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Abstract 
Psammolestes arthuri is a secondary Chagas disease vector associated with bird nests in the peridomicile. 
We studied the head architecture to describe the size changes and conformation variation in the P. arthuri 
instars. Were collected and reared 256 specimens associated with Campylohynochus nucalys nests in 
Guarico state, Venezuela. We photographed and digitized ten landmarks coordinate (x, y) on the dorsal 
head surface; then the configurations were aligned by Generalized Procrustes Analysis. Canonical 
Variates Analysis (CVA) was implemented with proportions of re-classified groups (=instars) and 
MANOVA. Statistical analysis of variance found significant differences in centroid size (Kruskal-
Wallis). We found gradual differences between the 1st instar to 5th and a size reduction in the adults; the 
CVA showed significant separation, and a posteriori re-classification was 50-78% correctly assigned. 
The main differences could be associated with two factors: one related to the sampling protocol, and 
another to the insect morphology and development. 
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1. Introduction 
The Chagas disease or American Tripanosomiases is mainly distributed between the 42º and 
46º of North latitude and South, respectively [1]. The vectors of this disease are bugs included 
in Triatominae subfamily and comprises six tribes. In particular, Rhodniini with the genera 
Rhodnius (16 spp.) and Psammolestes with three species: P. coreodes Bergroth, 1911, P. 
arthuri Pinto, 1926 and P. tertius Lent & Jurberg, 1965 [2]. Some authors suggested that these 
species are specialized to bird nests microhabitats in open forests [3, 4]. Psammolestes arthuri is 
widely distributed in Venezuela and Colombia [5-7]; mainly associate to the peridomicile [8] in 
the Venezuelan Llanos and Venezuelan Coast Biogeographic Province [9]. In recent years, was 
reported the presence of sylvatic Triatominae in rural houses, possibly attracted by light 
houses or by food source; between them: Triatoma maculata, Panstrongylus geniculatus, 
Eratyrus mucronatus Stal 1859, R. robustus Larrouse 1927, T. nigromaculata Stal 1872 and 
Psammolestes arthuri Pinto 1926 [3, 5, 10, 11].  
The geometric morphometrics [12-15] are widely used in Triatominae: Studies of sylvatic and 
domestic differentiation [16-19], variation in field and laboratory populations [20], or between 
geographic regions [21, 22], ontogeny [23], as taxonomic tool [24] or in a phylogenetic approach 
[25]. In Psammolestes the studies were restricted to traditional morphometrics: eggs and 
nymphs descriptions in P. salazari (=P. arthuri) [26], in P. tertius bionomics [27], and finally in 
combination with molecular tools in P. tertius [28]. However, the geometric morphometrics was 
not evaluated in P. arthuri, because that we propose to study the ontogenetic differences, in 
order to contribute to future research in taxonomy and population variability.  
 
2. Materials and methods 
2.1 Biological material and data acquisition: The P. arthuri was obtained in nest of 
Campylohynochus nucalys (Stripe-backed Wren) in the locality Bersuga, Guarico state, at 383 
masl, 9º46’2.1’’ N and 67º37’40.8’’ W, in March 2008. This locality is included in the 
physiogeographic category of Sabanas Piemontanas Arbustivas according to [29, 30]. Then, the 
specimens were transported to the insectary and posteriorly sorted into the five instars (I-V) 
using the Lent and Wygodzinsky [3] criteria. Finally, all the specimens (by instars and sex) 
were reared in the insectary [31, 32] until complete the necessary individuals for the 
morphometric analysis. Then, were photographed, selected and digitized, ten anatomical  
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landmarks (LM1-LM10), all according Bookstein [12] type I 
and II criteria (Figure 1): 1) Interception between the 
anteclipeous and postclipeous, 2) internal region of antennal 
tubercle, 3) external region of antennal tubercle, 4) preocular, 
5) postocular, 6) postocular, 7) preocular, 8) external region of 
the antennal tubercle (left side), 9) internal region of antennal 
tubercle (left side) and 10) interception between the 
anteclipeous and postclipeous (left side). 
 

 
 

Fig 1: Head of Psammolestes arthuri showing the landmarks (1-10) 
disposition. The polygon enclosed by the points conform the 
configurations analyzed. 
 
2.2. Geometric morphometrics: From 256 matrix 
configurations (first instar; I: 24, second; II: 40, third III: 24, 
fourth; IV: 44, fifth V:79, adult; A:45), we perform the 
Generalized Procrustes Analysis, with the Coord Gen program 
[33] for Procrustes superimposition and then was extracted a 
matrix variable conformation (Partial warps = Pw) and 
centroid size (CS). The Pw matrix was used for an Canonical 
Variates Analysis (CVA) and Multivariate ANOVA 

(MANOVA) with CVAGen [34] to determine whether pre-
defined groups (instars) can be statistically distinguished based 
on multivariate data. Finally, we analyzed the CS differences 
by means of a non-parametric ANOVA with Kruskall-Wallis 
test (P 0.05), using Bonferroni correction, with PAST 
statistical program [35]. 
 
