA) method

The OWA method provides a parameterized family of aggrega-
tion operators, which have been used in many applications [24]. An
OWA operator of dimension n is a mapping OWA: R" — R that has
an associated weighting vector W of dimension n having the
properties w; €[0, 1], ZF:]W_[ =1 defined in equation (1).

n
OWA(ay, a3, ...an) = Y _W;-b; (1)
=1
where b; is the jth largest of the a;.

2.2.3. The Occupational Repetitive Actions (OCRA) method
The OCRA method uses an intuitive technique to incorporate the
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Step 4: Compute the preference
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Step 2: Hierarchy ranking of the Step S5: Calculate the Ilinear
criteria preference rating for the output
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Step 3: Comparison among selection Step 6: Compute the overall
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results by consistency indexes

v

Step 7: Rank the preference order

Fig. 1. AHP method algorithm.

Fig. 2. OCRA method algorithm.
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preferences of the decision maker on a relative importance of the
criteria [11]. The OCRA method diagram can be observed in Fig. 2.

2.2.4. The VIKOR method

The VIKOR method was developed by Serafim Opricovic to solve
decision problems with different criteria [12]. VIKOR ranks alter-
natives and determines the solution, denominating it as a
“compromise”, obtaining the ideal solution. More information
about the VIKOR method is found in literature [12,16]. The VIKOR
method algorithm is presented in Fig. 3.

2.2.5. The Technique for Order of Preference by similarity to ideal
solution (TOPSIS) method

The TOPSIS method is a multiple criteria method to identify
solutions from a finite set of alternatives, developed by Hwang and
Yoon [6]. The basic principle of the TOPSIS method is to choose the
alternative of the shortest and longest distance from the positive
and negative ideal solutions, respectively. An ideal solution is
defined as a collection of scores or values with the shortest geo-
metric distance for all criterions considered. The TOPSIS method
diagram is presented in Fig. 4.

2.2.6. Correlation between MCDM methods

Several techniques allow us to compare qualitatively and
quantitatively raster maps, recognizing visual or numerical simi-
larities on the analyzed datasets at the current time [25]. Numerical
comparisons use procedures based on statistical and mathematical
modeling to find relationships between large datasets [25].

As in other studies that are based on GIS techniques, in this
research a pairwise comparison of maps using the Pearson corre-
lation is analyzed [26,27]. The comparison has been performed
using the raster map values for processing each pixel at each
method described in MCDM methods.

In this research, the raster map solution of the MCDM methods
was compared with the Pearson correlation expressed in equation
(2). In this context, each alternative was compared twice, for all
pixel values of each alternative and on the pixels which have a value
greater than 70. In the second case of comparison, six different
masks were elaborated to compare each method.

_ N3 XiYi— D Xid Vi
Pxy = 2
\/an,-2 —(Zx)*/nEy; - (Sw)?

where, x; and y; are the values of the raster maps to be compared,
Pxy 1s the Pearson Correlation Coefficient and n is the number of
values analyzed.

2.3. GIS—MCDM methodology to prioritize locations for wind farms
suitability

Combining GIS with MCDM allows us to evaluate the criteria
with its factors through the use of attributes within a certain range
of decision rules and assessment [17]. The most common use of
GIS-MCDM corresponds to the selection of suitable sites for
locating human activity.

For this assignment, a methodology based on the spatial analysis
for the multi-criteria evaluation was used. The research was per-
formed in two stages; the first one was the definition of factors and
restrictions in the investigated area. Consequently, the information
was prepared by a rasterization and a standardization process. The
second stage consisted in an evaluation of the most suitable site
through MCDM methods (Fig. 5). The AHP method was used to

Step 1: Establish a matrix of criteria
and different alternatives

Step 2: Normalize the decision

matrix

Step 3: Calculate the weight of the
normalized decision matrix

Step 1: Establish a matrix of criteria
and different alternatives

Step 2: Select the maximum
magnitude and minimum magnitude
values of all criteria from decision

Step 4: Determine the i1deal solutions
and nadir solutions (negative ideal
solution)

v

Step 5: Compute the distance for

matrix
v

Compute

Step  3: the overall

preference

each alternative
v

Step 6: Calculate the
closeness to the 1deal solution

relative

v
Step 4: Rank the results .

v

Step 7: Rank the preference order

Fig. 3. VIKOR method algorithm.

Fig. 4. TOPSIS method algorithm.
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quantify the importance of the different factors used during the
process. Hence, OWA, OCRA, VIKOR and TOPSIS were used to
evaluate the different alternatives.

2.3.1. Definition of restrictions and factors

2.3.1.1. Definition of the analyzed geographic extension. The conti-
nental area of Ecuador has been selected for the implementation of
wind farms in this research (Fig. 6). The area covers 249 000 km?,
which includes all the continental provinces of Ecuador.

MEER published the Wind Atlas of Ecuador in 2013 [4]. The wind
resource modeling is operated with a spatial resolution of
200 m x 200 m and the integration of a digital map that uses
geoprocessing resources, which calculate the performance and
electrical energy production. All the information considered in this
research was presented in the raster format, with the same reso-
lution and extension as the Wind Atlas of Ecuador [4].

2.3.1.2. Compilation of cartographic information and identification of
factors and restrictions. The raster and vector cartographic infor-
mation was determined with help from Ecuadorian government’s
public institutions as it is presented in Table 1. The information
includes different criteria such as physical, socio-economic, tech-
nical and environmental issues. In order to perform the evaluation
of land suitability, the following criteria were considered: wind
speed, digital elevation model, distance of substations, air density,
distance to roads, distance to transmission lines, vegetation
coverage and land use, charging ports distance, urban areas, etc.
Criteria were considered as factors or restrictions within the MCDM
methods.

The restrictions reduce the positive wind farm suitability over
the studied area, based on policy or social-environmental issues. In
most cases, legal restrictions were taken into account to establish
the suitable areas to locate wind farms. While in other cases, the
physical impossibility or simply the inadequacy of the land was a
sufficient restrictive criterion to eliminate certain areas. However,
most of the restrictions are due to legislation, so an inventory of the
legal framework had to be established with the current laws
[28,29].

Environmental impacts associated with wind farm energy
generation are commonly accepted and considered by scientists.
These impacts are generally listed as effects on animal habitats such
as bird collisions, noise generation, visual impact, safety issues,
electromagnetic interference, and distance to airports and to pop-
ulation centers. Moreover, flood area, seismicity and volcanic haz-
ards are considered as a restriction because these natural
phenomena can cause structural damage to wind farms or even
electric shock [15,18,19,30,31].

The identified criteria of restrictions based on literature reviews
is presented in Table 2, and the map of suitable and restricted areas
for wind farm site location is illustrated in Fig. 7. The layer of the
Ecuadorian territory with all the land register includes 6 225 000
pixels, each of which is a record in the database that has the
following assigned information: A filter was performed on the layer
with the restricted areas. The raster included 3 832 583 pixels
located in suitable areas.

Factors are based on the weighting and compensation variables
that will influence positively (aptitude) or negatively (impact) on
the activity of the object of decision, so they should be inventoried
and classified previously [22]. Table 1 presents the summary of
layers with information selected as factors for this study, which
have been selected by its positive and negative importance and
influence the analysis in this manner. The coverage criteria
considered in the analysis of the study was wind speed, ground
slope, distance to the electrical substations and to the road, trans-
mission lines, distribution lines and seaports, which are described
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v

Paso 5: Standardization

v
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Fig. 5. Steps to develop the MCDM methods.

in more detail below:

e The wind speed model selected was the 80 m height, according
to the wind turbines mean hub height for 2 MW of nominal
power at 3 m/s. The wind speed was integrated in the Ecua-
dorian surface. In this case, the annual average wind speed was
equal to or higher than 5 m/s [4].