3. Results 
The Figure 2 shows the box plot for CS head between instars; 
the P. arthuri head size, gradually increased from the first 
instar to the fifth, and subsequently reduced in the adults. 
These results were significantly (Kruskal-Wallis: χ2 = 244.2, 
p<0.001), the first instar specimens were small 0.85 mm (0.76-
0.96), followed by the second instar 1.01 mm (0.90-1.10), 
third instar 1.40 mm (1.08-1.60), fourth 1.80 mm (1.46-2.08), 
and fifth 2.31 mm (1.68-2.54). However, no statistically 
significant difference was found between the adult 1.85 mm 
(1.61-2.04) and fourth instar nymph. The first CVA axes 
explained the 94% of variance (CV1= 85%, CV2= 9%) with 
lambda Wilks 0.012; all the axes showed significative 
discrimination (Table 1). The Table 2 shows the assignment a 
posteriori re-classification; the instars were poorly 
classificated (50-78%), the best assignment was in adults 
(males: 78% and females: 72%). The two axes diagram form 
CVA for P. arthuri instars showed (Figure 2) the separation 
into two mainly groups: one comprises the adults (males nd 
females) and another with the remaining instars (I-V). The last 
group showed a slight separation between the V instar nymphs 
(males and females) from the remaining instars (I-IV). The 
thin-plate spline deformation grid show the differentiation 
between instars: In V nymphs and adults (Figure 2A) the 
differences correspond with the diagonal displacement of LM4 
and LM7 to the clipeal area, displacement of LM2 and LM9 to 
the anteocular region, and finally the separation between LM3 
and LM8; in I and II nymphs and V nymphs (Figure 2B) the 
mainly deformations occur in LM4-LM7 associated with eye 
displacements, corresponding to preocular and preocular areas. 
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Fig 2: Box plot for the Psammolestes arthuri head centroid size and instars: F. Adult females; M. Adult males; I.  1st  instar nymph; II. 2nd  instar 

nymph; III. 3rd instar nymph; IV. 4th instar nymph; V F. 5th instar female nymph; V M. 5th instar male nymph. 
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Fig 3: Canonical Variates Analysis diagram of two canonical axes from 256 Psammolestes arthuri    specimens, and thin-plate spline 
grid deformations between: A) V nymphs and adults (♀,♂) and B) I and II nymphs and V nymphs (♀,♂). 

 
Table 1: Lambda (Λ) values for Wilk's test for each CVA axis. 

 

Axis Lambda χ2 g.l P 
1 0.0011 1138.12 112 < 0.0001 
2 0.1947 413.75 90 < 0.0001 
3 0.5020 174.35 70 < 0.0001 
4 0.6726 98.10 52 < 0.0001 
5 0.7948 58.11 36 < 0.0001 

 
Table 2: Results of statistical testing of group assignments for total sample of 256 Psammolestes arthuri specimens, based 
on the a posteriori assignments using the CV axes and Mahalanobis distances between each specimen and the instars mean. 

 

a priori assignment a posteriori assignments 
Instars ♀ adult ♂ adult I II III IV ♀ V ♂ V % 
♀ adult 16 6       72.0 
♂ adult 5 18       78.0 

I   16 8     66.0 
II    27 3 8 1 1 67.5 
III   2 2 16 1 1 2 66.6 
IV    2 9 22 6 5 50.0 
♀ V   2 1 0 2 25 11 60.9 
♂ V      6 10 22 60.1 

 
4. Discussion 
The geometric morphometric tools have been recently used in 
ontogenetic studies for the instar description in Holymenia 
clavigera (Herbast) and Anisoscelis foliacea marginella 
(Dallas) (Hemiptera: Coreidae) [36]. These authors suggested 
that quantitative studies among nymphal instar could be a 
useful tool for the character's determination during the species 
development. In Triatominae we only found two studies: the 
eggs and nymph descriptions in 61 specimens of Linshcosteus 
karupus Galvão, Patterson, Rocha & Jurberg, 2002 [37] and the 
immature descriptions of 17 specimens Belminus herreri Lent 
& Wygodzinsky, 1979 [23]. Both studies concluded that the 
geometric morphometrics is an informative tool for detection 
of anatomical variation. However, these investigations used a 
low specimens representation for the statistical analysis of 
conformation differences (e.g. CVA or Discriminant 

Analysis), and according to Strauss [38] and Webster and Sheets 
[39] the total sample size must be larger than the variables 
analyzed (number of landmarks * dimensions: 2D or 3D) in 
order to obtain a reliable estimate of the variance-covariance 
structure in the data. In our analysis, the differences found in 
the head size among P. arthuri instars could be associated with 
two factors: In the first case, the sampling protocol was 
transversal, the insects were collected in different bird nests 
and possibly the specimens come from different cohorts. 
Klingenberg and Zimmermann [40] reports the inconvenience 
about these sampling protocols, and concluded that the growth 
rate could be affected to the transversal sampling. On the other 
hand, Jaramillo et al. [20] showed that are necessary at least five 
generations in Panstrongylus geniculatus, for quantify the size 
variations among instars. In the second case, in 
hemimetabolous insects the growth is a gradual process and 
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occurs in several nymphal stages; each size increment is 
product of following existing size [40]. The size increment 
occurs because the old cuticle are replaced by means of the 
ecdysis process and is regulated by hormonal mechanisms [40, 

41]. In our study the head size reduction in adults could by 
explain in terms of the landmark selection, in particular those 
anatomical points in the intersection between the anteclipeal 
and the postclipeal area; in the fifth instar occurs an increment 
in the head size due to the ocellus rise, and then in the next 
instar (adults) the centroid size decreased because the 
landmarks displace toward the anterior part of the head. 
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