For the elevation digital model, the average ground slope criteria

established as not exceeding 15%. For this reason, the most
suitable areas were those that had zero slopes, and the least
suitable sites were those with average ground slopes of

maximum 15% [4].

e The construction of wind farms close to existing electric sub-
stations, road network, to the transmission and distribution

lines, is preferable
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Table 1
Cartographic information and identification of factors and restrictions.

Criterion Institution

Year Identification of factors and
restrictions

Wind speed over 80 m
Digital elevation model
Substations distance

Air density

Road network

Transmission lines
Vegetation coverage and land

Ministry of electricity and renewable energy
Ministry of electricity and renewable energy
Agency of regulation and control of electricity

Ministry of transport and public works
Agency of regulation and control of electricity
Ministry of agriculture, aquaculture and fishing

use
Charging ports Ministry of transport and public works
Urban area Military geographical institute

Flood area

fishing

Risk management secretariat

Ministry of transport and public works
Ministry of environment

Volcanic hazard

Airports

National system of protected
areas

National institute for energy efficiency and renewable energy

2013 Factor
2013 Factor
2015 Factor
2015 Factor
2015 Factor
2015 Factor
2002 Factor

2012 Factor
2013 Factor [Restriction

National institute of meteorology and Hydrology - ministry of agriculture, aquaculture and 2002 Restriction

2009 Restriction
2012 Restriction
2015 Restriction

Mangroves Ministry of environment 2015 Restriction
Archeology National institute for cultural heritage 2015 Restriction
Table 2
Criteria of restrictions.
Criteria Restriction
Urban area Considered 3000 m of security area [32]
Flood area Completely restricted area
Volcanic hazard Completely restricted area
Airports Completely restricted area or 2500 m away from airports [32]
National system of protected areas Completely restricted area or 250 m from ecologically sensitive areas [33]
Mangroves Completely restricted area or 4000 m from water bodies [34]
Archeology Completely restricted area

infrastructure causes deforestation, disruption of habitats and
wildlife crossing, urban sprawl and an increased cost and
transport of construction materials over long distances, which
also increases the emitted pollutants [22]. Distances to the
electric substations, to the road network, to the transmission
and to the distribution lines can be minimized by different
methods such as Euclidean distance, Euclidean Allocation,
Euclidean direction, cost distance, etc. In this research the
Euclidean distance to the suggested wind farms site has been
used. These conditions could reduce costs in the implementa-
tion phase and amortize the investment in a short time period.
In this manner, costs for machinery and equipment trans-
portation; as well as increasing the electrical grid would be less
expensive. Several examples can be consulted in the literature
for how to employ this tool to reduce distances [18,19,22].

e The seaports are the most important transport terminals, where
different equipment and machinery for the wind farm project
enters the country. The different charging ports selected influ-
ence in the costs of the project, according to the distances to the
ports. Therefore, the costs will be lower if the charging ports
located in the coastline are closer to the wind farms. Due to the
aforementioned reasons, the Euclidean distance has been taken
into account to minimize the distance to seaports.

According to the bibliography [4], the turbine power density

depends on the air density. In the case of high altitudes as in the

Andean region, there is low air density and high wind speed,

which comprehends areas of great interest for further investi-

gation [4].

e The optimal areas considered for the construction of a wind
farm are those that present no vegetation coverage and a high
degree of alteration by human intervention. It is not possible to
build wind farms in urban areas because they affect the

residents’ wellbeing. Therefore, a 3 km security zone from urban
areas was considered as a forbidden location to generate wind
power [19].

2.3.2. Preparation of information

Preparing information is related to the organization and layout
of geographic information for its analysis with different MCDM
solution methods. During this period, original data was trans-
formed in different procedures to secure its appropriate use during
the MCDM evaluation.

2.3.2.1. Rasterization. The analyzed data employed in this study
was available as vector structures (point, lines or polygons), or as a
matrix structure, called raster. To convert vector coverage to a raster
format requires an acquainted extension grid. The precision of the
extension grid is defined by the cells size. In this case, the pixel size
was 200 m x 200 m, and the extension grid covered the continental
territory of Ecuador. The MCDM requires a raster where each pixel
contains a numerical attribute according to the represented vari-
able. Therefore, rasterization is considered a previous assignment
in order to continue with the MCDM methods.

In the rasterization process, each type of variable to be trans-
formed is considered. A raster model derived from original infor-
mation is considered as a factor model. Moreover, vector structures
are simply transformed to raster like structures when dealing with
a restriction. Rasterization processes of applied values in different
coverages are summarized in Table 3.

The air density map was estimated from the ideal gas relation
based on ISO 2533-1975, which depends on atmospheric pressure
and temperature. The temperature map was calculated with
weather values/data from the National Institute of Meteorology and
Hydrology of Ecuador (INAMHI), that were interpolated using
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Restricted

Unrestricted

Fig. 7. Map of suitable and restricted areas for wind farm site selection.

Table 3

Rasterization processes applied to each criteria of information.

Criteria

Rasterization

Wind speed over 80 m

Digital elevation model
Substations

Air density

Road network

Transmission lines

Vegetation coverage and land use
Charging ports

Urban area

Urban area

Flood area

Volcanic hazard

Airports

National system of protected areas
Mangroves

Archeology

No transformation

Calculating slopes

Euclidean distance calculation

Air density map is estimated from ISO 2533-1975.
Euclidean distance calculation
Euclidean distance calculation
Value assignment and rasterization
Euclidean distance calculation
Euclidean distance calculation
Transformation binary raster
Transformation binary raster
Transformation binary raster
Transformation binary raster
Transformation binary raster
Transformation binary raster
Transformation binary raster

regionalization methodologies of meteorological variables of Fries
et al. and the National Institute of Energy Efficiency and Renewable
Energy of Ecuador (INER) [35,36]. The raster map is based on data
with normal climate from 1981 to 2010 and maintains the previous
analyzed resolution.

The atmospheric pressure map was estimated through the
barometric relation between altitude and pressure, which was

obtained from the hydrostatic equation [37,38]. This relation is
expressed in equation (3).

mgh

p(h,T) = Poe™* (3)

where, p(h,T) is the atmospheric pressure at a height above sea
level, Py is the atmospheric pressure at sea level, which is
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Table 4

Functions applied for factor standardization.
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Id Factor Standardize function

a Wind speed Logistic growth

b Slope Decreasing function

c Distance to electrical substations Logistic growth

d Air density Logistic growth

e Distance to road network Logistic growth

f Distance to an urban area Logistic growth

g Distance to transmission lines Logistic growth

h Vegetation coverage and land use Value Assignment

i Distance to charging ports Linear function and cost distance

approximated 1010 mb, g is gravity, and k is the Boltzmann con-
stant. Last, h and T correspond to the elevation and temperature
map. The constant m is estimated from the molar mass M, of air
and the Avogadro number, Ny where m = My -Ng.

Air density is estimated from the relation of ideal gases, as the
standard ISO 2533:1975 [39] recommends. Air density is expressed
in equation (4).

_ Map(h,T)

palT. p(h, T) = =40 @)

where, p, is the air density, M, is the air molar mass equal to

a. Wind speed

b. Slope

c. Distance to substations

e. Distance to way

f. Distance to cities

g. Dist. to transmission lines

h. Land use

i. Distance to seaports

25

Fig. 8. Layers of the factor standardization.
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‘ Optimal categories to locate suitable sites to install wind farms in Ecuador ‘
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Fig. 9. Hierarchy of criteria and factors.

Table 5
Component weights and its factors.
Category Weight Factor Weight
Meteorological 0.5309 Wind speed 0.3982
Air density 0.1327
Relief 0.2151 Slope 0.2151
Location 0.2150 Distance to electrical substations 0.1009
Distance to road network 0.0432
Distance to urban area 0.0432
Distance to transmission lines 0.0185
Distance to charging ports 0.0092
Environmental 0.0390 Vegetation coverage and land use 0.0390

0.02896 kg/mol, R is the universal gas constant equal to
8.314 Pa*m>/mol*K. Replacing equation (3) in equation (4) the air
density regarding altitude and temperature is obtained in equation

(5).

MaPoe #
pa(T. p(h.T)) = =g (5)

381 %

61.9%

Restricted _ Sitable.

2.3.2.2. Factors standardization. For the selection of wind power
plants it is necessary to consider factors such as wind speed, dis-
tance to electrical substations, air density etc., which do not have
linear behavior in the standardization process for the site selection.
The optimal values of these factors must be prioritized in each case,
so most of the time a linear function should not be used.

The standardization process consists of a rescale of raster values
that starts using a mathematical function (line or curve), specified
according to predefined standardization criteria.

In a suitability model, the decreasing logistic function is ideal
when the minor incoming values are less preferred. When the
incoming values increase, the preference decreases rapidly to a
stage where the minimal preferences are established for higher
incoming values. While the preferences in transformation logistic
functions increase instead of decreasing [40]. Meanwhile, the
transformation of the linear function is ideal when the preferences
for the values increase or decrease linearly [40].

The resulting scale is a range of continuous whole values be-
tween 1 and 100, where the minor value is the less important and
the highest value is the most representative. In this assignment
logistic or linear functions were used according to the variable, as
illustrated in Table 4.

100

T — 7% 4%t

10.2 %

29.7 %

974 % 98.5 %

89.2 %

69.8 %

owa VIKOR OCRA TOPSIS

Marginally | Moderate JJl Mostly

Fig. 10. Suitability surface distribution (left) and MCDM methods classification for suitable land surface (right).
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The resulting layers of the factor standardization process
mentioned in Table 4 are illustrated in Fig. 8. All layers that were
considered as factors present values between 1 and 100 for this
calculation. However, layers considered as restrictions were added
in just one binary layer map that represents values of 0 (Restricted)
and 1 (Unrestricted), as illustrated in Fig. 7.

2.3.3. MCDM evaluation

Once the factors have been standardized it is necessary to
calculate the weight of the specific criteria, to put the problem
under analysis.

Wind power plants can be considered desirable. However, they
produce adverse effects on society or on the environment.
Although a wind farm may cover a large area of land, other land
uses like agriculture are compatible with it. The location of new
wind farms can upgrade the electrical grid and infrastructure
needed for its operation.

Four elements were determined by their importance for this
research: meteorological, relief, location and environmental. The
factors were classified according to its correspondence and
importance within the different categories. Fig. 9 presents the hi-
erarchy of criteria subject to serve as a starting point for the
application of the AHP.

The criteria weights that influenced the decision problem were
obtained from literature [15,17—19], in order to choose the most
suitable site for installing wind farms. The obtained results of the
application of the AHP method are presented in Table 5. Therefore,
the most important element was the meteorological (53.1%), the
second one was the relief (21.5%), the third one the location (21.5%),
and the least important was the environmental (3.9%).

3. Results

Nine factors employed in this study were the inputs to the OWA,
OCRA, VIKOR and TOPSIS methods, to find the most suitable loca-
tion for installing wind farms in Ecuador. The results have been
obtained based on the relative weights calculated with the AHP
method, which are illustrated in Table 5. In addition, an OPI to
evaluate the results from 1 to 100 was accomplished. The evalua-
tion of the score from 1 to 100 clarifies that the score is proportional
to the degree of suitability of the land. A high score indicates that
the analyzed area is a suitable site for a wind farm. This assignation
allows for choosing category ranges with more flexibility and pre-
cision, in a way that the best results are obtained with the least
possible risks. The above mentioned OPI is divided into three in-
tervals, so that each interval indicates a different capacity that
contains suitable pixels; the marginally (1—49), the moderate
(50—74) and the most (75—100).

The distribution of the most suitable land and the restricted
areas is presented in Fig. 10. Hence, the suitable land for the
installation of wind farms was 61.9%. Therefore the usable area was
about 154380 km?. With the prior determined factors and appli-
cation of MCDM, an assessment classification was obtained that
demonstrated that the most suitable locations to install wind farms
were below 0.4%, which represents up to 617.5 km?. Meanwhile the
moderately suitable area was between 1.1% and 29.7%, and lastly,
the marginally suitable surface was between 69.8% and 98.5%.

The ranking of the land suitability index map in the study area
for OWA, OCRA, VIKOR and TOPSIS methods is illustrated in Fig. 11.
The case study results show the most appropriate locations in red.
These sites were settled in the Andean region, specifically in the
provinces of Pichincha, Cotopaxi, Bolivar, Chimborazo, Azuay and
Loja (Fig. 6). The sites with scores below the threshold of 70 have
been found on the western area of the country (Fig. 11), which
correspond to the Pacific Ocean coastline. This region presented
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Fig. 11. Ranking of the land suitability index map in the study area for OWA, OCRA,
VIKOR and TOPSIS methods.

good results at OWA, VIKOR and OCRA methods, but, generally
revealed a score below 45 for the TOPSIS method. Finally, the region
with the lowest obtained scores after the MCDM analysis corre-
sponded to the eastern part of Ecuador, the Amazon region.

4. Discussion

The increasing population and improving living standards pro-
duce an increment on the energy demand. At this point, the future
of the world’s oil supply is uncertain. Over the last few years, a
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Fig. 12. Results of the Pearson coefficient correlation between MCDM methods for all
values.
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major concern has arisen regarding the decrease of the global oil
reserves, through the increment of fuel demand in emerging
economies and the associated instability of the crude oil price,
driven by a strong international demand and by political in-
stabilities within the oil producing regions. In addition, fossil fuels
consumption has a negative impact on the environment. To solve
this issue, the production of reliable and sustainable energy from
renewable sources is proposed. In this context, wind power plants
could solve the problem of energy demand in some places.

This research developed and applied GIS with four MCDM
methods and the Pearson correlation coefficient to assess the
suitability of building wind farms in the continental area of
Ecuador. The study contributes with new added credibility of the
use of expert validation the existing literature about GIS-based
renewable energy suitability studies. This is the first Ecuadorian
research to specifically evaluate the most suitable wind farms using
GIS-MCDM. The results support future decision making to the
government of Ecuador, when building more renewable energy
infrastructures based on wind power plants in relation with the
energy mix change.

To contrast the results with the different MCDM methods, an
analysis of the results by a Pearson correlation coefficient has been
performed. The results of the Pearson correlation coefficient for
each MCDM method are presented in Fig. 12. It can be noticed that
for the OWA, VIKOR and OCRA method, the correlation of the re-
sults is above 93%. While in the case of the TOPSIS method, the
correlation of the results is about 53%. This is due to the value
difference in the western of Ecuador between TOPSIS and the other
methods.

The results of the Pearson correlation coefficient for each MCDM
method taking a data threshold value above 70 are illustrated in
Fig. 13. Besides this, with OWA, VIKOR and OCRA methods, the
correlation of the results is maintained above 93%, while in the case
of the correlation method TOPSIS, a value equal or greater than 75%
was achieved. These results indicate that the four MCDM present
similar outcomes in a value equal to or greater than 75% for the best
places to install a wind farm.

The overriding consensus in bibliography is a minimal

70 75 80 85 @0 70 75 80 85 90 95
1 1 1 1 L N T TN Y N

owa o

0.96 0.93 0.75

T
70 75 80 85 90

0.94 0.82

70 75 80 85 K0
1

ocra

0.82

70 75 80 85 90 95

topsis

ilsl

Fig. 13. Results of Pearson correlation coefficient for each MCDM. It has been taken a
data threshold value above 70.
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environmental impact caused by wind farms compared with other
forms of power generation [19,41]. This opinion was supported by
the different selection criteria considered by the experts as Al-
Yahyai et al. [18], including economical (distance to road, terrain
slope), social (urban area), environmental (historical locations,
wildlife and natural reserves) and technical (wind power density,
energy demand matching, percentage of sustainable wind, turbu-
lence intensity, sand dunes) factors. In case of Van Haren and
Fthenakis [42], the considered criteria were economic (wind re-
sources, electric line cost, electric integration cost, land cost, access
road cost), planning (visual impact, safety distances urban areas,
electromagnetic interference, parks, military, airports, prisons, etc.)
and physical (slope, altitude, karst ecological bird habitats/routes,
forest proximity, lakes and rivers). Similar criteria and restrictions
were also taken by Aydin in Ref. [19] and also Watson and Hutson
[43]. In this case, the selection criteria included meteorological
(wind speed, air density), relief (slope), location (distances to
substations, road network, urban area, transmission lines, charging
ports) and environmental (vegetation coverages) parameters,
which are in relation with the literature mentioned before.

The MCDM used to evaluate the capacity to fit different loca-
tions to install wind farms in the research of Al-Yahyai et al. [18]
were AHP-OWA aggregation. Aydin [19] used the OWA method.
Meanwhile, Watson and Hutson [43] used the AHP and pairwise
comparison. In this study, the AHP method has been used for
calculating the weights and the OWA, OCRA, VIKOR and TOPSIS
methods were used to rank the alternatives. Moreover, the corre-
lation coefficient was used to analyze mutual correspondence be-
tween the MCDM methods. The use of a larger number of MCDM
methods and the correlation coefficient provided greater consis-
tency to the results.

The outcome related with the research conducted by Van Haren
and Fthenakis [42], Aydin in Ref. [19] and Watson and Hutson [43],
exposed areas that were suitable for installing wind farms,
although the results were not representative for the entire country.
Furthermore, it did not present the total percentages of suitable
land for locating the wind farms. In the case of Al-Yahyai et al. [18],
the case study results demonstrated that the area with the most
suitable classification represented about 0.2% of the total area of
Oman. However, in the case of Ecuador the suitable locations for
installing wind farms are above 0.4%. The variation in the outcome
between the two studies is due to the weight of the criteria. In the
case study of Al-Yahyai et al. [18] wind occurrence is the most
important criteria, while in the case of Ecuador there are large
variations in the occurrence of wind.

5. Conclusions

In this research, the selection of places for installing wind power
plants has been achieved based on GIS-MCDM methods for
Ecuador. The present study found that due to the environmental
characteristics of the climate, terrain, location and despite all the
restrictive criteria or limitations, the valid target area has a high
rate of acceptance for the implementation of wind farms.

In order to evaluate the location of wind farms in Ecuador, the
VIKOR, OCRA, TOPSIS and OWA methods were applied. The results
show that the most appropriate land overall is in the Andean region
of Ecuador. This surface represents between 0.4% and 1.1% of the
total area of Ecuador. The areas with the lowest scores are located at
the east of the country.

Two statistical comparisons with the Pearson correlation coef-
ficient have been performed using arrays of pairs between
methods. In the first comparison all raster values were used, while
in the second comparison the highest pixel values (>70), of each
pair were selected as raster. It has been observed that there is a
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correlation of 75% between MCDM methods for selecting the most
suitable location to install a wind farm.

To conclude, this study demonstrates that the use of GIS-MCDM
tools facilitate the selection of the most feasible location in the field
of renewable energy sources. These techniques will help re-
searchers in the future to find locations from an energy develop-
ment perspective.
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